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ABSTRACT. This paper is the second part of a work devoted to the study of
variational problems (with constraints) in functional spaces defined on do-
mains presenting some (local) form of invariance by a non-compact group of
transformations like the dilations in R™. This contains for example the class
of problems associated with the determination of extremal functions in ine-
qualities like Sovolev inequalities, convolution or trace inequalities... We
show how the concentration-compactness principle and method introduced in
the so-called locally compact case are to be modified in order to solve these
problems and we present applications to Functional Analysis, Mathematical
Physics, Differential Geometry and Harmonic Analysis.
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1. Introduction

This paper is the second part of a work devoted to variational problems with
compactness defects. We use the notations of Part 1 [65] and we refer the
reader to Part 1 [65] for a general introduction to the problems studied here.

Finally, formula (1 — n) will mean formula (7) of Part 1 while formula (n)
is the n'" formula of th’s paper.
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2. Extremal functions in unbounded domains

2.1 Hardy-Littlewood-Sobolev inequality

In this section we are mainly concerned with the minimization problem
associated to the «best constant» Cj in the following classical inequality
—called Hardy-Littlewood-Sobolev inequality—; see [39], [40], [32], [74]:

luxlx| e < Clylzr,  vueL (RY) 2.1)
for some C depending only on N, p, g, N\ and where:

N | BN 1
<N, 1 — —+—==1+-- 2.2
0<X <p<N_)\ >N +q 2.2)

Following E. H. Lieb [53], we consider the minimization problem:
= Inf { — [ |Kxul?dx /ue LP(RY), [\ |ul?dx = 1]; 2.3)

we will also denote by I, the corresponding infimum where / is replaced by
p>0 so that: I, =pu??7<0. Of course we consider in this section
K(x) = |x|~ » but our goal is to show how our general method applies in this
example and gives the existence of 'a minimum (and compactness of minimiz-
ing sequences) without using the very particular properties of K namely the
fact that K is spherically symmetric and decreasing. And this will enable us
to treat general classes of potentials K(x).
We prove here the following:

Theorem 2.1. Under assumption (2.3), let (un)» be a minimizing sequence of
problem (2.3). There exist (yn)n in RY, (on)n in 10, o[ such that the new
minimizing sequence U, defined by:

tn( ) = 05 YPn((- — Yn)/0n)

is relatively compact in LP(R™). In particular there exists a minimum of
problem (2.3).

Remark 2.1. The existence of a minimum is proved in E. H. Lieb [53], hence
the above result is a minor extension of [53], but we emphasize the fact that
the proof in [53] relies on symmetrization arguments which prevents any
generality on the class of potentials K while our methods does not depend on
the particular form of K.

Remark 2.2. Using —a posteriori— the symmetrization, one easily sees that
any minimum of (2.3) is spherically symmetric, decreasing (up to a trans-
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lation)— see [53] for more details. In addition if p = ¢’ or p = 2 or g = 2, the
explicit values of I and of the minima are given in [53].

Proor oF THEOREM 2.1. Let (4n), be a minimizing sequence of (2.3); since
both functionals [en|K *u|?dx, [} ev|#|?dx are invariant by the change:
o~ NPu(- /o), we have to get rid of the possibility of «vanishing» exactly as
we did in Part 1 for Sobolev inequalities (Section 1). We thus consider a new
minimizing sequence —that we still denote by u,— obtained by dilating u,
such that:

On(1) =1 (2.4)
where

On(t) = Sup [, on@dx (V120 pn=ual”.
ye

Exactly as in [55], [56], [65], we exclude vanishing by (2.4) and dichotomy
as in [55], [65] since [ = A?P/(<0) is strictly subadditive ((S.2) holds!) —here
since (#n), is only in L?, we do not have to use smooth cut-off functions to
perform the dichotomy and the argument is exactly the one described in [55],
[58]. In conclusion, there exists (¥»), in R" such that () = un(+ + ¥n),
satisfies: |dn|? is tight. In the remainder of the proof, we still denote by u,
the new minimizing sequence #,. We may of course assume that: u, = u weak-
ly in LP(R™). Let us also observe that |K *u,|? is tight and that K *u, = K*u
a.e. on R™: indeed for all R < M < co:

| el < Colunl s +

+J‘
x| =M

< eR) + J’ |

x| =

q

1 1
L <r |—x“:y—|>\ u(y)dy| dx <
yI<

(= R A, <

< e(R) + 6r(M)

where e(R) = 0 if R = +o0 and 6r(M) — 0 if M — +oo for any fixed R < oo.
This shows the tightness of | K un|?.

Concerning the a.e. convergence of K = u,, we just observe that we have the
following series of inequalities:

| K * (unlpg) — K *tn] 1o < (R),

| K (ulpe) — K*ula < eR)
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where e(R) = 0 if R — +o0;
Ka*(unlpg) = Ks+(ulpg) (vxeRN, v6>0, VR < )
where K5 = 1|x| »5K;
| Ks* (unlpg) — K*(unlpg)|m < pr(®)  (ind’ of n)

where pg(6) > 0as 6 > 0., melN/\ ql.

And this yields the convergence in measure.

There just remains to prove that: LRN |u|?dx =1 (we will denote by

Co = —1I). To this end we adapt to our setting the method of sections I.2-1.3
of Part 1 [65]: a basic ingredient being the following lemma corresponding to
lemma I.1 in [65]:
Lemma 2.1. Let u, converge weakly in L°(R™) to u and assume |un|? is tight.
We may assume without loss of generality that |K * u,|?, |un|? converge weakly
(or tightly) in the sense of measures to some bounded nonnegative measures
v, u on RN. Then we have:

iii) There exist some at most countable set (possibly empty) and two families
(xj)jes of distinct points in RN, (vj)jes in 10, o[ such that:

v=|Kxul?+ 2 viby;. 2.5)
jeJ
ii) In addition we have:
w3 |ul? + X v9Cy Py, (2.6)
jed

iii) If u=0, Cou(RM?? < w(RM); then J is a singleton and v = Cobyx,
p = (co/Co) * P76y, for some co > 0, xo € R".

Remark 2.3. Exactly as in Remark 1.3 ([65]), if » is given by (2.5) with
u e LP(RY), Yjes»?/? < o then » is the tight limit of (|ua|?)» where u, con-
verges weakly in LP(R™) to u.

Remark 2.4. Both lemma 2.1 and 2.1 have the same consequence: for exam-
ple in the context of lemma 2.1, if u, — u weakly in ZP(R") and if |u.|? con-
verges tightly to a measure p without atoms then K* u, converges strongly in
LP(RY) to K *u.

Using lemma 2.1, we may now conclude the proof of Theorem 2.1 follow-
ing the scheme of the proof of section 1.2: first, if # = 0 and if |K * un|?, |un|”?
converge tightly to some bounded nonnegative measures », u, we have

(RN =Co, wRYM=1.
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Hence we may apply part (iii) of lemma 2.1: p = 8, for some xo € R”. And
we obtain a contradiction with (2.4).
Next, if « = [_.|u|?dx€]0, 1[, we observe:

L=1I= —I |K*u|?dx — ] vj.
RN JjeJ

In view of the homogeneity of (A — ,) we deduce:

L1+ 21, with = (vj/Co)P”?
jeJ

Since J;J/Aj <1 — a by (2.6), we finally obtain:
11 ? Ia + Il -
and this contradicts the fact that (S.2) holds for all p > 0:
L <I,+1,_,, Va €]0, u[. (S.2)
Therefore @ = 1 and we conclude.

Proor oF LEMMA 2.1. Many of the arguments below are identical to those
introduced in the proof of Lemma 1.1 [65]; only technical details differ!

We first observe that since (K * u,) converges a.e. to K*u and (|K* us|9),
is tight, applying the Brézis-Lieb lemma [21] we just need to prove (2.5) in the
case when u = 0. Using Lemma 1.2 [21], we only have to prove that:

[leledr < Co([lel?du)??,  vee DRM. 2.7)

This inequality will then prove i) and iii).
To show (2.7), we first remark that for all ¢ € D(RM):

j[K*(gpu,,)["dx < co(j |17 |un| P dx ) 7.
Then (2.7) is deduced from the following claim:
| j |K * (oun)|? dx — j |o]9| K * un|qu‘ - 0.

Using the argument we already made on the tightness of |K * u,|? we just have
to show that for all M < co: K (pun) — o(K * un) converges to 0 in LI(Byy).
But for almost all x we have:

K (oun)(x) — 0()(K * un)(x) =

1
B j; <x =y PO ONun) dy + @K+ (unler)
B4ES

where C® = {yeRY, |y| > R)}.
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Since |#n1cr| 1 < €(R) with e(R) — 0 if R — +0; we just have to bound for
any R < oco:

1
1 Lqu [P (e(») — e()un(Y) dy| = va(x).

Denoting by R(x,7) = (¢(¥) — ¢(¥))|x —»| "™ and observing that
R(x, )1, <g€L” (R") for each x where r <25 if N> 1, r< +0 if A< 1,
we see that: v, — 0 a.e. on R". Finally for some s > g

lvn| LsBay < CM, R)| ttn| 1» = C(M, R)

and thus v, — 0 in LY(By); and (2.7) is proved.

We next show part ii) of Lemma 2.1: since p > |u|?, we just have to show
that for each fixed je J:

p({x;}) = (vi/Co)?.

