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1. Introduction

A vector field in R? of the form
d 0
X=P2 102
ox Qay

where P = X ayx'y’ and Q= X byx'y/, 0<i+j<n, is called a planar
polynomial vector field of degree < n. The N = (n + 1)(n + 2) real numbers
aij, bi; are called the coefficients of X. The space of these vector fields, endowed
with the structure of affine R V-space in which X is identified with the N-tuple
(aoo, @10, - - - » @on; boo, - . . , bon) Of its coefficients, is denoted by x.

The Poincaré compactification of X € x, is defined to be the unique analytic
vector field ®(X) tangent to the sphere S = {x*> + y?> + z2 =1} and to the
equator S'= {S%,z=0)}, whose restriction to the northern hemisphere
S%2 = {8%,z> 0} is given by 2"~ 'p«(X), where p is the central projection
from R? to S%, defined by p(u, v) = (u, v, 1)/(?* + v* + 1)/2. See 3 or [6] for
a verification of the uniqueness and analyticity of ®(X).

Definition 1.1. a) X ey, is said to be topologically stable if there is a
neighborhood V and a map A: V— Hom(S?, S') (homeomorphisms of S?
which preserve S') such that Ax = Id and Ay maps orbits of ®(X) onto orbits
of ®(Y), for every Ye V.
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16 J. SOTOMAYOR

b) If furthermore, 4 can be chosen such that for each x € 2, ¥ — hy(x) is
of class C', r=1,2,..., ©,w, then X is said to be r-stable.

Define by £, (resp. X7) the set of X € x» defined in a) (resp. b)).

The topological (resp. r) bifurcation set in x, is defined by xi = xn — Zn
(resp. xz' = xn — Zh).

The point topological properties of £, have been studied by Pugh [17] and
dos Santos [19] Their works describe an open dense set of x, denoted here by
Sy, such that 8, C X,, which is defined by properly extending to elements of
the form ®(X) the conditions given by Andronov-Pontryagin [1] and Peixoto
[14] for smooth vector fields on compact domains. These papers were preced-
ed by the work of Gonzales [6], devoted to the generic properties of elements
of x, at infinity, i.e. on S'.

Definition 1.2, Denote by §, the set of X € x, for which ®(X) has a) all its
singularities hyperbolic, b) all its periodic orbits hyperbolic and c) no saddle
connection contained in S — S'.

The characterization of X, depends on a delicate point, apparently
overlooked in [19], which for future reference is formulated here as a
problem.

Problem 1.1. Prove (or disprove) that the hyperbolicity of an attracting or
repelling periodic orbit in §% — S is necessary for topological stability in xx.

The main results of this paper, characterize X; as 8, and establishes the
simplest affine, analytical and measure theoretical meagerness properties of
the bifurcation sets x» and xz ' of x.. These meagerness properties have ob-
vious thickness counterparts for £, and /.

Theorem A. a) The set of r-stable vector fields X, r=1,2,...,w, coincides
with 8,.

b) Furthermore, xz' = xn — S, r=1,2, ..., w, is contained in the union
of countably many one-to-one immersed analytic submanifolds of codimen-
sion =1 in xn.

Corollary 1.1. x%! and, therefore, xi have null Lebesgue measure in xn.
Corollary 1.2. Let £:R— X, be a C' map. Call G(§) the set of V € x,, such
that £ + V meets 8, except at most in a countable set of points. Then G(§) has

total Lebesgue measure in X,.

The null Lebesgue measure of the bifurcation set in compact plane regions
was established by the author in [25].
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Corolary 1.2 is a rather crude description of bifurcations of codimension
one of X,,. The actual geometry of the bifurcation phenomena of ®(X) as the
coefficients of X change along curves that meet X' transversally at regular
points, has been studied in the simplest situations in [13].

2. Proof of Corollaries

Assume Theorem A, b).

Let x,—-8,=US;j, j=1,..., where S; are analytic submanifolds of
codimension > 1.

The map F(V, -) = V + &(-) is transversal of S; if and only if V belongs to
the set R; of regular values of the projection of F~'(S;) onto x,. Clearly
G(¢) = R;. By Sard’s Theorem [20], G(£) has total Lebesgue measure. This
argument applies to any map £: R* — x, of class C*. It gives Corollary 1.1 if
k =0, and Corollary 1.2, if £k = 1.

3. Proof of Theorem A

Take coordinates (6, p), 27-periodic in 6, defined by the covering map from
R x (—1,1) onto 8% — {(0,0, =1)}, given by (8,p) = (x,»,2) = (1 + p)~'/?
(cos 8, sin 0, p).

The expression for 2"~ 'p«(X), X € X, in these coordinates is

. ] ‘
1 +p?)¢ ”")/2[ (E”IA”"'(G))a_e - p(?-?p'Rn—i(o))(%], 3.1

where i=0,1,2,...,n and

Ax(0) = Ar(X, 0) = — Pr(cos b, sin ) sin + Qk(cos b, sin §) cos §

2
Ri(0) = Ri(X, 0) = Px(cos 8, sin f) cos § + QOxr(cos 8, sin ) sin 6, (3-2)

with Px = S aiyx’y’, Qx = D byx'y’, i+ j = k.

