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A Littlewood-Paley
Inequality for Arbitrary
Intervals

José L. Rubio de Francia

1. Introduction

For every interval 7 C R we denote by Sy the partial sum operator: (Sif) =
= fx;. Given a sequence {Ix} of disjoint intervals, we form the quadratic ex-
pression :

A1) = (S 1S/ 0o )2 (1.1)
k
We aim to prove here the following

Theorem 1.2. For every p with 2 < p < o, there exists Cp, > 0 such that, for
every sequence (I} of disjoint intervals, the operator A defined by (1.1)
satisfies

1Al < Cplflp  (feLP(R)). (1.3)

Two particular cases of this result were previously known:

1.4. When {Ix} is a lacunary sequence: Ix = [ax-1,ax] with (say)
(@k+1 — ax) = 2(ak — ax-1), then (1.3) holds for all 1 < p < o, and a con-
verse inequality: Cp|Af|» < |Af|p is also verified by every f such that supp
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(f) C Urlx. This is a classical theorem due to Littlewood and Paley [11],
which is sometimes a good substitute for Plancherel’s theorem in L?, p # 2
(see [16], [5]).

1.5. When all the intervals Ix have the same length, then inequality (1.3)
holds for 2 < p < o, and this is best possible as it is shown by the example:
L=k —1,kl, k=1,2,...,N and f= X, (with N large enough). This
result was first proved by L. Carleson [1], and a different proof was given by
A. Cérdoba [3], who used it in order to obtain L” estimates for Bochner-Riesz
multipliers, [4].

In the proof presented below, we first reduce the problem to the case where
the intervals {[I}, after suitably dilated do not overlap too much. Once we
are in this situation, it is possible to regularize the partial sum operators, ob-
taining, instead of Af, its smooth version Gf, which is easier to handle as a
vector valued singular integral. The estimates required for the kernel of G are
a combination of classical Littlewood-Paley theory and the ones used in a
simplified proof of the case (1.5), given in [14]. In the last three sections, we
discuss some variants of the main result: weighted estimates, results in L” with
p < 2, and n-dimensional analogues.

This problem came to my knowledge through A. Cérdoba, who was always
firmly convinced of the truth of such a general statement. My finding the proof
was greatly stimulated by conversations with L. Carleson, P. W. Jones, J. P. Ka-
hane, M. Reimann, P. Sjogren and P. Sj6lin, during a delightful stay in Sweden.

2. Reduction to the well-distributed case

All the intervals considered will be of finite length. For every interval 7 and
¢ >0, we denote by cf the interval with the same center as I and length:
lcI| = c|I].

Definition 2.1. A sequence of intervals { Iy} is well distributed if the doubles
of the intervals have bounded overlapping, i.e.

; Xor,(¥) < C (xeR)

Now, we define the Whitney decomposition W(I) of an interval I as
follows: First of all, the definition is invariant under translations and dila-
tions, and if 7= [0, 1], then W(I) consists of the intervals:

{[ak+l,ak]}k=0; B—%] {[l‘akyl_ak+1]}k=0



A LITTLEWOOD-PALEY INEQUALITY FOR ARBITRARY INTERVALS 3

where ax = 27%/3. Observe that the intervals of W(I) form a disjoint covering
of I, and:

2HC I for every He W)

20 Xem() <5 for all x 2.2)
HeW()

Lemma 2.3. Given disjoint intervals {1}, let Af(x) be defined as in (1.1),
and let

Acf () = (H > ISHf(x)IZ)”Z

WL
Then for all 1 < p < ©, we have the equivalence

|Af ]~ “(;(Akf)z)“ (fel?

p

Proor: This is essentially known, and a more general (weighted) version of
it will be given in 6.3 below. Here is however a short sketch of proof: The
operators A are uniformly bounded in L*(w) if w € A, (see [10]), from which
it follows that

”(;(Akfkf)l/z ) <G, (z\; Ifk|2>1/2 0.4)

p

for all 1 <p<o. When we choose fr = Sif in (2.4), we obtain the
inequality > in the Lemma. Since there is equality of norms when p = 2, the
usual duality argument proves the converse inequality < .

It follows that Theorem 1.2 holds for the sequence {Ix} if and only if it
holds for the sequence

UW) = (H/He W) for some k}
k
But this last sequence is well distributed according to (2.2), and we arrive at

Lemma 2.5. In proving Theorem 1.2, it is no restriction to assume that the
given sequence of intervals {Ii} is well distributed.

