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1. Introduction

We shall begin describing some terminology and notation. By «Calderdn-
Zygmund space» we shall mean the class of all bounded operators, 7, on
L?*(RY) given by a kernel k(x, y) so that TA(x) = le k(x, y)f(»)dy and so that

for each fixed x e R!, ke C®(R!/{x}) as a function of y and satisfies

a o
‘ <a_y> k(x,y)

We shail often identify the operator 7 with its kernel k. For a particular choice
of a positive integer N, we define the norm of 7 in Calderén-Zygmund space
IT|czby | Tlcz = |T |12, 12 + 2~=1Cax where here C, denotes the smallest
constant for which (*) is valid.

Suppose k(x) now stands for a kernel on R! with values in Calderén-
Zygmund space satisfying:

SColx—y|7'7® for a>0. *)

C
(1) |kM®)|cz < |—;|

d\’
() ’(Ec) k(x)
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and

@ [

Then k defines an integral operator taking functions f(xi, x2) on R? to func-
tions Hf(x1, x2) on R? as follows:

k(x)dx =10 Vo< a<B.

<l|x|<B

Hf (1, x2) = {[ koer, 31, %2, 2/ 01, y2) dyrdys (#)
where
ko(x1, 1, X2, ¥2) = k(x1 — y1) - (X2, y2).

Another way of understanding how k gives rise to H is as follows: Suppose
we associate to each function f(x, x2) on R?, the function fon R! taking its
values in the space of functions (on R') of xx given by fix1)(x2) = f(x1, x2).
Then

Af () = [kGa = y0) - fon dyr.

Our theorem is then:

Theorem. Let0 < p < 1. Then there exists N so that if k(x;) is a kernel satis-
fying (1), (2) and (3) above and H is as in (), then H maps HF(R% X R%)
boundedly to LP(R?).

Recall that fe HP(R% x R%), product HF, means that f is a distribution
on R? with the property that

sup | f*ds,,5, (xl,xz)' e LP(R?)
61,62>0

for

b € CE(R?), bon, 1201, X2) = 67 '67 ‘qs(’ﬂ ff)
61 ’ 52

Before proving this theorem let us put it into some perspective. First of all,
in case the values of k(x) are convolution operators, then this theorem is
already known. (See the article of E. M. Stein and the author [1]). The spirit
of the proof we give here is along the lines of C. Fefferman’s theorem on the
maximal double Hilbert transform [2]. There, the product structures of the
kernel plays a role, where here, we assume no such structure. The other main
ingredient of the argument below is the atomic decomposition of HF spaces
on product domains ([3], [4], [S]). We shall assume that the reader is familiar
with the properties of product H* atoms.

Finally, we should mention the interesting work of J. L. Journé [6], where
non convolution operators in the product setting are treated, and proven
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bounded on the L¥ spaces and from L* to product BMO (for the properties
of product BMO, see [3]). This paper, we feel, should have simple generaliza-
tions to cover operators like Journé’s bi-commutators, and the proof is prob-
ably very similar to the one given here.

Proor oF THE THEOREM. In order to simplify things a little, we shall assume
p = 1. The case p < 1 requires no major changes. We shall let a(x;, x2) be an
H'(R% x R%) atom supported in an open set Q, which by dilation invariance,
we may assume to have measure 1. For this atom a, we then show that if
¢ € C*(R"), ¥ supported in [—1, —1] is even and has its first N moments
vanishing, then the corresponding square function in the first variable is in
L'(R%:

+o 12
< 2 I‘I’zk*l(k*a)(xl,xz)|2> e L'(RY).

= —

This will prove the theorem.

(Here ¥,i(x1) = 2~ ¥¥(x;/2%), *; refers to a convolution taken only in the first
variable for each fixed x, and k#*a is the function such that k+*a(x;) =
= lek(xl — 1) - d(t)dt; see the introduction for an explanation of the ~
notation).