This shows that ®(X) must be given by (3.1), mod 2x, and is therefore
analytic in S? and tangent to S’.

Denote by B(i) the set of X € x,, which to not satisfy condition i = a), b),
¢) of Definition 1.2. Theorem A, b) will follow from.

Proposition 3.1. a) B(a) is a semi-algebraic set in X,,.

b) The set C of vector field of x, — B(a) with some graph of saddles and
separatrices is closed in x, — B(a).

¢) B(b) is a closed semianalytic set in the open set A = (X, — B(a)) — C.
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d) B(c) is the union of finitely many one-to-one immersed analytic hyper-
surfaces in X,, — B(a).

Proor. a) Notice that B(a) is the projection into X, of the union of the
following semi-algebraic sets.

{P=0,0=0;A=P:Q — P,0Ox =0},
{(P=0,0=0;A>0,0=P:+ Q, =0},
{An=0,A47=0} and {A,=0,R,=0}.

The result follows from Tarski-Seindenberg Theorem [21].

b) If X— Yin x,, — B(a), and Y does not have any graph, by continuation
of all the saddle separatrices through saddle connections of Y one would ar-
rive to separatrices whose limit sets are attractors or repellors.

By continuity, the same would hold for neighboring systems and, therefore,
X could not have had graphs.

¢) The following remaks will be needed.

Remark 3.1. If X has a periodic orbit at infinity, i.e. if S! is a periodic orbit
of ®(X), then it is hyperbolic if and only if

b= [ Ra(X, ) A7 (X, 6)db = 0.

Actually, the derivative IT'(0) of the Poincaré return map IT associated to
a transversal segment is given by

logIT'(0) = (= 1)ap, (3.3)

where o denotes the sign of the orientation of the orbit relative to the
canonical orientation of S*.

In fact, from (3.1) the trajectories of ®(X) near S satisfy the following dif-
ferential equation

dp _ —p(Ep'Ra-i(6)) . _

— = T 1—0,1,...,71

do o'An-i(0)

Denote by p = p(po, 6) the solution of this equation, with initial condition

0(po, 0) = po. The Poincaré return map is therefore given by II(po) = p(po, 27).
Therefore,

o2m

ey . 9P _ 1
H(O)—%;(O,Zw)—exp[— " Ruds do],
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as follows from (3.3) and a well known formula for the derivative of solutions
with respect to initial conditions. Since, in this case,

021r_ 27
Jo “’IO’

this proves (3.3).

Remark 3.2. The derivative of p in the direction of

a ]
V= - bl n
T6x+ Uayex

is given by
Dux(V) = |77 (TaQn — UnP)Ai (X, 0) b,

which is not null. In particular, if

V= +y2)"<x£—c + %) n=2k+1, DuV)=["A7'6)db =0.

This shows that the space of vector fields in x,, » = 2k + 1, with a non
hyperbolic orbit at infinity, is an analytic hypersurface.

The proof of ¢) can be finished as follows.

For X € A take a neighborhood V C A, such that the Poincaré return map
II;: VX Li— Liof ®(Y), Y €V, is defined on a segment L;-transversal to each
periodic orbit v; of X. Write 0 = L;N~;.

Let n; be the multiplicity of ; as a periodic orbit of X that is, n; is the order
of the zero of ITi(X,x) — x, at 0 e L;. Using the Weierstrass Preparation
Theorem [29], write IT:(Y, x) — x = Ui(Y, x)P:i(Y, x), where

Pi=x"+a®_ (V)x" '+ ... +af’(Y),

with af and U; analytic functions, U; # 0 in ¥ x L; and a’(X) = 0.
There are two cases:

a) If +; is a periodic orbit on S2 - S!, Dxap#0. In fact,
ao = ILi(-,0)U~1(+), and by [23; 1p. 383], if V = T(3/dx) + U(3/dy),

Dxao(V) = U™ (X, 0) [jexp[ - [, div X |(PU - QT) dt,

where 7 is the period of ..
b) If v; is the periodic orbit at infinity, ap = 0, and P; = xQ;, where

0= ¥+ gy (VW alCD)

where #; is odd and a®(Y) = U7 (Y, 0){exp[(—1)ou(Y)] — 1}, according to
Remark 3.1.
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The non hyperbolic periodic orbits of ®(Y’) are near some ;. In case a) they
intersect L; at points where the quasi-polynomial P;(-, x) has a multiple root.
In case b), this happens when a(Y) = 0, for non hyperbolicity at infinity,
and at multiple roots of Q;(-,x), for non hyperbolicity on S — S'.

