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On the Boundary Values
of Harmonic Functions
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1. Introduction

Over the years many methods have been discovered to prove the existence of
a solution of the Dirichlet problem for Laplace’s equation. A fairly recent col-
lection of proofs is based on representations of the Green’s function in terms
of the Bergman kernel function or some equivalent linear operator [3].
Perhaps the most fundamental of these aproaches involves the projection of
an arbitrary function onto the class of harmonic functions in a Hilbert space
whose norm is defined by the Dirichlet integral [5]. Here a problem has re-
mained open concerning continuity at the boundary of the solution that is
constructed by orthogonal projection. Past discussions of this question turned
out to be successful in space of two or three dimensions, but failed for larger
numbers of independent variables [2]. It is the purpose of the present note to
remove any such restriction and simultaneously to give a concise treatment of
the boundary condition that is applicable to other existence proofs.

Let D be a domain in n-dimensional space that has a smooth boundary aD.
We introduce the Hilbert space H whose elements are the gradients of har-
monic functions # with a finite Dirichlet integral

[ul® = @ u) = [, |Vul* dr.

That H is complete follows easily from the mean value theorem for the partial
derivatives of u.
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Let w stand for a continuous function on dD that can be extended inside
D so that its Dirichlet integral there is finite. According to the Riesz represen-
tation theorem the bounded linear functional (#, w) can be expressed as the
scalar product

u, w) = (u, U)

of u with an element U of the Hilbert space H. In fact U may be viewed as
the orthogonal projection of w onto H. It might be anticipated that U solves
the Dirichlet problem for Laplace’s equation in D with boundary values w
assigned on dD. However, we shall not attempt to establish this directly.

Let us consider the auxiliary function

where r stands for the distance from a point x in D to a variable point of in-
tegration £, and where w,/(n — 2) is the surface area of a unit sphere. After
a preliminary application of Green’s theorem that resolves the singularity at
¢ = x, differentiation under the sign of integration shows that v satisfies the
partial differential equation

Av = Aw

in D, since 1/(wnr""?) is a fundamental solution of Laplace’s equation. To
prove that w — v solves the Dirichlet problem formulated above it therefore
suffices to show that v vanishes continuously at the boundary aD. It is our
intention to develop an elementary proof of this result in the next two sections
of the paper.

2. Green’s function of a nearly spherical domain

In Neumann’s method of the arithmetic mean [4] the solution of the Dirichlet
problem is sought as a double-layer potential

u_l ] lda
" wn apl'taur"_2 ’

where » stands for the inner normal. A Fredholm integral equation

1
By — pdew=w
2 wnJop
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is found for the determination of the unknown density p on dD, where

a 1

o 2%

dw =
becomes, after division by n — 2, the solid angle subtended from the point
X = Xo on dD by the surface element do. An exact solution may be obtained
when D is a half-space, since in that case dw = 0, so u = 2w.
More generally, following Neumann, one can try to determine p as the limit
of a sequence of successive approximations yu; defined by the formula

2
pLj=2W——J‘ uj_ldw.
Wn JoD

A proof of convergence hinges on estimating the difference

2
Wi+l — W= ——J [ — wi-1l do.
Wn JoD

For the moment let us suppose that dD consists of two pieces, one being the
infinite section S; of an (n — 1)-dimensional hyperplane that is cut out by a
small cell S; of some convex surface, and the other being S, itself. Further-
more, let us assume that with reference to any point xo on S; or S; the solid
angles subtended by either S; or S, are both less than ¢/(n — 2).

From the hypotheses we have formulated one can derive the estimate

4e
|1 — wil <—max|p — pj-1|.
Wn

This follows because any line intersects the surfaces S; and Sz in at most three
points, so that the solid angle of integration dw/(n — 2) does not become
multiplied by more than two. Therefore u; converges to a solution p of the
Fredholm equation provided that € < wn/4. We conclude that the Dirichlet
problem can be solved and the Green’s function

G = ;nrl"—_z— 4+ o
for Laplace’s equation exists in either of the two infinite domains bounded by
Sl and Sz.

Let us return to the case of a smooth surface dD bounding a finite domain
D. To assess boundary values we require that each point xo of dD can be
touched by a closed sphere located enterely in the exterior of D. An inversion
mapping this sphere onto a half-space transforms dD into a surface that
becomes convex in the neighborhood of the boundary point xp. Consequently
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a convex surface element S, of D enclosing xp can be cut out by a hyperplane
whose outer section S; combines with S» to meet the hypotheses announced
above. Thus we are assured that a Green’s function G exists in the infinite
region bounded by S; and S that contains D.

In the next section we shall use G as a parametrix to estimate the boundary
values of the auxiliary function v. To complete our discussion of Neumann’s
method here we observe that, coupled to the Kelvin transformation [4], it pro-
vides a convenient construction of the Green’s function for a nearly spherical
domain. Moreover, convergence of the Neumann series can be proved without
the assumption of partial convexity that we have introduced as a matter of
convenience.

3. Continuity at the boundary

We proceed to establish that the auxiliary function v defined in Section 1 ap-
proaches zero as its argument x approaches any point xp on the boundary sur-
face dD. The analysis of Section 2 shows that it suffices to consider the case
where xo lies on a convex surface element S, of 3D which, together with the
outer section S; of a corresponding hyperplane, bounds a domain containing
D and possessing a well defined Green’s function G.

Let us recall that w — U is orthogonal to every harmonic functon u of the
Hilbert space H in the sense that

(w—-U,u)=0.

Since the difference between G and the fundamental solution 1/(w.r" %) of
Laplace’s equation lies in A, it follows that v has the representation

v=(w-U,QG).

Because G vanishes on S, we wish to draw a similar conclusion about v.
Given any number 6 > 0, the locus of points £ where

G=Gx,9H=6

is seen to lie inside D when x is chosen sufficiently close to the boundary point
Xo. The estimate of G required for the proof follows from a comparison with
the Green’s function of a half-space enclosing S; and S,. In this situation
Green’s theorem yields the identity

v=— j (G — 8) Awdr + j (Vw — VU) - VG dr.

G>6 G<é

As x — xo the first integral on the right tends to zero with é provided that w
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has bounded second derivatives. The second integral, which is evaluated over
the part of D where G < 6, has the same property in view of the Schwarz ine-
quality
2 2 aG 2
[ j (Yw —VU) -VGdr|* < |w— U] j G-—do=5|w-U|’.
G<s G=5%

This completes the proof that v vanishes on dD. Thus w — v solves the Dirichlet
problem posed in Section 1, and our existence theorem is established.

A similar treatment of the boundary condition can be given for the solution
of the Dirichlet problema constructed from Dirichlet’s principle rather than
from projection onto the Hilbert space of harmonic functions. The method
succeeds for more general linear partial differential equations of the elliptic
type, too [1]. The main requirement is that a fundamental solution can be found
in the large. The proof can also be based on other principles of functional
analysis, such as the Hahn-Banach theorem [2]. One advantage of the present
approach, as we have already indicated, is that it applies in space of arbitrary
dimension. On the other hand, a disadvantage is the restriction to domains with
a smooth boundary.
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