3. The smooth operator and the basic estimate

We start with a well distributed sequence, and we divide each interval I into
seven consecutive intervals of equal length

I=1Y01?U...uI?, |19 =1|/7
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so that 87> C 2I. It suffices to prove the theorem for each one of the families
(I® | I € initial sequence}. Therefore, we can assume from the beginning that
we are given a sequence I of disjoint intervals such that

2 Xer(x) < C (xeR) (3.1)
Iel
It will be convenient to label the intervals of the sequence according to their
length. Thus, for each integer k, let
(I}j= el |2k |I| <2k

For every k, j, let nf be the first integer such that n/2* € I, and fix a Schwartz
function Y(x) whose Fourier transform satisfies

X2, S ¥ < X[_3,3
Then we define
Vi) = 2°9(2*x) exp(2minj2*x)
so that the Fourier transform of \L,{ is adapted to Ii, i.e.

1 if el

0 if £ ¢8I (3-2)

W) ®=9Q *¢-n)) = {
Definition 3.3. The smooth operator G associated to a sequence of intervals
satisfying (3.1) is
G/ = (3 1910 )" =
keZ j
= {; | [ 259@*(x — ») exp(—27ini29)/ () dym 12
sJ
It follows from (3.1) and (3.2) that 3k, ;|(¥}) (¥)|*> < C, which, by Plan-
cherel’s theorem, implies that Gf is well defined in L%(R) and satisfies
|Gfl2< Clf |2 (3.4

Our objective is the corresponding L” inequality, 2 < p < . This will be a
consequence of the main estimate for Gf stated below. We denote by (-)* the
sharp maximal operator of Fefferman and Stein [6], and also,

Maf(x) = (M(|f|D)}?  (1<g< )

where M = M stands for the Hardy-Litlewood maximal function. Then, we
have for every fe L&(R) = {bounded functions with compact support}
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GN*HN) S CM2f(x)  (xeR) (3.5

The next two sections will be devoted to the proof of (3.5). We wish to
observe here that this will complete the proof of Theorem 1.2, since for all
feLfand2<p<

[(Z1sr12)2] <Gol6r1< GG 15 < CCHIMT 1, < CHL

(the first inequality follows by the usual truncation argument which can be
seen in [5], [16], [17], because Spf= S,;"(\bi*f)).

4. A lemma for vector-valued singular integrals

Let H be a separable Hilbert space, and let K(x, y) be an H-valued function
defined in R? such that |K(x, -)| is locally integrable for each fixed x € R.
Then

/() = [ fDK(x, ) dy
is well defined for every fe L&(R). Given x, z € R, we denote
In(x,2) = {(yeR:2™x —z| < |y — 2] 2" *}|x — 2|}
where m is an integer.
Lemma 4.1. Suppose that T, defined as above, is a bounded operator from

L*(R) to L%(R), and that the kernel K(x, y) satisfies, for some A >0, oo > 1,
the condition

27"\ #

4.2)
Ix — z]

IIM(X,Z) I(K(x’y) - K(Z,y)3>\>l2dy < Az

Sforevery x,ze R, A€ H, and m > 1. Then, for the operator Gf(x) = | Tf(x) |
we have the estimate

(GNH* () < CA, )Mf(x)  (feL)

Proor. It is essentially a repetition of the argument in [6]. Given x € R and
an interval I centered at x, we define the vector

hi= |, SO y)dyeH
so that, iff_=fX21

T/@) - hr = T7@ + |, ,,, JOIKG, ») - K(x, )] dy
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Denoting by g(z) an arbitrary H-valued function with | g(z)|# < 1 for all z€ 1,
we can write

j | Tf () — hi rdz < j | TF() | mdz +

1] 171

j <g(z),j f(y)[K(Z,y) KGe, »ldyydz| = (1) + (2)

Now, the first term is easy to estimate

1/2
)< <mj |f|2> < CV2ZMof(%)

and in the second term, the value corresponding to each fixed g is majorized
by
1 oo

= 2 j | [K&(@), K(z,y) — K(x,y)>| dydz <
| Jr m=1 Jin»

© 1/2
<sup 2, <J If(y)lzdy> A27 M2y — | 712
Iy (z,x)

zel m=1

where we have used (4.2) and the fact that [g(z)|# < 1. Thus,

(2) <24 Z 20 7m0 F ()

m=1

and the series converges because o > 1. Since

GN*() < Csup JIITf(z) hi|adz

||
the proof is ended.