We shall sometimes find it convenient to assume that ¥ has the form
VO 4 ¥ D where ¥ has properties similar to those listed for ¥. Also it will
suit our needs to define a cutoff function ¢(x;) € C*(R"), which is even, is sup-
ported in } < |x1| < 4 and so that 3¢ (x/27) = 1. Define kj(x) = k(x)p(x/2’)
and kk,_,'(x) = Vo * kj(x).

Our proof will show that the norms | (X« |k, k +j* a(x1, X2)|%)**|, decrease
geometrically as |j| = c. Then summing over j finishes the proof. To see
what is going on let us first consider the case j = 0, and write kx = ki, k. TO
estimate (X |kk * a|?)!/? we next decompose a as follows: Using the notation
of [3], [4] and [5], since a is an atom, it can be written as @ = 2 g < ¢ eg Where
the sum is taken over the dyadic subrectangles of Q, and we are going to use
this representation of a to do a splitting of a which depends upon the point
(x1, x2). For an integer r > 0 and an integer / consider the following defini-
tions: R; is the collection of all dyadic subrectangles of 2, R = I X J where
| 7| = 2! and where J is a maximal dyadic interval such that I x J C Q. Split
the rectangles in R; into disjoint subclasses R(x,, x,),1,- by setting Ry, - to be
those rectangles of R, R = I x J where 27"~ ! < M(X;)(x2) <2~". Then for
each fixed (x1,x2) = x,

U Rx,1,r
leZ
reZ,r=0
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is precisely the collection of all dyadic subrectangles of Q, R=7 X J so that J
is maximal.
Finally, we let

(r1,x2) _
ar; o = ( 2les >,
ReRy, 1, r \SCR;x1length of § =2/
so that

a=af,.
I

Now, we claim that (3 |k *af . ; /%" has an L' norm which is 0(c{/!c}) as
|j], r— o where the ¢; < 1 for i = 1,2. Summing these estimates on j and r

finishes the argument that
<Z 'kk*a|2>l/2 el
k
Again, we consider the special case j = 0 and show that

|(S ket Y2
k

' = 0(c"), c<l1l, as r— oo, )
L1

If r > 1, by the way we constructed ay , it is clear that k *a,, has support
in (1, X2) | Ms(Xa)(x1, X2) > 15557} = & Since by the strong maximal
theorem, |Q,| = 0(r2"), by the Cauchy-Schwartz inqueality, to show (0) it will
be sufficient to show

|(Sesa, )] =0

.

We shall estimate |k *aj| 2 by using the following trivial lemmas:

Lemma 1. Suppose b(x) is a function on R! whose support lies in the union
of the disjoint intervals Ix, and which has its first N moments vanishing over
each Ir. Suppose a point x € R! lies outside the union of the doubles of the
Ir. Then for any Calderon-Zygmund operator T on R’,

|T6(x)| < C|T |, sup MX )N ) - b)),
where
Jb)x) = (Z M 2(Xz,c)) V2. (Z M 2(bXJr,c)(X)) 2,

Lemma 2. Let b(x;, x2) be a function on R? supported in an open set § of
finite measure. Denote by by, the function given by by,(x2) = b(x1, x2), and by
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Li(x1) the component intervals of 0, = {x1 | (x1,x2) €60}. Let § denote the
operator which acts in the x; variable for each x;, defined by

I(b)x1, x2) = (; MZ(XIk(,l)(xz))‘”(Z MZ(XIk(xl)bxlxxz))“

Then |9(B) |2 < C|6|?|b| 2.

The point of these lemmas is that, as a function of x; for fixed x1, a%, -(x1, -)
has the properties of the function in lemma 1, so that k«(x; — ) as a singular
integral in the x, variable applied to ax (¢, -) is dominated by

|ki(xr — Ol cz - Slag, (¢, )] - 27N < Jku(x1 — D)z - Jlar(t, -Mawt, )] -2~
where

Ar = Z eR.
RCQ
R=IxJ
|1 = 2k
We also have |, |k(9)|czdf < C.
Therefore |k *ai ,(x1, x2)| < |kk|cz*1 (@)(x1)(x1,%2) - 27 and by lem-
ma 2 we see that | J(ax)|2 < C|ax|2. It follows that

