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In this paper we continue the investigation of [7]-[10] concerning the actions
of discrete subgroups of Lie groups on compact manifolds.

Let H be a connected semisimple Lie group with finite center and suppose
that the R-rank of every simple factor of H is at least 2. Let I' C H be a lattice
subgroup and M" a compact n-manifold with a volume density. Let P> M
be a G-structure on M where G is a real algebraic group. More precisely, let
GL(n, R)® be the k-jets of diffeomorphisms of R” fixing 0, and P*’ — M the
principal GL(n, R)®-bundle of k-frames on M{([1], [13]). Then GL(n, R)® is
a real algebraic group and the (k-th order) G-structure P — M is a reduction
of P® to the real algebraic subgroup G C GL(n, R)®. We shall let
Aut(P) C Diff(M) denote the subgroup of diffeomorphisms of M that
preserve the G-structure.

In [6] we showed that under the above hypotheses any volume preserving
action of H on M which preserves the G-structure is either trivial or implies
the existence of a non-trivial Lie algebra homomorphism L(H)— L(G), or
equivalently, a Lie algebra embedding L(H') — L(G) for some simple factor
H' of H. In [7], [8] we put forward the following conjecture.
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Conjecture. With hypotheses as above, assume there is a smooth volume
preserving action of I' on M defining a homomorphism T" = Aut(P). Then
either:

a) There is Lie algebra embedding L(H’) = L(G) for some simple factor H'
of H; or
b) there is a I'-invariant Riemannian metric on M.

We remark that, as explained in [7], the conjecture would imply in par-
ticular that actions of I' on low dimensional manifolds are trivial on a
subgroup of finite index.

In [8] this conjecture was proven under the additional assumptions that the
G-structure is of finite type (in the sense of E. Cartan [3], or more generally
in the sense of Tanaka [5]), and that the I'-action is ergodic. (In [8] the ex-
istence of a I'-invariant C°-Riemannian metric is deduced. However the
arguments of [10] show that in fact an invariant C® metric exists.) In this
paper we weaken the assumption of finite type to that of ellipticity at the ex-
pense of assuming that Aut(P) acts transitively on M. (However the ergodicity
assumption is no longer needed.) We recall that the G-structure is elliptic if
the infinitesimal automorphisms of P (i.e. the vector fields defined by
1-parameter subgroups of Aut(P)) are characterized as those vector fields
satisfying an elliptic partial differential equation. For first order structures,
this is equivalent to the simple condition on G that the linear Lie algebra
L(G) C ®l(n,R) contains no matrices of rank 1 [3, Prop 1.1.4]. (For higher
order structures see [1,p. 71].) One of the salient features of an elliptic G-
structure is that Aut(P) is a (finite dimensional) Lie group. The main result
of this paper is the following.

Theorem 1. With H, T', M, G, P as above, suppose that I" = Aut(P) is a
volume preserving, G-structure preserving action of I' on M. Assume that

a) Aut(P) is a Lie group (e.g., G elliptic), and
b) Aut(P) acts transitively on M.

Then either

1. there is a Lie algebra embedding L(H') — L(G) for some simple factor
H' of H; or
2. there is a I'-invariant Riemannian metric on M.

We remark that if Aut(P) is almost connected (or more generally if a subgroup
of I of finite index is mapped into the connected component of the identity,
Aut(P)°) then Theorem 1 follows from the work of Margulis [4] combined
with the result of [6] described above and Kazhdan’s property for I" [2], [12].
In general, if course, Aut(P)/Aut(P)° may be infinite.
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There are two basic known results we need for the proof of Theorem 1. The
first is that the above conjecture is true if conclusion (2) is weakened to asser-
ting the existence of a I'-invariant measurable Riemannian metric on M. (By
a measurable Riemannian metric on a vector bundle we of course mean a
measurable assignment of an inner product to each fiber of the bundle.) This
is a consequence of the superrigidity theorem for cocycles [11], [12, Thm.
5.2.5]. More precisely, we have:

Lemma 2. (Cf. [7, sections 2, 3]). Let P— M be a principal G-bundle where G
is a real algebraic group. Let H be a connected semisimple Lie group with finite
center such that the R-rank of every simple factor of H is at least 2. Let T" C H be
a lattice. Assume that every Lie algebra homomorphism L(H) — L(G) is trivial.
Let V be a vector space on which G acts linearly (and smoothly), and E - M
the associated vector bundle. If T acts by principal bundle automorphisms of
P covering a finite volume preserving action on M, then there is a measurable
T-invariant Riemannian metric on the vector bundle E.

The second result we need, proved in [7] enables us to give an estimate for
the integrability properties of the measurable invariant metric in lemma 2.