It is easy to formulate generalizations of this lemma: One can consider
kernels defined in R” x R" with values K(x,y) e L(A4, B), for some Banach
spaces A, B, and replace the exponent 2 in our initial assumptions:
| 7f]> < C|f |- and (4.2), by different exponents p, g. Some of these variants
are considered in [15]. The simple case stated here is precisely what we need
for our present problem.

5. Proof of the basic estimate

Here we shall use the preceding lemma in order to prove the pointwise
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estimate (3.5), thus finishing the proof of Theorem 1.2. We must therefore
consider the /*-valued kernel

K(x,y) = {29(2*x — 2*p) exp(—27in]2¥y) i,

where ¢ and ni are defined in §3, and we must prove that K(x, y) satisfies
(4.2). It suffices to do so when \ = {)\'{c}k‘je /% has unit norm, and for every
such A, we let

Kn(x, ) = (K(x, ), ) = 2 N250(2"x — 2%y) exp(—2min]2*y) =
k,Jj

= ; 2592 x = 2°y)qu(2*y)

where, for each k € Z, g« is a 1-periodic function defined by its Fourier series
qi(?) = X N exp(—2minjt)
J

Observe that n,{ # ni’ if j #j’, so that each g, satisfies

j““|qk(t)|2dt<1 (aeR;keZ) (5.1

a

and this is the only property of the functions g that we shall use, so that we
disregard the fact that they also depend on A. Our problem is then reduced
to establishing the inequality

[y KN D) = Ka(@ )P dy < A2 *"x — 2] ! (5.2)
with o > 1. We can assume that z = 0, since this amounts to translating gx by
2%z, so that (5.1) is preserved. On the other hand, replacing x by 2x does not
change the inequality (5.2) at all, and thus, we can also assume that
1 < |x| < 2. Writing In(x, 0) = In(x) we have by changing variables

1K, +) = N0, +) | 22amonn <
< 5 2([ 0 9@ =) = W=D lac) P dy )2

kezZ

S sz/z{ Sup I‘p(zkx_y) _ ¢(_y)|}(2k+m+2 + 1)1/2
y

k €lk + m(x)

© -h-1

= 2+ 2

k=—-h k= -

where we choose A = [2m/3]. For the terms in the first sum we use the fact
that |Y(»)| < C|y| 3, so that



8 Josi L. RuBio DE Francia

sup  |Y(2kx — y) — Y(—y)| < C27 2

yelk + m()

and then,

Z (...)SC Z 2—k_3'n/2<C2_SM/6
k=-h k=—h

For the second sum we use the majorization

sup  [Y(2%x — ) — Y(—y)| < C2*x < C2¢ !

yelx + m®)

and we obtain (since k+ m<m — h<m/3)

_hzil (...)<C —hz_l 23k/2pm/6 (g~ 5m/6
k

k= - = -

Combining everything, we have proved the desired inequality (5.2) with
5
oa=3> 1.

Remarks. The initial computations involving )\{;’s are rather formal, and
serious convergence problems may arise. However, everything becomes cor-
rect if we define a truncated smooth operator Gr by allowing only a finite set
F of k's and j's in the definition. The final estimates are independent of the
set F and so, a limiting argument proves the same result for the whole
operator G.

A somewhat shorter computation is needed to show that

Ly_z, 22l -z AKX D) — KNz, )| dy < C (5.3)

(instead of (5.2)). The analogue of Lemma 4.1 under this weaker assumption
shows that | Gf | smo < C| f|~, which is certainly weaker than (3.5) but still
enough to prove our theorem, since interpolation with (3.4) gives

|Gflp < Cpl flps 2<p < 0.
However, for the weighted analogues of Theorem 1.2 which we shall obtain
in the next section, the full force of the basic estimate (3.5) is required.

6. Weighted inequalities

The following extension of the theorem just proved holds.