These sets, defined by the condition of having multiple roots are
semianalytic. In fact, they are inverse inmages by the analytic maps
Y= @d_ (Y),...,a$’(Y)), for case @), and Y = (a_,(V), . . ., a{(Y)), for
case b), of the discriminant locus of the generic polynomials of correspondent
degree, which is a semi-algebraic set [27].

d) The semi-algebraic set X, — B(a@) has finitely many connected com-
ponents Cy, Cy, ..., C; [28]. On each such component C, the saddle singular
points p;(X) of ®(X) as well as its four separatrices S/(X,s), i =1,2,3,4,
parametrized by arc length s; with origin in p;j(X), are well defined analytic
functions of the two variables. Take S(Y,s;) and S§(Y,s;) two such
separatrices, the first unstable and the second stable, which correspond to sad-
dle points p;(Y) and pi(Y), which may be equal.

The set Bjx of (Y,))e C x R, for which §J(¥) and S§(Y) form a saddle
connection of lenght / is an analytic submanifold of dimension N —1 in
C X R, whose projection into C is a one-to-one immersion.

In fact, for (X, /o) € Bj, take a small segment L transversal to X through
a point po = SY(X, 51(0)) = S5(X, 52(0)). There are analytic functions si(Y),
i = 1,2, implicitly defined by S{(Y, s1(Y)) € L, S¥(Y, 52(Y)) € L and such that
si(X) = 5:(0).

It was shown in [23], see also [2,18], that the derivative of the function
S = SIY,51(Y)) — S¥(Y, 52(Y)) is given by

Dsx(2) = |7 _exp| - [, divX |(RT - QU)dr,

where Z = T(d/0x) + U(3/dy), and the integral is computed on the saddle con-
nection. Without loss of generality assume that the saddle connection does not
contain (0, 0, 1), and the coordinates (o, 6) of (3.1) can be used.

Writing X = P(3/0x) + Q(3/dy) and X+ = —Q(3/dx) + P(3/dy) in these
coordinates and applying the above integral formula, one gets an expression
of the form

DSx(x*) = [~ _glo, O)pdt,

where g(p, 0) is strictly positive. This shows that DSx # 0.

Clearly this ends the proof of d). In fact, when S(Y) = 0, the lenght of the
saddle connection is given by /(Y) = s51(Y) + s2(Y) which is also analytic.
Therefore, Bjx is an analytic manifold of dimension N — 1, which projects
regularly into C. The set B(c) in C is the union of finitely many images of such
projections.
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The proof of (A4, b) follows from Proposition 3.1, by the stratification of
semi-algebraic and semi-analytic sets into analytic manifolds. See Lojasiewicz
[11] and Whitney [28].

The proof of Theorem A, q) is straight:

1) If X e 8, the constructions of topological equivalences in [1, 7] all pro-
duce r-stability. Therefore, Xe X, r=1,...,w.

2) If XeXZy, r=1,...,w, from A, b) X must be topologically equivalent
to an element of $, and therefore the singularities and periodic orbits of ®(X)
must be finite and there must not be saddle connections contained in $* — S*.
The r-stability condition forces the singularities and, particularly, the periodic
orbits to be hyperbolic. Actually, for the hyperbolicity of singular points and
infinite periodic orbits it is sufficient to impose topological stability.

4. Final Remarks

1) For the study of stable smooth vector fields on non compact domains,
the reader is refered to Nitecky et al [8] and the references quoted in this work.
Here, perturbations with compact support are allowed and stability is not a
generic property.

2) The set A = (x» — B(a)) — C in Proposition 3.1 is related to the class of
polynomial vector fields studied by Poincaré [15, Theorem 17], for which the
finiteness of limit cycles was first proved.

For extensions and further developments of this finiteness Theorem, the
reader is refered to Chicone-Shafer [3], Paterlini-Sotomayor [12], Iliashenko
[9], Ye Yanquian [30], Pugh-Francoise [5] and references quoted in these
works. v

3) Using Thom’s Transversality Theorem [26], it can be asserted that the
generic one parameter family of elements in X, has at most countably many
bifurcations. The idea of Corollary 1.2 was suggested to the author by his
previous work [24] and by the reading of Pontrjagin [16].

4) Although Theorem A expresses the meagerness of the bifurcation set in
analytical terms and implies, through Corollary 1.1, that a vector field in X,
is probabilistically almost surely stable, i.e. on 8,, it cannot be regarded as the
ultimate result on this line of ideas. In fact, it does not give any estimate on
the cost involved in deciding whether or not a given vector field in X, is stable,
i.e. on 8, in the sense of complexity theory, a la Smale [22].

A Kkey step for such estimate amounts to the study, in terms of n and R,
of the volume of a tube of radius R of the set X7 NSV ™! relative to the
volume of the unitary sphere SV~ ! of X,,. The study can be done for the part
of the tube around B(q) in viev of the algebraic nature of this set, using ideas
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of integral geometry, as suggested by Smale [22], and results of Demmel [4].
The analysis for the part of the tube on B(b) and B(c) does not seem to be
straight. The set B(b) is not semi-algebraic, as follows from results of Illias-
henko [10]. Also the set B(c) is not semi-algebraic, as is easy to verify at least
for n big. For n = 2, this is not known [30].

These remarks indicate that new different techniques and expectations
should be devised in connection with the possibility of developing a comple-
xity theory for the stability and bifurcations in x,,.
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