Let o = (—'T'H), where o€ D 4+ (R™), ©(0) =1, ¢ <1 and Suppe C B;. We
have:

[ 1K % (pen)| dx < Co ([ @2lun? dx) 7. 2.8)

We fix e and we let n go to +o: we estimate the left-hand side of (2.8) as
follows:

K (¢ettn) — (K * un)pe = K* (pettnlcr) — [K* (unlcr)]ee + ¥

where ¥ = Y(e, n, R) satisfies: |¢|rs < 8(R) =0 as R — +oo. In addition ex-
actly as we did before:

| K * (pettn) — (K* Un)Pe| aqix| > sy S (M) >0 as M — .
Finally by easy arguments identical to those given to prove (2.7), we show:
Kx (peun) — (K*un)pe = K (peut) — (Kxu)pe in LU (Bm).
This together with (2.8) yields:
([lodear) @< cy®([lod”du)'” +
+ 6(R) + p(M) + "Afu"Lq(BM) + [ {(K*(ulcr) o] Lq(BM()2'9)

where ARv = K+ (v1cree). Since AR is a family of uniformly bounded
operators from L? to L%(By), in order to show that A%u converges in L4(Ba)
to 0 as e goes to 0, we just need to check it for v € D(RY) and this is then ob-
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vious since ¢.v.— 0 in LP(R™). Therefore using the fact that ¢.(x) = 1,

Supp ¢ C B(x;, €) and (2.9), we obtain letting € go to 0, then R, M go to + c:
v({6 )Y = v} < CIu({x))P

and this yields (2.6).

Remark 2.5. Of course, we also have the analogue of part iii) of Lemma 1.1:
namely under the assumptions of Lemma 2.1, and if ve L?(R"), |v + ua|”?
converges weakly to some measure j then ji — p e L'(R") and

iz u+v|?+ 2/ Co)P 5y,
JjeJ

Remark 2.6. Another proof of (2.6) consists in using Brézis-Lieb lemma [21]
to deduce

q/p
Co<j iwel"dﬂ> > j |K * (peu)|? dx + lim J |K * (pevn)|? dx
where v,(un, — u) = 0. Thus in view of the proof of part i) we deduce:
1imj |K * (e vn)|? dx = j |oe|? d7

i; = Z fjaxj.

JjeJ
Therefore we have:

Con(B(xj, €))7 = v,.

2.2 Other potentials

In this section we consider various questions related to problem (2.3) where
K is now a general potential. To simplify the presentation (see the remarks
below) we consider only the following situation:

K(x) = p(x)K(x) + ¥(x) (2.10)
where
eeCo(RY), o) =B as |x| >, yx)eLMNRY) (2.11)
t*K(x) = K(tx), vt>0, vxeR" - (0},
KeCRN - {0}), K>0 on RN-{0}. 2.12)

We will denote by a = ¢(0).
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Clearly enough, except in the case when ¢ is constant (#0) and ¢ = 0, (2.3)
is no more invariant by dilations. But, still, the invariance of R" by dilations
induces possible loss of compactness; to understand this possibility we com-
pute for any u € LP(R"), ¢ > 0:

LRN ‘K* [U_N/pu(é)]lqu = JneN

with K(x) = 6*K(0x) = o(6x)K(x) + o (o%).

Ky+u|?dx

Therefore the value 7 of the infimum is not changed if we replace K by K,
for all o > 0 and letting 0 > +o0, or ¢ > 0 we deduce:

I< Inf{—fPN|ﬁI?*u|qu/u e LP(RM), jRNlulpdx= 1]
or
I< Inf{—jwmk*uvdx/uey(rle’v), IPN|u|”dx= 1]
and we denote by I the minimum of these two upper bounds i.e. if
v = max(|e, | 8]):
I° < Inf [ —fRval?* u|?dx/u e LP(RM), LRNlu|pdx = 1]. (9.13)

Denoting by I, I,” the values of the infima in (2.3), (2.13) where 1 replaced
by > 0 and observing that I, = p??I, I = p?PI° with I, I < 0 we conclude
these considerations by observing that we have proved:

L<I?, wuw>0; ISI” (2.14)
IL<I,+I_o<Iy+1I;-,, VYo € [0, pu[. (2.15)

Therefore, we expect the:

Theorem 2.2. We assume (2.2), (2.11), (2.12).

) If o=B#0, =0, then every minimizing sequence (Un)n of (2.3) is
relatively compact up to a dilation (n), and a translation (y»)» in L°(R") i.e.
07 NPun((- — yn)/on) is relatively compact in LP(R") for some y, in RY, o, in
10, [. And (2.3) has a minimum.

ii) Any minimizing sequence of (2.3) is relatively compact in LP(R
a translation if and only if:

M up to

I<I”. (2.16)

Remark 2.7. We first observe that if o« = 8 = 0i.e. K € LN*(R") then (2.16)
automatically holds since I* = 0 and all minimizing sequences are compact up
to translations. But as it will be observed in Step 1 of the proof, this is due
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to an easy compactness argument which shows that this case is actually treated
by the concentration-compactness method in the locally compact case [55],
[56]. In fact this compactness property still holds for Lorentz spaces i.e. when
KeLM™*RM) for any 1 < o < o (same proof as below).

Remark 2.8. Condition (2.16) clearly holds if, for example,
p(x)Z2a=p>0, ¢ #*a, v=>0

Indeed let uo be a minimum of I (which exists by case i) of the above result,
we may assume that uo > 0 (replace uo by |uo|) then:

I< - LRN |K *uo|?dx < — erthl?)* uo|? dx
< —IPNIIE* uo|?dx < I
On the other hand the same type of argument shows that if
O0<p)<vy=a=8, e¢#y, >0 y¢¥=0

not only (2.16) does not hold i.e. I = I but (2.3) does not have a minimum.
This class of K contains the example mentioned in [2.53].

Remark 2.9. In fact, the method of proof enables us to treat much more
general potentials K. First of all in (2.12), the condition that K > 0 may be
replaced by K = 0; next we could treat

Pi()Ki(x — xi) + Y(x)

Ms

K=

i=1

with € LNMRY), pi € Co(R™) and 32 1 |0i(x)| € Co(R™); K: € C(RN — {0}),
Ki(tx) = t  Ki(x) v >0, vx #0, |Ki(x)| < (C/|x]™; (x)i =1 is a family of
distinct points in RY. Denoting by a; = ¢:i(0), 8 = lim ¢;(x) (which we assume

[x] =0

exists). Theorem 2.2 still holds provided we define I* by
I* = Min(igfl?, I;f)

with I7°, IZ corresponding to the potentials «;K;, X; BiKi.
Other technical extensions of (2.10) are possible and we will skip them.

Remark 2.10. Another possible extension is to replace K*u by some
j RNK(x_, Yu(»)dy. For instance if we consider K(x,y) = R(x, )K(x — ¥)
where K satisfies (2.12), R(x, y) € Co(R™ x R™) and R(x, y) = Bif |x — y| = o.
Then part (ii) of Theorem 2.2 still holds if we replace I° by
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°= Min{ Inf I3 1:}
yeRNn
where I I7 correspond to (2.3) with the potentials R(y, »)K, BK.
Remark 2.11. Even if we may extend the classes of K for which we may
analyse completely problem (2.3) (see also Corollary 2.1 bellow) we are unable
to treat (2.3) for an arbitrary K e MNNRM) = L¥**(R)V. This is due to the

fact that Lemma 2.1 which still holds for potentials like (2.10) is not true in
general for arbitrary K e MV*(R"). Indeed consider:

K(x) = |x1| %), x1€R", x,eR™

and (for example) O0<a<n, oeD,(R™) (p#0), x=(x1,x2). Then
KeMM™if N/\ = n/a. In this example, one remarks that if (#,), converges
weakly in LP(R) to wu, if |us” is tight and if we choose
Un(x1, U2) = vn(X1)Wn(x2) where v, converges weakly to v in L?(R"), w, con-
verges weakly to w in LP(R™) then denoting by u, » the tight limits of the
measures |un|?, |k*un|? (or subsequences) we have:

v=|Kxul|?+ 2] vjbx{ ® (¢ *w)?
ieJ
p=ul? + Z;;(Vj/c)p/q‘sx{®ﬁ
je

for some at most countable family J, distinct points xJ in R" bounded
nonegative measure i on R™, C > 0.

We now turn to the proof of Theorem 2.2:

Step 1: Preliminary reductions

We first explain why ¢ may be assumed to be 0: indeed we just need to observe
that if

un—>u weakly in LP(R™),  (|ux|"). is tight (2.17)

then v * 1, =,y * u strongly in LP(R").

By the density of D(RY) in LY*(RY), we may without loss of generality
assume that y € D(R") since

% tn— $*un| L7 < C|Y — ¥ pnnss

But if ¢ € D(RY), Y #*u, converges a.e. to Yy *u and ¥ *u, is bounded in
LPNL>. Finally since |u,|” is tight, |¢*u,|? is tight and we conclude easily.
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This easy observation indicates that ¢ creates no difficulty in the argument
below, hence we assume from now on: y = 0. Next, if we still denote by O,
the concentration function of |u|?, where u, is a minimizing sequence of (3)
and if we denote by uj = 0~ VPu,(-/0) we observe that the concentration
function of |us|? satisfies:

On(®) = Qu(t/0), vt > 0.

Therefore there exists (o.)» in ]0, o[ such that (4) holds. We denote by
W, = uy". Observe that:

J |K * up|? dx = j | Kn # i3n|? dx

where K, = ¢(x/0,)K(x) and recall that we already saw that for each n > 1 the
value of the infimum (2.3) is not changed if we replace K by K.

We now apply the standard concentration compactness method ([58], [59],
[S55]): vanishing is ruled out by (2.4). If dichotomy occurs we find « €10, 1]
such that for all € > 0, there exist Ro, R, y» satisfying:

H[ﬁ,l,lpdx—aISE, j|ﬁ§|pdx—>1—a, R, — oo,
~1 _ -~ o
Un = Un - X(|x~yn|=Ro}> Un = Un* X{|x~yn| sRn}-
Let v, = i, — (% + #13), we have clearly:

U]K,,*ﬁnl"dx— j]K,,*(a}, + ai)lqull < Ce
i
le"*ﬁ},l"dx;la_E, %nj‘lKn*ﬁﬂ"dx;Il_a.

Since (S.2) holds (cf. (2.15)), we reach a contradiction since
[ j|1<,,*(a}, + @2)|%dx — f Ko |7 dx — [ |Kox 3|7 dx| <
< C[ IR« |a@h||R+|@]~" + |R+ | @] |K+ |ah] " d.