Theorem 6.1. If2 < p < o, and if the weight w(x) (in R) belongs to the class
Apsa, then, the operator A defined by (1.1) for an arbitrary sequence of dis-
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joint intervals satisfies

[ 1A we) dx < Cp(w) [ | FPw) dx

Proor. Let us consider first the smooth operator G associated to a sequence
of intervals satisfying (3.1). Then, for all we A,» (2 < p < ) and f good
enough

[ IG7@Pwe) dx < Cp,w [ LGN * (P W) dx <
< CCp,w [ IMaf P W) dx < Cpw [ | /1 Wx) dx
On the other hand, for arbitrary intervals [}, the inequality

(i), < (B17)”

< Cp, w
LP(w)

6.2)

LP(w)

(we Ap, 1 < p < =) holds, because it holds for the Hilbert transform (see [10]
for details). Thus, the usual truncation argument can be applied, i.e.: If {1k}
is the given sequence of intervals, and the associated somooth operator is
Gf = (Zk [¥e*f|?)?, with Jx = 1 on I, then we define fi = yx*f and use
(6.2) to obtain

[ 17w dx < Cp [ 1GFPWE) dx

(we Ap; 1 < p < ). Putting everything together, the theorem is proved for
well distributed sequences of intervals.

Now, for the reduction to the well-distributed case, we argue as in §2, and
we only need to prove the weighted analogue of 2.3, namely

Lemma 6.3. Given a sequence of disjoint intervals {I}, let W(lx) be the
Whitney decomposition of each Ix. Then, for all we Ap, 1 < p < ©, we have
the equivalence

| 1ser) ]

LP(w)~"<Z 2 |SHf|2>1/z

k HeW(y)

LP(w)

for every fe LP(w).

Proor. Let Af be defined as in (1.1), and let Axf be the corresponding
operator for the sequence W(lx). As we mentioned in Lemma 2.3, the

operators A are uniformly bounded in L?(w) if w e 4,, and more precisely
(see [10]) if supp(f) C Ix

Gt [IfPw< [@enw< G [I/Pw  (weds)
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with C,, independent of k. By the extrapolation theorem for A,-weights (see
[81, [13]) this implies

|(Z147)

for all we Ap and fre LP(w), 1 < p < o, and taking fx = Si,.f we get the
desired equivalence

- [(punry”

Lp(w) !LP(W)

187 lzrn ~ | (Z 187°)

LP(w)

which completes the proof of the lemma and the theorem.

The theorem is best possible for p > 2 in the sense that A cannot be bounded
in Lf,, for all we A, if g > p/2 (since this would imply that A is bounded in
L2~ %(R), which is false for some sequences {Ix} of intervals). It is natural to
expect, however, that

j;lszkflzws(?wj IfIPw  (weA)) 6.4

for every sequence {[Ix]} of disjoint intervals, since this is the limiting case of
6.1, and it is known to be true in the extremal cases considered in (1.4) and
(1.5). It would suffice to obtain the same inequality for the smooth operator
G, but the basic estimate: (Gf)* < CM,f is not enough to prove it.

7. Some results in L?, p< 2

Given a sequence {I;} of disjoint intervals, one may ask more generally for
which values of p and g does the inequality

|(Sisnrie) | <cists @.1)

hold. The example in (1.5) shows that a necessary condition (not only for arbi-
trary {1}, but even for equal length intervals) is: ¢ > max(2, p’). Thus, we have
proved in Theorem 1.2 the best possible result for 2 < p < oo, and it is natural
to expect that, for 1 < p < 2, the best possible inequality is also true, namely.

Conjecture 7.2. For arbitrary disjoint intervals {Ix} and for 1 < p < 2, the
inequality

(s

holds for every fe LP(R).

<Gl fl»
p
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As supporting evidence for this conjecture, apart from Theorem 1.2, we
mention two partial results:

a) If {Ix} is well distributed, f —> (Zk |Sp.f|”")"/?" is an operator of weak

type (p,p), 1 <p<2.
b) If 1 < p <2 and g > p’ then (7.1) holds for arbitrary disjoint intervals

{Ze}.

Proor oF (@). The Hilbert transform A admits a vector valued extension:
H((f©)) = (Hfx) which is bounded in L?(/%) for all 1 < p, g < o, and expressing
every partial sum operator in terms of H (as in [16], for instance) we obtain

|(Z 1) ] < Coe] (F0517) 03

< Cp,q
p

P
Now, we define yx so that ¥x is adapted to I, i.e.
Xlk < {b‘k S XZIk

Moreover, all Y% can be defined in terms of a fixed Schwartz function ¥, so
that [y« (x)| = lk|¥(kx)| with lx = |Ix|. Then, the operator

f_’ Wk *f)kElN
is bounded from L to weak-L(/), because sup |y« *f| < CMf, and it is also
k

bounded from L2 to L2(/%) due to the fact that the intervals {Ix} are well
distributed. By interpolation

(3w

<Glfl, (A<p<2) (7.4)
P,

and we only have to apply (7.3) with fx = Yx*fand g = p’.