” <Z|kk*allcc,r[2>l/2 < 2_N’C<Zuak||§>l/2 <C2M,
K 1 k

If r = 0 we estimate (Zk | Ko * a,§’0|2)1/ 2 by observing that this function is sup-
ported in the set {M(X,) > 11—0} which has measure < C. To estimate its L’
norm we estimate its L?> norm by observing that

|(Z Ik o) 22 <
< B |(Zlhewag, )
k

r=1

L |(eary

12

so we have only to estimate |(X |kk*ak|?)/?|,2. But this is easy since
le |ke(D|czdt < C, so  |ki*ar|2<Clax|2 and so i |ke*ak|; <

< C3k|ak]} < C'. Now, let us pass to the next case where j > 0 and r > 0.
That is, we require an estimate of

“(Z |kk*a,’§+j,,|2>”2” = 0(c’*") for some c < 1.
r3 1

Again, the support of ki *ay ., ; , is contained in @, of measure < Cr2’. So
as above we need to estimate [kx*ay.;,[2. By using the fact that
¥ =yPxy® we may write kx*ai,;,= kx5 *1a;, ) where ki has
similar properties to kx. Now we use the special form of ai ., ; , to estimate
ki * (Y§R *1af , ; ). It turns out that essentially a ,; ,(x:,X2) over a dyadic
interval in the x; variable of length 2 */, say the interval [0, 2¥ */], is of the form
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Y(x1/2¥*9) -« ay, 1(x2). Then, for x; € [0, 2X /] we have |ySR * [Y(x1/2* *9)]| <
< C277N because of the vanishing moments of . It follows that

. l x1+2k
Kk * (VSR #1054 5,,) (1, X2)| < 2"”"NEE j (o )t x2) dt
X1 — 2

where ax + j(x2) is the function such that ax 4 j(x1, X2) = ¥(x1/25 ) - ok + j(x2).
Again, from the lemmas, it follows that

| ke (W3R %1081 )2 < 27NN ae+ 45,

and this is the estimate we needed.

(Actually aj,,, and a,,; and a;,; over dyadic intervals of length 2k+J
(say [0,2%*/] are averages over 7€[0,2%*/] of functions of the form
Y1 — 7/2¥*)a,(x2); this average does not, however, interfere with any of
the estimates done above; see [5]). The case r =0 and j > 0 follows from
the cases r >0, j<O0 as was carried out previously. If >0 and j <0,
then we estimate |(Zi |kic* @i _;,,1%)/*|; by observing that the support of
ki*ag _;, (x1,X2) is contained in &, of measure < C(r + |27+ we
estimate, as before, the L? norm of kk*ay_ ;. by using the fact that for
each fixed x2, ax . ;i (-, X2) has the following property: There exist disjoint
intervals of length 2%~ over which the first N moments of @i 1j1, (- X2)
vanish. Just as for the familiar case of scalar valued kernels, we may take
advantage of the smoothness of kx(x) and subtract off the correct Ta§lor
approximation to ky to produce kx such that ki *aj _ Ulr = ki *aj _ 1jl,r» but
|ki(@)|cz < 27%2~ VIV, Now we use the fact that for fixed xi, af_ ;. (x1, )
has N vanishing moments over the component intervals of {xz|(x1,x2)€
€Urerec_1j),, R} to dominate kg() acting on af_j; (a—1-) by
27N g(ag - ;1,00 — t, ) |kil®)| o so that

i a _ 11, 1, 2)| < €27 N K] 1 Sk - 11)
and obviously
[eex s §a- 101 < €27 W a1,
which proves that

(i)

< C2- NG+ b,

Passing to the estimate of |(Xk|ki* ag _ji,0|*)"?, is routine and left to the
reader.

Now we are almost finished. We have shown that ﬂ(Zk lkexal®)?] < C
and all that is left is to show that |(Zk |kk,« +;*a|?)'/?], tend to 0 geometri-
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cally. But this is immediate, since for say j > 0, kk, « + j(x) satisfies all the same
estimates as 2™k 4 j(x) and so by the estimates above,

(Z lkk,k+j* a|2>1/2
k

=027M).
1

This proves our theorem.
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