To conclude we prove that this integral goes to 0; and since both terms are
basically equivalent, we will only treat the first one: first

Jito e RN R 17 < C 1R 5]
Translating if necesary #,, we may assume y, = 0. Then 7y has its support in
a fixed ball Bgr, and we deduce as in section 2.1 that the above integral is
bounded by 6(M)— 0 as M — « (ind. of n). Next we consider:
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[ag g B * B8] [ % 2] e =

- J‘IX|<M! f|x—yIsRo+Mk(x_y)|ﬁ'l'(-y)| dy
' H|y|=R,,k(x‘~")
<R[y p 0| [ RO = 9l = Y| BO)dy |~ dx

where 0 < e <\, Zn = (K * X{|x| <Rro_m}) * |#x|: Zn is bounded in L'NLI. We
conclude observing that

() dy|?~ ! dx| >

|(K|x|9)=|@%]?"" is bounded in L™, with r.=gq./(q—1)

and g, is given by: }1—, +Ae=1+ (71(— (choose e small enough), hence g. > g,
re>q' and r{e]l, q].

Therefore dichotomy does not occur and we conclude: there exists (y,)» in
R™ such that |i.( - + yn)|? is tight. We still denote by 7, this translated se-
quence. We may assume that i, converges weakly to e L?(R™), that
on— 0 € [0, ©]. We denote by C = —1I, C = —I where I corresponds to (2.3)
with K=aK, K*=8Kif 0 =0, = aK if 6 = + o, = p(6x)K if 6€]0, .

Step 2. A variation of Lemma 2.1.

Lemma 2.2. Let i, converge weakly in L(R™) to ii and assume |ii|” is tight.
We may assume that |K,*i|?, |d|” converge weakly to some measures v, .
Then part i) of Lemma 2.1 holds with K replaced by K= in (2.5); and we have:

B2 |ﬁ|p + Z (Vj/é)p/qﬁxj if 0€]0, o[
jeJ

2.18

w2l + ¥ 0i/C)"6,, if o=0. 2.18)
jeJ

And if i = 0 and Cu(RM?? < »(R™) with C; = C if 0€]0, ], C; = C if

o = 0; then J is a singleton and v = Codxo, p = (Co/Cl)p/thxo for some xo € RY,

co > 0.

Proor. The proof is very similar to the one of Lemma 2.1, and we will only
sketch it. Since |K,| < C|x| ™%, it is clear that (|K, * @x|%)x is tight. In addition
(Kn* i)~ K®+ia.e. in RY, and K, * i — K®* — 0 in LY(R"). Furthermore
ifo> 0, (K, — K*)*i— 0in LI(R") and this proves the above result if ¢ > 0.
In the case when o = 0, we just go through the proof of Lemma 2.1 and we
find if u =0:

(Jow8l7dv) < C( [ |E17dn) ™, vEe DRY).

And this reverse Holder inequality allows us to conclude.
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Step 3. dn is compact in LP(RY).

If =0, by Lemma 2.2 since »(RM) = —I=C, p(R¥) =1, » = Cby,
u = Cby, for some xo € RY. But this contradicts (2.4). Hence i # 0; now let
0 = [ ~|4F dx. If 6 €]0, 1] we argue as follows: first of all if ¢ = —oo, then
by (2.18) and (2.5):

1260+ 2 with pi=(n/C)?4
jeJ

I=1121_9+ ZI_,L_,-219+I;°_0
jeJ

and we reach a contradiction in view of (2.15).
On the other hand if o €]0, I, still by (2.18) and (2.5):

120+ 2 p
jeJ
I=I1219+ZI—W>[9+1°1°_0
jeJ

and again we conclude.
Finally if ¢ = 0, we again use (2.18) and (2.5):

{1 20+ 2w
jeJ
I=L 215+ _¢;

and we conclude: 6 = 1 i.e. @, converges to i# in LP(R").

Step 4. Conclusion.

If we had ¢ = +o, then (K, — aK)*i#— 0 in LYR"); indeed |#,|” and
x| = # #1,|? are tight hence we may restrict the integrals on |x — y] < K. But
® ("—'2) converges uniformly to « if 0, = + on such a set and we conclude.

On

Now this would imply:

I=1lim J‘ |Kn# thn|9dx 2 T > T%;
and if (2.16) holds this is not possible.

On the other hand if we had ¢ = 0, then we claim that
(Kn — BK)*1,—0 in LYRY)

And again (2.16) would rule out this possibility. To prove the claim we just
have to prove for any R < o that

\f \]‘ . ¢
x| <R | JI¥I<R

[y

n

_ _ q
<x y>—B1K(x—y)lﬁn(y)|dy dx— 0.
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Taking subsequences if necessary, we may assume that |i,| < # which belongs
to LP(RY), and thus the above integral is estimated by:

C i< |fin <rXtiemsi <oy ¥ =1 a0) dy | dx + &

where €} — 0, for any fixed 6 > 0. And we conclude since the first integral con-
vergesto 0 as 6 > 0.
Therefore o €10, +oo[, but this is equivalent to the compactness of u,.

We have actually proved the:

Corollary 2.1. We assume (2.2), (2.11), (2.12) and we denote by IT, I5 the
infima given by (2.3) where K is repalced by oK, BK. Let (4x). be a minimizing
sequence of (2.3), then there exist (on)n in 10, o[, (Jn)n in RY such that
dn(+) = 05 YPun((- — yn)/0n) is relatively compact in LP(R™). In addition, if
I=1I7 < I3, all limit points of (on) lie in 10, — ), and there exists (tn)n sSuch
that o, — +; while if I = I3 < I{°, all limit points of (oy) lie in [0, o[ and
there exists (un)n such that o, — 0. Finally if I = IT = I3 both cases occur.

2.3 Trace inequalities

We first recall the well-known trace theorems (see for example Amdas [1]):
let u € D™P(R™) with p € [1, N/m[, m integer >1 (for example!), N > 2, then
there exists a bounded linear operator yu mapping D™?(R") into LY(RN 1)
—where ¢ is given by: ¢ = (N — 1)p(N — mp) ~'— such that if u es smooth,
then ~yu is the restriction of ¥ on RV ™! x {0}. For obvious reasons we will
still denote by u the trace operator yu.

The minimization problem associated with the question of the attainability
of the norm of v is of course:

I = Inf UPN D™ u|? dx/ue D™PRY), o, |utx', 0)]7dx’ = 1} (2.19)

here ([|D™u|?)"” is just any norm on D™ P(R") which is «scale invariant»
like for example:

( 2 ||Da””fw>1/’ (for any re[l, =],

la|=a=m
|A™?u| o if m is even, |V(A*u)| ., if m is odd...
It is clear that both functionals are invariant under the change

u—g V- un(';) } for any o > 0; and that if J denotes the infimum given
by (2.19) where 1 is replaced by \: I = NP/?I; = \P/[; and thus (S.2) holds.
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Theorem 2.3. Let (un). be a minimizing sequence of (2.19), then there exist
(0n)n in 10, [, (¥n)n in RN~ such that the new minimizing sequence ii, given
by:

n (', xn) = o7 NV 9,((X" — Y3)/0n, XN/ 0n), vx'e RN~ wvxneR

is relatively compact in D™P(R™)®. In particular (2.19) has a minimum.

Remark 2.12. Just as in section 1.4 the above result admits many variants
like: m non integer, Korn-trace inequalities, convolution-trace
inequalities, «time-dependent» spaces, limit cases (mp = N)... Let us also
mention the following extension of Theorem 2.3, we may instead consider the
trace of u on R* for 1 < k < N — 1 (i.e. on R* x {0}) then ¢ = kp(N — mp) !
and the above result still holds with y,eRF (provided g>gq i.e.
p>(N-k)/m.

Remark 2.13. If m=1 and |Du| is the usual norm on RY, then if u is
minimum of (2.19), the Steiner symmetrization of # —that we denote by u"—
is still a minimum of (2.19): " is spherically symmetric in x’ € RV~ !, non in-
creasing with respect to |x’|, and even in xn, non increasing for xy > 0.

Remark 2.14. We could of course replace W™?(R") by W™?(Q) where
QO = R¥~1x 10, o[, then Theorem 2.3 still holds. If m = 1 the corresponding
value of the infimum 7 is given by:

[=3L=2"7"1]

Proor. We are going to apply the concentration compactness method to the
bounded measures (Pn)n:

Po= 3 D%un| + |un] ', 0) ® o)
Jj=

where q; = Np/(N — (m — j)p), and where (u). is a miminizing sequence.
Hence, we consider:

On(t) = sup Pa(y + B)), vi > 0.
yeRN

Remarking that if we replace u, by o ~ V'~ /%uy(%), Qa(?) is replaced by Qa(%),
we may always assume choosing ¢ = g, conveniently:

0o:(1) = %

Such a choice prevents vanishing from occuring while, as usual, dichotomy
does not occur (cf. sections 1, 2.1-2). Therefore there exists y, = (¥n,Vn) €
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€ RV~1 x R such that P,(- + y,) is tight i.e.;
Ve>0, IR< o, ¥n>21, Pu(RY—(yn+ Br)<e (20)

We next claim that we may choose y; = 0; indeed if € < 1 then |y4| < R since
if |yn| >R

Yn+ BrC RV X R*, thus .fo=0 |un|?dx < €

and this contradicts the constraint. Therefore taking j, = (yn, 0), (2.20) still
holds if we replace R by 2R; and we may thus assume y;, = 0.