Proor of (b). We interpolate between the obvious inequality

|(Zisur?) | <1s1e - ey

and the following consequence of the Carleson-Hunt theorem ([2], [9])

”suplSrkfl “ . <Cg|fli+e (feL'*%;8>0).
k 1+

8. n-dimensional results

By an interval in R", we shall mean the product of » one-dimensional inter-
vals: I=[ai,b1] X [az, b2] X ... X [an, bn]. We would like to state the
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analogue of Theorem 1.2 for an arbitrary sequence of disjoint intervals in R”,
but in order to adapt the argument developed in sections §2 — §5, we should
need a lemma similar to 4.1 for product-type vector-valued kernels. No such
result seems to be known so far, though one may hope that the methods of
[7]1 could be suitably modified to this end.

What one can prove by standard reiteration techniques is a theorem for
«cross-partitions»: A cross-partition of R" is a family {Ix}renn of disjoint n-
dimensional intervals such that

L=IPXIPx...xI" (k=(kikz,...,kn)EN")

where, for each i =1,2,...,n, the sequence of intervals {Ij‘i’ }jen form a
partition of R.

Theorem 8.1. If {Ix}renn is a cross-partition of R” and 2 < p < «, then for
all fe LP(R")

<Glfl»

p

(pisur)”

Proor. For notational simplicity, we shall assume n = 2. Let Ij x = I} X
X I¥(j, k € N) be the given family of intervals, and let S &, Sj and S¥ denote,
respectively, the partial sum operators in R? corresponding to the intervals
Ik, I} X R and R X I{. By the one-dimensional result and Fubini’s theorem,
we have

<G|flr (feL?2<p< ) (8.2)
P

"(; ISJ"f|2>1/2

and similarly for S¥, kK € N. Thus, the operator
8" f= 8"f = (Skfken

is bounded from L?(R?) to LE(R?), where H = /%, and the theorem of Mar-
cinkiewicz and Zygmund [12] (which is also valid for Hilbert space-valued
functions) gives

p/2 p/2
j(z IIS"fj(x)I!%r> <t <Z Ifj(x)|2> ax 8.3)
J J

Now, given fe LP(R?), 2 < p < =, we apply (8.3) with fj = S}f taking into ac-
count (8.2) and the fact that S¢S}f = Sj,«f.

The same inequality holds in LP(w) if we A}/, = [Ap — weights with
respect to all #-dimensional intervals], 2 < p < . Another partial result is the
following.
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Theorem 8.4. Let {Q;} be a sequence of well distributed cubes (in the sense
of 2.1) in R". Then

I|<; |SQ;f|2>1/2

pSCp”f"p R<p< ™)

The proof is a repetition of the arguments in §3, §4 and §5. More generally,
if l;, g; are fixed positive numbers, one can prove the same result for a family
of intervals {I;} such that I; has dimensiones /;67* X 67" for some §; > 0. In
this case, the definition of well distributed sequence is made in terms of the
non-isotropic dilations: 6 - x = (6%%x1, 6%%xa, . . ., 69"x,).

By putting both theorems together and using the general arguments of §2
(see also [14]), one can find a huge variety of configurations of intervals in
R” for which the inequality stated in 8.1 turns out to be true, but the general
n-dimensional analogue of Theorem 1.2 seems to be still out of reach.

Added in proof. Since the result proved in this paper was known, several
authors became interested in it making some contributions. Thus, another
proof of the basic estimte (3.5) was given by P. Sjolin, and a different ap-
proach to the problem was found by J. Bourgain yielding, for a sequence of
disjoint intervals covering R, the inequality

1f1n < }'(; ls,kfv)” (1<p<2)

p

(which, for 1 < p < 2, is equivalent to theorem 1.2). Finally, J. L. Journé has
been able to prove recently the general n-dimensional version of our theorem,
namely, the analogue of theorem 8.1 for an arbitrary partition of R” into n-
dimensional intervals.
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