Lemma 3. [7, Theorem 4.1]. Let T be a discrete Kazhdan group (i.e., group
with Kazhdan’s property T [2], [12]), and T'o C T a fixed finite generating set.
Then there exists K > 1 with the following property. If (S, ) is a standard
Borel ergodic T'-space with I'-invariant probability measure, and f: S— R is
a measurable function satisfying |f(sy)| < K|f(s)| for almost all s and all
v €T, then fe L\(S).

Now let V be a finite dimensional real vector space. If 5, & are inner pro-
ducts on V, we set (as in [7, section 3])

Min/%) = max{|v],/|v]]v 0,0 V),

and if 7m, &m(m € M) are measurable Riemannian metrics on a vector bundle
E— M we let M(y/%): M — R be M(y/£)(m) = M(nm/%n). Suppose T' acts on
E by vector bundle automorphisms, that M is compact, that » is a measurable
T'-invariant metric, and £ is a smooth metric. Then for yeI', and m e M,

M(n/&)(my) = M(y*n/v*§)(m) = M(n/~*E)(m)
< M(n/§)(m)M(&/~*£)(m).

(Cf. [7, Cor. 4.2]). We thus deduce that there exists B > 0 such that me M
and v € ' implies M(n/&)(m~y) < BM(y/£)(m). From these remarks and lem-
ma 3, we obtain:

Lemma 4. Let I' be a Kazhdan group acting smoothly on a compact
manifold M. Suppose I" preserves a smooth probability measure p on M. We
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let p= jE® uedv(t) be an ergodic decomposition of n under the T'-action.
(Thus (E, v) is the space of ergodic components.) Suppose v is a measurable
I'-invariant Riemannian metric and that £ is a smooth metric. Then for q suf-
ficiently large, we have M(n/£) € L¥ %M, p;) for almost all t.

We now assume the hypotheses of Theorem 1, and suppose that every Lie
algebra homomorphism L(H)— L(G) is trivial. By lemma 2, there is a
measurable I'-invariant metric  on 7M. Choose g as in lemma 4. If
fi M—(0,) is a measurable I'-invariant function, then fy is also a
measurable I'-invariant metric. There is clearly a measurable A: E — (0, o)
such that [z h(®)*%(f M(n/£)* %dp:) dv(t) < o and thus if we let f=hop
where p: M — E is the map defining the decomposition into ergodic com-
ponents we have that fy is a measurable I'-invariant Riemannian metric satis-
fying M(fy/€) € L¥9(M, ). Thus, replacing n by fy, we shall assume
M(n/8) e L¥9(M, p). Let Y be the set of (globally defined) infinitesimal
automorphisms of P, so that (by hypothesis (a) of Theorem 1) Y is a finite
dimensional vector space of smooth sections of TM and (by hypothesis ()),
for each m € M the evaluation map en: Y — TMy, is surjective. For Fe Y, let
®(F) = [ | F(m)|772 dp. Since M(y/§) e L¥UM), 0 < ®(F) < 0, and it is
clear that ®(¥) = 0 if and only if F = 0. Furthermore & is continuous. (To see
this simply observe that

|®(F)| < [ |M(n/8)|" | Fim)| 2
< |M@/9V o[ | Fem)|B2)V2.

Thus, if max |F(m)|, — 0, we have ®(F)—0.) We also observe that &:
meM

Y — [0, ) is homogeneous of degree %. It follows from these properties of ®
(and the fact that dimY < o) that {F| |®(F)| < 1} is a (non-empty) open set
with compact closure. Since 7 is I'-invariant, it is clear that & is also I'-
invariant, and the preceding sentence implies that the representation of I' on
Y is uniformly bounded. Since dimY < oo, there is a I'-invariant inner product
on Y. Via the maps {en} this defines a smooth metric on 7M, and it is clear
that I'-invariance of the inner product on Y implies that this metric on 7M
is I'-invariant. This proves Theorem 1.

Remarks (a). 1f % is a local field of characteristic 0, A an almost k-simple
algebraic k-group, with k-rank(H) > 2, and I' C Hk is a lattice, then super-
rigidity and Kazhdan’s property hold for I' [2], [12]. Thus, the above argu-
ment shows:

Theorem 10.5. Let M be a compact manifold, P a G-structure on M such
that Aut(P) is a Lie group acting transitively on M. Let T' C Hy be as above,
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and assume that I acts on M so as to preserve a volume density and the G-
structure P. Then there is a I'-invariant Riemannian metric on M.

(b) If Aut(P) is a Lie group which is not transitive on M but the globally
defined infinitesimal automorphisms of P define a foliation of M (which is
then of necessity I'-invariant), then the above argument shows that there is a
I-invariant smooth metric on the tangent bundle to the foliation.
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