The remainder of the proof is then an easy adaptation of arguments given
in the sections above in view of the

Lemma 2.3. Let (un)» be a bounded sequence in D™P(R™) such that
(|D™un|?) is tight. We may assume u, converges a.e. to u € D™?, |D"u,|?,
|un|2(x’, 0) ® So(xy) converges weakly to some bounded, nonnegative measu-
res on RN p, v —and Supp» C {xy = 0}.

i) Then we have for some at most countable family J, for some families
(xp)jes fo distinct points in R¥N =1 x {0}, (vj)jes in 10, o]

v = |u|q(x', 0) ® 6o(xn) + Z]Vjaxj 2.21)
je
p=|D"ul? + Y IvP%y; (2.22)
jeJ

ii) If u = 0 and p(R™) < Iv(R™M)?/? then J = {xo} for some xo€ RV~ ! x {0}
and v = cobye, p = IcE %6y, for some co > 0.

We skip the proof of this lemma which is totally similar to the one of Lem-
ma 1.1 (or Lemma 2.1).

2.4. Singular inequalities

Let us first recall the following inequality
an |u|?|x| =7 dx < CJRNIVuV’dx (2.23)

for all u e D'P(RM), with 1 < p < N —this inequality is easily proved by the
use of Schwarz symmetrization and standard one dimensional inequalities

f:julptﬁ dt < C(p, B) j;"lu'lptﬁ”dt (2.24)

for 1< p< oo, BeR, uedDO, ).
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We next want to observe that there exists a general class of inequalities like
(2.23) namely

[l Plx] =™ dx < C [ |D™u|?dx,  vueD™PRY) (2.25)

where m > 1, 1 < p < (N/m), and ([ |D™u|? dx)"/? is any norm on D™?
which is «scale-invariant». In particular to prove (2.25), we will choose the
norm

[(=A)Y"?u| Lrrny if m is even, | V(—A)" Y2y owny if m is odd.

By density we may consider only u € D(RY — {0}). We then observe that if
f= (=A)Y"?u or (—A)™~ Y2y depending on the parity of m, and if we denote
by v (€ D™P(R")) the solution of

(-Afv=f* in RV k=7 ifmiseven,k=%ifmis odd)

where ¢* denotes the Schwarz symmetrization of ¢, then by Talenti compari-
zon theorem [77]: u* < v a.e. on RY, and thus

[(~8Y" 2] o = [ (=AYl if m is even
V(=822 = |Vf |1 > |V * |1 = [T~ 2P|, i m is 0dd
[ 1716 =72 dx < [ |7l =" e < [ [0}l =" dix

and thus it is enough to prove (2.25) for spherically symmetric functions.

Now for spherically symmetric functions v we may assume by density that
ve D(RY — {0}) and we remark using (2.24)

[ [0171%1° dx < OB, B) [ V017177 dx

for v spherically symmetric, € D(RY — {0}), Be R, p € [1, [. Then we obtain

JRN|U|”|x[ Py < Cy jRN|Dv|P|x| —POn=D gy <
<G ,[neN |DZUIP|X| ~pm=2) gy CJr;eN |D™v|? dx

and (2.25) holds. Another proof (communicated to us by H. Brézis) uses Lo-
rentz spaces: if u € D™?(R") then u € L*?(R™) and thus |u|? € L7?'}(R") whi-
le |x| =™ e LN/@P)-=(RN). This proves the claim since (¢/p)’ = N/(mp).

In addition if we combine (2.25) with Holder and Sobolev inequalities we
find
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‘ulq 1/7q 1/p
—rdx )] <G |D™u|Pdx ) , vVueD™P(RY)  (2.26)
RN Ix‘ RN
where p < g < Np/(N — mp), 1 < p < N/m, m > 1; and r is given by

N—-r N-mp
q p

or r=N-q(N - mp)/p. 2.27)

The associated minimization problem is then
I=Inf URN |D™u|? dx/u € D™P(RY), jRN |u|9|x| =" dx = 1} (2.28)

Observe that this minimization problem is not invariant by translations and
is invariant by dilations or more precisely by the change

U“’O'_(N")/qu(;), Vo> 0

Let us also remark that if 7, denotes the infimum corresponding to the con-
straint where 1 is replaced by A >0

L =N =N\P9], wA>0

and thus (S.2) holds.

Theorem 2.4. Any minimizing sequence (un). of (2.28) is relatively compact

in D™P(R™) up to a dilation i.e. there exists (on)n in ]0, o[ such that the new
minimizing sequence i@,(-)=0n.""""%,(Z) is relatively compact in
D™P(RM). In particular there exists a minimum in (2.28).

Remark 2.15. Exactly as in section 1.4, Remark 2.12, there are many
variants and extensions of the above inequalities and results in particular we
may replace |x| ~” by various potentials X satisfying for example

lim K(x)|x| "= a >0, llim K@»|x|"=8>0.
x=0

[x] o0

Remark 2.16. If m =1, by a symmetrization argument and an O.D.E.
analysis one may compute explicitely the expression of 7 and of any minimum.
The existence of a minimum and these explicit expressions are given in Glaser,
Martin, Grosse and Thirring [38], E.H. Lieb [53].

Remark 2.17. Clearly if p = q, I, = M and (S.2) fails; and neither does our
method continue to apply, but also —at least if m = 1— there does not exist
a minimum of (2.28).

Proor oF THEOREM 2.4. Again the proof follows the general scheme of our
method: if (#,). is a minimizing sequence and if
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m
Pn = Z | D7, | P
j=0

where p; = Np/(N — (m — j)p), we may choose o, > 0 such that, if we still
denote by (un)» the new minimizing sequence [0, ©~7u,(-/0,)], we have

1
Ou(l) = =+ with Qn(t)=SupJ pndx,  VL3>0.
2 . yeRN Jy+ B,

Since (S.2) holds we prove easily that u, is tight up to a translation i.e. there
exists (¥n)n in RN such that

ve>0, 3R<e, [ . eNdx<e.

We claim that (y.), remains bounded and we argue by contradiction: |y.| (or
a subsequence) goes to +o as n— . Then let £€ D, (RY), £=1 on B,
0 < £< 1, Supp £ C B; and let us denote by &, = £((- — yu)/R). The above in-
equality easily yields

LRN|D”’(u,, — Up)|Pdx < 5(e) >0 as e—0
where v, = &,u,. Therefore for € small enough
[ o lonllx] = ax >3-
On the other hand
ijlvnlqlxrdx < J'X—Ynl <2z 171X T 7dx < C(lyn| = 2R)™', for n large

and we reach a contradiction which proves our claim. Hence (y,), is bounded
and we may as well take y, =0.

The remainder of the proof is then a repetition of arguments made above
and in Part 1 [65] in view of the following lemma —which is also proved by
similar methods as before.

Lemma 2.4. Let (un). be a bounded sequence in D™ *(R") such that | D™u,|”
is tight. We may assume that u, converges a.e. to uec D™P(R™) and that
|D™un|?, |ua|?\x| =" converge weakly to some measures p, v. Then we have:

i) v = |u|"|x| T+ vobo Wwith v = 0;
ii) u = |D™uP| + Iv§/98,

Remark 2.15. If |ua|?, |un|?|x| =™ converge weakly to some measures »*,
»° where g* = Np(N - mp), we have
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0 = |u|?|x| =™ + 1o

v = |ul” + >, 96y, andif 1w >0, Oe{x/jel)}
JjeJ
V*(O)(l - 0)/q*V?/mp 2 Vo

Remark 2.16. The fact that only dp occurs is clear: since u, is bounded in
L7(R™), |un|?x| =" is bounded in Lf5(RY — {0}) for some « > 1 (and part i)
above is obvious!).

2.5. Nonlinear problems in unbounded domains

We want to give in this section a few examples of nonlinear problems in un-
bounded domains which possess a variational structure and that we treat by
our concentration-compactness method.

We begin with a model problem namely the Yamabe equation in infinite
streps: let N>1, Q=0 x R? where 0 es a bounded domain in R™ and
m + p = N. We consider positive, nontrivial solutions (vanishing at infinity)
of

_Au—- u=uM7: in Qu>0 in Q, ue HYQ) (2.29)
where A > 0. This problem —somewhat related to the Yamabe problern— was
investigated by H. Brézis and L. Nirenberg [23] in the case when Q is boun-
ded— see also sections 4.1-2 below.

In view of the homogeneity of the nonlinearity, we obtain a solution of
(2.29) if we solve the following minimization problem

I=Inf Un Vul? - mﬁdx/jQ |u|¥°2 dx = 1], ueH§® (2.30)
and we denote by
I® = Inf UPN|Vu|2dx/jPN|u|2N/(N‘2)dx = 1} .

We denote by \; the first eigenvalue of —A in H§(0) (\; is also the infimum
of the spectrum of —A in H§(Q)). The methods of Part 1 and the sections abo-
ve immediately yield:

Theorem 2.5. For any minimizing sequence (un). of (2.30), there exists
(n)n C {0} X R? such that (un( - + yn))n is relatively compact in H§(Q) if and
only if (2.16) holds

I<I1= (2.16)
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In particular if (2.16) holds, there exists a minimum of (2.30) and a solution
of (2.29). In addition (2.16) holds if N > 4 or if N = 3 and \ € 1\1, \1[ where
A1 € [0, M.

Remark 2.17. The result —as long as the existence of a minimum and (2.16)
are concerned— is very much the same as in A. Brézis and L. Nirenberg [23].
And the quick discussion of (2.16) we mention above is deduced from [23]:
indeed if Bg is a ball in R? of radius R we have

<Ig=1In ul© — ANu“dx u"z—NZx:,ueoxR
I<1, Inf OxBRVIZ et d OxBx N-2( 1 H{(OxBgR)

and in [23] it is proved that: Ir < I®if N >4, Ir < I°if N= 3 and A € N}, 1]
for some AR. Clearly NX L X; as R + o and we do not know if \; > 0 or A; = 0.

Remark 2.18. The above problem and result is only an example of our met-
hod: we could as well treat general minimization problems (combining the
methods of P.L. Lions [55], [56] and of Part 1 [65]) such as

I= Inf{ Zau(x)—-é—— + c(x)u? dx/j FGe,u)dx = 1}
Qij a ox, X Q

where (a;)) is uniformly elliptic and a;j, ¢, F(x, t) satisfy various assumptions
and where Q is an arbitrary unbounded domain (strip, halfspace, exterior do-
main...). In particular this could allow us to study the Yamabe equation

a
-—Z <au(x) ) + C(x)u = K(x)uN % in Q
i,j ax; X
ue :DI,Z(Q)’ u>0 in Q, u=0 on 9.

Remark 2.19. Concerning semilinear equations in infinite strips
~Au=f@m) in Q, u>0 in Q, ue HyQ)

where @ = D X R?, O bounded domain in R™, N > 3 and fe C'(R), f(0) = 0
S(0) > =\

Such problems have been studied in M. J. Esteban [34]; C.J. Amick and
J.F.G. Toland [3]; J. Bona, D. K. Bose and R. E. L. Turner [15]; P. L. Lions
[56] in the «locally compact» case. If we assume, for instance, that fis odd and

@ — F(0) SOLS'W) - F1(0)), VIER, (2.31)

for some 0 €]0, 1[;

—N+2

llm f(t)|t| N-2=0g20; (2.32)
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then the above problem will be solved if we find a minimum of
I=1Inf {8),ucH}RQ), u#0, Ju) =0} 2.33)
where
&(u) = J"Q L\Vul> - Fwydx,  Ju) = jn |Vu|? - fuyu dx,
and
F(t) = j; £(s) ds.

To this end we introduce

I® = Inf {§°(u), ueD"*RY), u=#0, Ju)=0)}
with-

N-2 2N

o0 2 2N . w
Je = |[Vu|* — aulv-2dx  (fa=0, I®= +).
RN
If @ > 0, by an easy scaling argument /™ is also given by

w (N N+2
I =I(§V/20l (N-2)/2 2N ,

I = Inf”RNIVulzdx/IkN|u|%dx = 1} .

Then any minimizing sequence of (2.33) converges up to a translation (of
the form (0, y»)) if and only if I < I*.

Sketch of the proof of Theorem 2.5. We apply the general scheme of proof
we used before: in particular we use the first concentration compactness lem-
ma ([58], [55]) with the density

2N
pn = |Vin|® + us + |un|N-2.
And we just have to explain how we avoid i) vanishing of p,, ii) that the weak
limit # of u, is not trivial if u, is tight.
First, if p, vanishes i.e. if

sup pndx—0, VR < o0;
yeRN Jy + Bg

where p, is defined on R by extending u, by 0 —then we know (cf. P. L. Lions
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[55], [56]) that u, — 0in LP(R™) for2 < p < N—Z%Vi. Thus for all § > 0, |us| 6—0

0 in LP(RM) for 2 < p < . Let v, = (Jus| — 8)*, we have

1 n
meas{v, > 0} = meas{|us| > 6} < lun*dx < -
6° JrN 6
J vidx < C(Iv’,{dx)yp forall p>2

and thus v, — 0 in L”(R™) for 2 < p < ;2% - Therefore

I'=1lim [ |[Vua]® = Nt dx >
n
> lim LR,\,IVU,,I2 + lim JRN |Vwal? — widx >
n n
> li_mLRNWv,,Izdx, where wyp = |us| A8
n

and jRvanlNz}-V'Z'dx* 1. Hence 7 > I and this contradicts (2.16).

Next, if pn is tight and if u, converges weakly and a.e. to some u € H3(Q),
we want to check that u # 0. But if u = 0, since u? is tight, u, — 0 in L*(Q)
thus

I= &nIIVu,,de;I”
n

and again this contradicts (16).
The remainder of the proof consists then of straightforward adaptations of
previous arguments.

We now turn to a nonlinear problem involving nonlinear boundary condi-
tions: this problem —in the locally compact case-was investigated in P.L.
Lions [56] and we refer to [56] for various considerations on its solutions—
may be formulated as follows

b= Inf{ [ |Vu*dx/[, Fa)ds = )] 2.31)

where \ > 0, u belongs to D%(Q) (closure of Clomp(?) for the seminorm
|Vu|L2¢0)), Fis a given nonlinearity and Q is and unbounded domain (smooth)
of RY. To simplify the presentation only, we will consider two examples

Q= {xny>0} (2.32)
Q = RY — O, where O is a smooth bounded open set in R". (2.33)

We will assume that N > 3 and that F satisfies
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FeC(R), F0)=0 (2.34)
lim FF(O)|¢| " 9=a>=0 (2.35)
7| =0
lim F*()|t]~7=8>0 (2.36)
l1] o0

(if « or B > 0, we may replace F/* by F) and where g = 20"=2. We denote by

I = Inf”(x~>0) |Vu|* dx/u € D' *(xn > 0), j _olul?dx' = 1}.

XN

(recall that this problem was solved in section 2.3).

Theorem 2.6. If Q is given by (2.32), we assume (2.34), (2.35), (2.36) and we
denote by I¥ = (max(c, B\~ 1) "2y (= + if o = B = 0) while if Q is given
by (2.33), we assume (2.34), (2.36) and we denote by I = (A~ ")~ *I,. If
(2.32) holds, every minimizing sequence is relatively compact in D *(Q) up to
a translation of the form (yn, 0) if and only if

Lh<K (2.37)

If (2.33) holds then every minimizing sequence is relatively compact in D'**(Q)
if and only if

Lh<I,+ K Vo e [0, \[. (S.1)

Remark 2.20. By an obvious argument, if Q is given by (2.32), I = )\%{% I
and thus (2.37) is equivalent to (S.1). On the other hand if Q is given by (2.33),
since 4 is bounded, the problem at infinity (for the translations group) dis-
appears and thus there only remains the problem at infinity obtained by focus-
sing u at a boundary point via dilations.

Sketch of the proof of Theorem 2.6. We first explain why the large in-
equalities always hold (i.e. I, < I\ in the first case, ) < I, + - o Ya € [0, \[
in the second case). If (2.32) holds, we introduce u,e D(RY) satisfying:
Supp un C B(0,1/n), [on|Vun|*dx—To, |, _olun|?dx’=1; we consider
vn = B~ VN9, and if B > 0, we deduce

LN= OF(U;,) dx' -1, I(XN> o Ivvn12 dx— 8~ Z/q)\Z/qu.
In a similar way if o > 0, we may choose u, € D(R") satisfying

— q —
maxu = 1, [yl =,

2 —2/qy 2/
LN>0|Vu,,| dx — o= I\,
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1 N-2 .
and we let v, = (+) ? un(n-). Then we find

[oooFAdE =N [, [Vondx— a0,

Hence I, < ¥ and if I\ = I, there exists a minimizing sequence which is not
relatively compact even up to a translation.

In the second case —i.e. if (2.33) holds— let o € [0, \[ and let (us), be a
minimizing sequence of I,. On the other hand let %2 be a minimum of 7y, we
may always assume that 0 € Q2 and that ey = (0, ..., 0, 1) is the unit inward
normal to 92 at 0. We then set

_N-2 _
u’% =g, 3 ()\ _ OZ)Z/qB 2/qu2(./an)

where g, — 0 is to be determined. We finally set: #, = u» + u2. Observing that
we may take u} in D(RY) if we wish, it is easy to check that we may choose
(0n)n in such a way that

| Jsa Fum ds = [, Fauyds — [, Blui|*ds| >0,
janﬁluﬁlds*)\ - a,

[ [Va4n]? dx jQ|Vu,£|2dx— [q IVua?dx—o,
jn V2|2 dx = K- .

Therefore (un)n satisfies: |, |Vin|? dx = I, + K- o, f30 F(un)ds >\ and u, —
— u} — 0 weakly in D**(Q). And this proves the large inequalities and the fact
that strict inequalities are necessary for the compactness of all minimizing se-
quences.

The proof of the sufficiency of the conditions (2.37) of (S.1) iwghen very
similar to proofs made in Part 1 and before. We will only explain how we con-
clude in the case when (2.33) holds once we know that |Vua|* + |u,,|N_2§7 is
tight. By arguments similar to those made in section 1.6, we obtain:

Lemma 2.3. Assume Q is given by (2.33), that u, converges weakly in
D'XQ) to u and that p, = |Vua|* + |u,,|N2_]-vi is tight. We may assume that
|V tn|*, vn converge weakly to some measures p, v where v, is the measure on
Q supported by dQ such that: Yo € Cp(Q), [edvn = [, ¢F(un) ds. Then there
exist J at a most countable set (possibly empty) of (xj)jes distinct points of
0Q, (vj)jes €10, o[ such that

V= vo+ B0 iy, p = |Vul?+ I 2 i %y
JjeJ jeJ

where v is defined by
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[edve= [, eFwds, veeC®.
Remark 2.21. Similar results hold of course for sequences in D™ 7(Q).

We skip the proof of the lemma since it is very similar to arguments given
in Part 1 and before: let us just observe that

jw |F(tn — 1)) — Blttn — u|?| ds—0

and that the fact that the best constant / (for half-spaces) occurs in the
estimate for y is due to a localization argument. Indeed if we follow the proof
of Lemma I.1 ([55]) or Lemma II.1 we see that the lower bound on u({x;})
is obtained by multiplying u, by some convenient cut-off function ga(""‘f)-

€

Thus all computations take place in the ball B(x;, €) and using local charts we
may actually argue as if we were in a half-space.

We next conclude this section with another problem —motivated by
geometric considerations, see Cherrier [25] and section 4.2 below—; we will
consider it in an unbounded domain Q, we look for positive solutions of

0 _
—Au=fu) in Q, a—: =gu) on 92, u>0 on (2.38)
where f, g € C(R), f(0) = g(0) = 0; n is the unit outward normal. Denoting by
F@) = j'; f©)ds, G(t) = | ;g(s) ds and assuming for example that f, g are odd,
one way to solve problems “‘like’’ (2.38) is to consider the following minimiza-
tion problem

h=Inf{ [, [Vuldx | [, Fapdx + [, Gy ds =)\]. (2.39)

However a solution of (2.39) leads only to a solution of (2.38) where f, g are
multiplied by a Lagrange multiplier which can be taken care of only if F, G
are homogeneous of the same degree —and this case is not really interesting—
or if Q is a half-space,

2N C2N-1)

= q1-2 = q2-2 i =— = —
Sy =1ul""u, g =u|"""u with g1=—  @=—F—

This is why we will not consider (2.39) —that we may analyse easily with our
methods.

Instead, we will use the artificial constraint method (see for example C. V.
Coffman [26], [27], P. L. Lions [56]) which will requiere the following struc-
ture conditions on f, g

S = fo(t) — mt, m 20, 0 < foO)t ™1 <0730 vieR (2.40)
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g(?) = go(?) — pt, p=0, 0 < go(t)t ™' < 0g6(2) vieR  (2.41)

lim fo(9)|¢)>~ ¢t ' =120

lt] >0
2.42
lim go()|t)>~ 2t =620 2.42)

|t] =

if m=0, lim fo()t~ 9 Y =q; >0 (2.43)
t—0 4

if u=0, lim go()t~ @ "V =, >0. (2.44)
t—0 4

We consider now the following minimization problem
I=Inf{&8w)/Fu)eL'(Q), Gu)eL'@dQ), Ju) =0} (2.45)
where
8w) = [, 51 Vul* - Fwdx - [, GGods,
Ju) = Jn | Vu|* - f(uyudx — ng(u)u ds.

Using (2.40)-(2.41), it is easy to check that a minimum of (2.45) is indeed
a solution of (2.38).

To simplify the presentation, we will consider only the cases when Q is given
either by (2.32), or by (2.33). We need to introduce the following quantities

I~ =Inf(&8'w)/J™ ) =0, u#0}, =123

&% 1(u) = jPNﬂ Vul|? — Fuydx, J>'(u)= Lw‘ Vul? — fuyudx

8 2(u) = J(x~>0)% | Vul? = (B1/q0)|u|” dx — j(x~=0) (B2/g2)|u|* dx’

J* () = J‘(XN>0) | Vul|® — B1|u|? dx — J(XN=0) B2|u|?? dx’
83W) = [ o3| VUl = (u/@lu|® dx — [ (@2/g2)|ul®dx’
Jm,S(u) - J(x~>0) | Vu|2 h 011|u|q1 dx — J(XN=0) a2|u|q2 dx’

Of course if m (resp. u) > 0 we set a3 =0 (resp. o2 =0) and if a1 = a2 =0
(or B1=B2=0) we set I3 = +o0 (or I™? = + ).

To motivate the introduction of these various functionals, let us explain
that ™! corresponds to the ‘‘problem at x¥ = +oo’’ obtained by the action
of the translation group if for example Q is given by (2.32), while 72 is obtai-
ned by ‘‘concentrating #’’ at a boundary point by the action of the dilation
groups (‘‘concentrating #’’ at an interior point is not necessary here since it
is contained in I*'!), and finally 7*'® is obtained by ‘‘scaling out’ u
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(u— o~ W=22y(. /o) with 0 > + o) again by the action of the dilation group.
The next two results correspond to the two domains Q we consider:

Theorem 2.7. We assume (2.32), (2.40)-(2.44).

DIfm=p=0, fo=|t|" "1, go = v2|t|~ 't with v1,v1> 0 then any
minimizing sequence of (2.45) is relatively compact in D**(Q) up to a scale
change (6 — 0~ V= 2"2y(. /o) and a translation of the form (¥4, 0). In particu-
lar there exists a minimum.

We denote I* = Min(I™!, I*%,1™3). Then the condition
I<I” (2.16)

is necessary and sufficient for the compactness of all minimizing sequences up
to a translation of the form (yy, 0).

Theorem 2.8. We assume (2.33), (2.40)-(2.42) and we denote by
I® = Min(I*'!, I*%). Then (2.16) is necessary and sufficient for the compact-
ness of all minimizing sequences of (2.45).

Remark 2.22. We could treat as well arbitrary unbounded domains such
that: VR < «, yeQ, B(y,R) C Q, or strip-like domains... Combining the
methods of P. L. Lions [55], [56] and of Part 1 [65], we may treat exactly as
below x-dependent problems and in particular

_9 a,-,-(x)a—u + k(x)u = KuN+»’®=-2 ip Q
ox; ax;

0 _
aTl;—i-k'u:K’uN/(N'z) on 99, u>0 in Q

where ajj, k, k', K,K' are given functions having limits as |x| >, x€Q,
(aij(x)) is uniformly elliptic, K, K’ are not everywhere nonpositive and are
nonnegative at o and the quadratic form associated with the linear part of
the problem is positive on D''*(Q). Of course v* is the conormal associated
with (a;(x)) i.e. vf' = ayn; Vi.

Remark 2.23. In fact our method not only shows Theorems 2.7-8 but also
explains how compactness may be lost if I=17*: for example if
I=I"2<I*!AI™3, a noncompact minimizing sequence (i), will satisfy:
| V tun|* = Bxos B1|tn]?* + Ba|tn]?> = b, for some xo € RV~ 'x{0} and there exist
On—> 0, Yn= (Va, 0), —¥n/0n— Xo such that o, ©~22u,((- —yn)/0on) conver-
ges to a minimun of 7°*2 (up to subsequences. . .). And there exists such a se-
quence (Un)n.
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Remark 2.24. We will not discuss here conditions (2.16): this strict inequali-
ty may be analyzed as in P. L. Lions [55], [56], [65], T. Aubin [6], H. Brézis
and L. Nirenberg [23]... Let us only observe that by a symmetry argument
similar to the one used below we have if Q is given by (2.32): I<3/™! and
thus 7° = Min(I*2, I*'3).

Sketch of the proof of Theorems 2.7-8. First of all, in the case when (2.32)
holds and m=p=0, fo=v|t|""'%, go="/t|2"', ~v1,72>0, the
minimization problem (2.45) is ‘‘scale invariant’’ and invariant by transla-
tions of the form (', 0). We claim that I < I™'!. To check this strict inequality,
we just observe that there exists u € D *(R") symmetric with respect to x (ac-
tually radial) such that

== JRN%I V“|2 — (y1/q1) |u|? dx
JPNi Vul> - y1u|?dx = 0.

Thus: J(x~> . | Vu|® — y1|u|? dx = 0; and there exists § € ]0, 1] such that if v = u

LXNN» v v|2 ~mlvfdx - I(x;v=0) v2|v|%2dx’ = 0.

Therefore we have denoted by « = I(XN>0) | Vul*> = %IRNI Vul*dx

o

I=63 - o —;]1—(020: - 67q)
1 2

1 1 1 1 1 1 1
L INSWAU L B P
2 q * @2 G “\2 a1 2

Thus, by a convenient choice of the scaling and of a translation, we may
assume that any minimizing sequence satisfies

pn = | Vun|* + y1|tn|” + v2|tn|? ® So(xn) is tight and SupyerRNL“;1 dpn =
= L where L < Inf, |_ydpn. Indeed vanishing is ruled out by the scaling,
dichotomy as in [55] and the tightness cannot be obtained through a sequence
(»") such that y% is unbounded because of the strict inequality: 7 < I=!.
Assuming that u, converges weakly and a.e. to u, we have to show that u # 0:
If this is the case, we conclude easily adapting arguments given before (or in
Part 1) and in [56]. Now if u =0, we may assume that |V u,|?, v1|ua|?,
v2|Un|? ® So(xn) converge weakly to some measures pu, v1, v2: we already
know that »;, v, are given by countable sums of Dirac masses and that u
charges any point charged by »; + v.. We claim that p, »1, 2 are given by one
Dirac mass contradicting thus the constraint on p,.

Indeed if x° € {xn > 0} is such that

w((x°)) = V(X)) = »((x°)) < 0
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then we may find ¢ € D(R") supported in a small enough ball centered at x°
such that

“J(¢un) > —a <0

1 1 1 1
- - — un|"dx + | - — — un|?dx' - g <1
<2 q1>71j(xN>0)|£ d <2 612>72 J‘(xN=0)|£ d B

Indeed observe that

1 1 1 1
I=(z-— L 2,
<2 ql)IdV " <2 qz>jdy

It is then easy to reach a contradiction as in [56]. Therefore for each point
x7 in the support of v; + »,, we find

p({x}) — »'((x'}) — *({x'}) = 0
and thus

0< X u({x}) — v ({x'}) — v({x')) < jdu - Jdv‘ - dez —o.
jeJ
Hence

n= Z]”’jaxh Vl = Z V}axj, VZ = Z V.lzaxj
je

JjeJ jeJ
and

pi=vj+ >0, Xe{xn20}, w=a@)’" + ()
This last inequality yields that J is finite (since u; > 0, Vj € J). In addition
choosing for each j € J a cut-off function £ supported in a small ball centered
at x/, we see that

11 1 1 11 1 1
(D (D g (e (=)
<2 q1> / <2 )" j‘eZJ 2 @) T \2 T @)

and this only possible if Jis singleton. Hence: g = pobx0, »! = vbdy0, v* = v§dyo
where po > 0, v§ + v§ = po, ¥6 =0, 15>0, x" € {xn=0}. (If x¥ >0, 5 =0,
v6 = po and we would have: I = I, Therefore x¥ = 0, v5 > 0, v} > 0).

In the general case, we apply the arguments of P. L. Lions [55], [56] to de-
duce that pn = |Vun|> + |ua|%t + mus + (|un|%2 + pus) ® So(xn) —if (32)
holds; if (33) holds we consider | V u,|*> + |ua|?* + muz— is tight: in particular
we use the strict inequality 7 < 7! to obtain that if p,(- + y") is tight then y5
is bounded if (32) holds, or y" is bounded if (33) holds. Then if u, converges
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weakly and a.e. to u, we have to check that u # 0 and the remainder of the
proof is then a combination of arguments of P. L. Lions [56] and of those gi-

ven in Part 1 and above.

Let us check that u # 0: if u = 0, we observe
. . 1 1
I =lime(u,) = hmJ‘ = f(un)un — F(un)dx + J —g(un)un — G(un)ds.
22 a0 2
And since p, is tight, we deduce easily

1 _ _(_1 a1 gy | -
“‘nif(un)un F(un)dx <2 ql>Lﬁllunl dx|—0

- 0.

1 _ _(1_1 a
”mig(un)un G(un)dx <2 q2>Lnleunl dx

Similarly, we have
J(un) — J>2(un) =0, thus J=2(u,)— 0.

This shows that

1 1 1 1
I>inf — - — 9y + — - a g
in U(z q1>61|ul x j(z q2>ﬁz|u| 5/

ueD-XQ), S w) = o} =r?

and this contradicts (16).

3. The General Principle

3.1 Heuristic derivation

In this section, we want to explain the common features of the problems and
methods introduced in Part 1 and here exactly as we did in the locally compact
case in P. L. Lions [58], [55], [56]. By no means, the claims below concerning
the equivalence between certain compactness results and the subadditivity in-
equalities (S.1), (S.2) are to be understood as rigorous results: they are indi-
cations on what are the crucial inequalities to be checked and on a general
scheme of proof.

We begin with the general case (the case of invariance by translations or di-
lations being treated below) and we keep the setting used in [58], [55]: let



THE CONCENTRATION-COMPACTNESS PRINCIPLE IN THE CALCULUS OF VARIATIONS 77

H be a functions space on R (more general situations are considered below)
and let J, & be functionals defined on H (or on a subdomain of H) of the fo-
llowing type

&) = j v €05 AUCONX; J@) = [ ilx, Bu())dx

where e(x,p), j(x,q) are real-valued functions defined respectively on
RN x R™, RY x R" and j is nonnegative; A, B are operators (possibly nonli-
near) from H into E, F (functions spaces defined on R" with values in R™, R")
which commute with the translations group of RY. We assume
&(0) = J(0) = 0. We want to study the following minimization problem

I=Inf{8w)/ueH, Ju)=1)} (3.46)
and we embed this problem in a one parameter family of problems
I=Inf{8w)/ueH, Ju)=N\} (3.47)

where \ > 0; of course I = I.

As we saw in the examples we have treated in sections 1 and 2, we have to
evaluate the effects of the non-compactness of the translations and dilations
group. This is why (to simplify) we assume

e(x,p) > ex(p), Jjix,q)—~jel(@) as |x|—> o (3.48)

(the precise meaning of the above convergence has to be worked out in all
examples) and we set

5L = Inf{&>%(w)/ue H,J™ (u) = \} (3.49)
where
£ () = [ eXAwdx, J>=w) = [ j2(Bu)dx.

Next, to take care of the dilations group, we assume to simplify that there
exists a critica power o > 0 such that T, yu = 0~ *u((- —y)/0) e Hif u € H and
if ye RY, and we assume

8(Ty,0u) = &%), J(T,ou)— ") if o— +o (3.50)
8(Toyu) = EP (), J(Toyu)—J*Pw) if 00,4 (3.51)

and we introduce for all y e RV
IR® = Inf(E> W) /ue H, J* “(u) = \} (3.52)

= Min(l‘f»”, ==, Inf I‘i"”). (3.54)

yeRN
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We may now state a heuristic principle (which holds in all the examples
treated before and below) that we call the concentrantion-compactness princi-
ple. To be rigorous, the following claims need many structure conditions (a
priori bounds on minimizing sequences which insures in particular the
finiteness of I, the continuity of /\ with respect to \...; convexity or weak
1.s.c. properties of the «main» terms in &, J...) and it seems very difficult
to give a unique framework covering the variety of the examples we treat.

We first claim (this part being easy to justify by the very way Ix was defined
and the arguments of [55]) that we always have the large subadditivity
inequalities

Lh<I,+TI"_,, Vo e [0, N]. (3.55)

Next, we «claim» that, for a fixed A > 0, all minimizing sequences of (47) are
compact if and only if

h<Iy+TI\_q Vo e [0, N]. (S.1)

Indeed we first «prove» the «tightness» of any minimizing seqeunce (#.), by
applying the first concentration-compactness lemma (see [58], [55]): since
(S.1) implies

{A <I,+ 152 Yae]0, N\
L < Min(I&=, I2)

dichotomy, vanishing and tightness up to an unbounded translation cannot
happen. Next if (1), «converges weakly» to some u € H we claim that u # 0:
if u were 0, then the effect of the «almost dilations invariance» (u — 75, o)
would be that u, concentrates around at most a countable number of points.
But since (u,). is 2 minimizing sequence, we claim that #, concentrates around
a single point (up to subsequences); one way to understand this claim is to
~argue as follows, isolate one concentration point x° and split u, into two
parts: the part concentrating at x° and the part concentrating around the other
points. If this were to happen, we would have for some « €]0, A\[

LI+ Inf I, 21, + -
yeRN

contradicting (S.1). Hence, (u,) concentrates at a single point x° and we
deduce

0 .
hzIX 2z inf RV 2 IR
yeRN

again contradicting (S.1). Therefore u # 0. Finally if J(«) = a €]0, \[ we split
u, into two parts: basically ¥ and u, — u (this is only a rough idea — cf.
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precise arguments in sections 1-2). Again u, — u concentrates at a countable
number of points and we deduce

Lh>2I,+ inf IN?o > 1, + IN- o
yeRN
The contradiction shows that u, converges to u, a minimun of (47).

This heuristic argument not only shows that (S.1) is a necessary and suffi-
cient condition for the compactness of all minimizing sequences of (47) but
also enables us to analyse what are the possible losses of compactness if (S.1)
fails. For example if we know that

L<I,+ I3 Va €10, \[ (3.56)
then (S.1) is equivalent to
h<I%\. (16)

And if i = F>'° < Min(l>®, %), vy € RY, we obtain that any noncompact
miniznizing sequence is compact up to a translation y, such that | y,| = . Si-
milarly if I, = I < Min(I% %, I;>*®) for some y € RY; then any noncompact
minimizing sequence concentrates at an infimum point y° of Infyer~y I
(and conveniently rescaled is compact, converging to a minimun point of ™7
if I satisfies (S.2) below !)...

Next, we explain that the above ideas still carry out to cover more general
situations where j is not nonnegative, or R" is replaced by and unbounded re-
gion @ such that

VR< o, 3yeQ, y+ BrC.

Indeed if j is negative somewhere, in general we still have to consider only
o € [0, \[: this is basically due to the fact that J(0) = §(0) = 0 and with the
above notations if 4 = J(u) > \, we would have: 7, < I and this is not possible
in general.

And when RY is replaced by Q, we assume (48) for |x| = o, xeQ and we
replace in (54) the infimum over y € RY by the infimum over y e Q.

We now turn to problems with a complete or partial invariance: first of all
we consider problems which are invariant by the changes /5 for all 0 > 0,
yeRN ie.: 8(T,yu) = 8w), J(T,yu) =Ju) VueH, vo>0, VyeR". In
this case by similar arguments to the ones given above any minimizing sequen-
ce (un)n is relatively compact up to a change T,,,y, if and only if (S.2) holds:
in particular if (S.2) holds, then there exist (on)x in 10, ©[, (¥)» in RY such
that Ts,,,,un is relatively compact.
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Next, we may consider problems which are invariant by translations but not
by dilations: in this case we set

= Min(i>">, °

(observe that I” = %, vy € RY); and any minimizing sequence is compact
up to a translation if and only if (S.1) holds. Conversely, we may have to solve
problems invariant by dilations but not by all translations: for example prob-
lems in a half space {xny > 0} invariant by dilations and by translations of the
form (y’, 0). In this situation, we define Ix* as before by considering

&%) = llim Eu(- +»), J=%w) = lim &u(- +y))

y|—w

(in this example above we only take: lim ) and we set Iy=I"". And
YN~ +®

all minimizing sequences are compact up to a dilation (and a translation of

the form (y;, 0) in the example) if and only if (S.1) holds. Similar variants

exist if the problem —or the domain— has only a restricted number of trans-

lation invariance (exs.: strips, half-spaces...).

We now turn to the important particular case of a compact region Q@ of R™
(or a N-dimensionnal compact Riemannian manifold). If the problem is «set
in Q», it is clear that the translations do not play anymore any role and simi-
larly for T, ,yu when ¢ — + . Thus the only «non-compactness» remaining
concerns the action of T, ,u as ¢ — 0, for any y € Q; hence we just assume
(51) for y e Q and we set for all A >0

I = Inf IYV. (3.57)
yeQ

In this very particular case, the above principle reduces to the following ideas:
(S.1) is a necessary and sufficient condition for the compactness of all minimi-
zing sequences. In addition if (56) holds and thus (S.1) is equivalent to (16),
then we have:

i) if (16) holds, any minimizing sequence is compact, ii) if (16) does not hold
i.e. I, = IX then there exists a noncompact minimizing sequence and any such
sequence converges weakly to 0, concentrating at a minimum point yo of (57)
(up to subsequences). In addition if I satisfies (S.2), there exist (on)n in 10, [,
(Fn) in RN such that T, y, un is compact and converges to a minimum of I*?°,
and g, = ©, — yn/0, — y up to (subsequences). Let us also point out that when
Q is a compact manifold, the action 7, is not well defined but since we want
to concentrate u at the point y only the local properties of Q near y matter and
via local charts and the tangent space 7, we may still define 17 as a pro-
blem on the tangent space i.e. R if Q is N-dimensional.
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We next want to make several remarks: i) we may treat as well problems
with multiple constraints

I\, ..., A\m) = Inf{EW)/u € H, Ji(u) = \;}

then one defines exactly as we did I”(\g, . . ., )\m)/and (S.1) is to be replaced
by

I(}\],...,Xm)<l(0l1,...,a’n)+Iw(x1 _al,...,>\m_a1n)

for all oz € [0, \], Dici < 2 Ni.
ii) It may be important to treat the following type of constraints

I=Inf{&8w)/ueH,Ju)=0,u#0)}

—see [56] and section II—. Then denoting by 7, the infimum corresponding
to J(u) = \ for Ae R, (S.1) is to be replaced by

I<hL +1IZ2, w0, I<I®

where I is defined as before. Very often the first series of inequalities hold
easily (notice also that 7 is not modified if we replace & by & + uJ...).

iii) In the locally compact case (cf. P. L. Lions [55], [56]) we refind the fact
that the action of T, , does not play any role observing that & * or J*** and
&% or J™7 are trivial in this case and thus Ix reduces to Ix**.

iv) If J has a completely indefinite sign, it may happen that (S.1) has to be
replaced by

h<ls+RK-o VYoaeR-—{\} (S.1)

Remark III.1. In order to illustrate (at last !) the above discussion we wish
to indicate briefly a list of the various types of problems encountered and the
corresponding results in Part 1 and here:

1. Invariance by dilations and translations: Theorem I.1; Corollary 1.2;
Problem (1.35); Theorem II.1.

2. Invariance by translations, not by dilations: Problem (1.30);
Theorem 1.5; Theorem I1.2; Theorem II1.7 ii).

3. Invariance by dilations, not by translations: Theorem I.3; Theorem I1.3;
Theorem I1.4; Theorem I1.7 i).

4. Restricted invariance by translations: Theorem II.3; Theorem II.5;
Theorem I1.6; Theorem 1I.7.

5. Nonisotropic dilation invariance: Corollary I.3.

6. General situations: Theorem I.2; Theorem 1.4; Theorem I1.6; Theorem
I1.8.
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7. Multiple constraints: Problem (1.33)
8. Constraint J(#) = 0: Theorem II.7; Theorem II.8.
9. Problems in compact domains: section IV.

We next would like to explain what we mean by concentrates around a
point: this means that the densities of the functionals or of related norms —
which are bounded L% functions— converge weakly to Dirac masses (cf.
Lemma I.1; sections 1.4 ii), iii), iv), vi), vii); Lemma I.4; Theorem 1.6; Lemma
II.1; Lemma I1.2; Lemma II.3; lemma II.4...).

Finally, we want to conclude this section by emphasizing that (S.1), (S.2)
are necessary and sufficient conditions for the compactness of all minimizing
sequences but that there might exist a minimum even if (S.1) (or (S.2) fails)
see P. L. Lions [ ] for such an example in the locally compact case. In addition
(S.1), (S.2) may be difficult to check (but anyway one has to check them!):
in particular when (S.1) reduces to (16) and Ix°= Inf, I*?, in order to check
(16), it is natural to try as a test function: ilg = Ts,,,# where yo is a minimum
point of (57), # a minimum of I}**° and & goes to 0. Indeed observe that any
noncompact minimizing sequence will be very similar to #g (if IX satisfies
(S.2)) if I, = IX. This motivates the choice of #g in order to analyse (16): this
choice was first considered by T. Aubin [6], see also H. Brézis and L.
Nirenberg [23], H. Brézis and J. M. Coron [19], [20], P. L. Lions [65].

We make two final remaks on (S.1) and (S.2) —that will be developed fur-
ther elsewhere—: first of all, if I, < I, I’ satisfies (S.2) for all x €10, \] and
(S.1) does not hold there exists a € ]0, N[ such that

h=1I+ K-
We then claim that 7, satisfies (S.1): indeed if we had
I,=Is+ I7 g with Bel0,«f
this would imply
L=+ I3 g+ Ix-o>Ig+ IX-g = h;

a contradiction. In addition {a€]0,\], (S.1) holds for I,} is open if
Igu~'— + o0 when p— 0. : indeed if (S.1) holds for I,,, then for a near «,
I, < Iy and if (S.1) fails for I, there exists 8 €10, [ such that

IB+IZ°_,3=ID(, B_’Olo as o oy.

But there exists a minimum for /g (cf. the argument above) which converges
to a minimum of I,, as B—«, Hence it is easy to show that:
I, < Is + C(o — B) for a near ay; in other words Iy - g < C(a — () for a near
oy, if (S.1) fails. Thus (S.1) holds in a neighborhood of «.
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3.2. The role of symmetries

In this section, we want to explain how the invariance of functionnals by sym-
metries (orthogonal transformations of RY) fits in the general picture of
minimization problems and the concentration-compactness principle. To
motivate what follows let us recall that it was observed in W. Strauss [75] (and
developped in H. Berestycki and P. L. Lions [13]) that the embedding from
H'(RY) into L(RY) for 2<p<2N/(N-2) (N>3) is compact when
restricted to spherically symmetric functions. This was used in [75], [13] to
solve various minimization problems by restricting a priori (or a posteriori via
symmetrization) the infimum to spherically symmetric functions (see also
P. L. Lions [62]). Such compactness arguments are extended to more general
symmetries in P. L. Lions [62], [63]. In addition in those compactness results
one proves that if H*(R™) is the subspace of H*(R"™) consisting of spherically
symmetric functions then H}(RY) < L*(|x| > &) for any 6 > 0 (see Appen-
dix 2 for more general results of this type) hence on the domain (|x| > 6) the
limit exponent 2N/(N — 2) is meaningless for H}(RY) and compactness is
available (see M. J. Esteban and P.L. Lions [35] for an application of this
fact).

We want here to explain these observations by the help of an extension of
the concentration-compactness principle, taking into account the invariance
of the functionals by a group of orthogonal transformations of R". Let us
also mention that we were led to the heuristic principle which follows by the
study due to C.V. Coffman and Markus [28] and that the analysis below will
be developped further elsewhere.

We still consider the general setting of the preceding section where R" is
replaced by a domain Q. We assume that Q, &, J are inva, iant under the action
of a group G of orthogonal transformations of R (of course if Q is a compact
N-dimensionnal manifold we adapt the notion of such a group in a
straightforward way...) and we consider for A > 0

I =Inf{8w)/ueH, uis G-invariant, J(u) = \}

where G-invariant means: u(x) = u(g-x), vxeQ, vgeG.

We need now to define the problems at infinity: first of all we define K>
exactly as before adding to the set of minimizers the constraint that u is G-
invariant.

Next, observing that if «u is concentrated at y» and if u is G-invariant u
is also concentrated at every point z = g - y for some g € G, we consider the
equivalence class: w(y) = {z = g-y/g€ G}, and we denote by s(y) = #w(y).
If s(¥) < o, we define
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I = 3 K%y = SO0 (59)
zew(y) _

(Of course if 0@, w(0) = {0} and s(0) = 1) I” does not really depend

of y but on its equivalence class w(y). Next if s(y) = + o, we set: I =

= lim nly;;, €]—o, +] (The fact that the limit exists is an easy exercise,

n-w
since the function ¢(f) = I;>” is subadditive on [0, A]). In many cases this limit
is trivial (either 0 or +c0).

Finally, to take into account the effect of the translations (if Q satisfies:
VR < o0, 3y €, B(y, R) C Q) we consider

sg = inf[#w()/|x| 2R, xeQ] < +oo.
For R large sg is constant and we denote by s its value. We then set

K™ = sI3e si s< o
B>® = lim nL5f if s= +o (60)
n-—+o

The same heuristic considerations of the preceding section show that the
strict sub-additivity inequality.

h<Il,+LK_., va € [0, N\ (S.3)

is still necessary and sufficient for the compactness of all minimizing se-
quences of (58). And we have the same adaptations, extensions, variations as
before for problems invariant by dilations, (some) translations. Furthermore
if (S.3) fails, we know how compactness is lost on noncompact minimizing
sequences. :

In particular, in the locally compact case, I,? reduces to I defined by (60);

while if Q is compact, I**, I** disappear and I\ reduces to Inf .
yeQ

Before giving briefly two examples below (more may be found in section IV
and in a future study), we would like to point out that in some vague sense
symmetries may help to find a solution of the Euler equation associated with
(58) or equivalently with (47) (if &, J are C',...) since ng(%) > o(\) if ¢ is
subadditive and since nqa(%) is «essentially nondecreasing» with respect to n
(at least along multiples...) therefore I essentially increases if s, inf s(»)
increase. yet

Another way to see this improvement of the conditions (S.1) — (S.2) is to
observe that if s = + oo, the first concentration-compactness lemma yields that
we have either vanishing, or compactness. And recalling that if p, = u3 + |Vu,,|2
vanishes then u, — 0 in LP(R") for 2 < p < 2N/(N — 2) (cf. P. L. Lions [55],
[56]), we find back the compactness results of W. Strauss [75], P. L. Lions [63]
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in a very direct way. Similarly if Inf {s(») | y € Q} = +, no Dirac masses may
form since J would contain an infinite set w(y) on which each Dirac mass 6,
has a fixed intensity thus contradicting the summability of the measure!

Example 3.1. Let N >3, consider the functionals on H*(RY)

[ Yo,z 1 2, 1 u>()u’(y)
8(u)—jRNleu| +2V(|x[)u dx 4JLN><R~____—IX—JII dxdy

J(u) = j u? dx;
RN

where V e LP(R™) + LYRM) with ]5" < p, g < «. If we do not use the spherical
symmetry of V i.e. we only consider

I=1Inf{8w)/J(u) =1, ueH'(R")}

then —cf. P. L. Lions [55], [59]— all minimizing sequences are relatively com-
pact if and only if

2 2
I< 1°°=1nfU 1|Vu|2arx—1ﬁ L) edy) ) = 1}-
RN 2 4 )Jrvxry  |x =y

And if V>0, V#0, there is no minimum.
On the other hand (this was observed in P. L. Lions [57] and it is clear in
view of the above arguments) if we consider for A > 0

L =1Inf {(8w)/J(u) =\, ueH'RY), u spherically symmetric},

then I, < 0 and all minimizing sequences are compact and a minimum exists
(thus [; > I'). This is also clear in view of our arguments above: since (we are
in the locally compact case) i>° =0, Ix*? =0, vy and ™ = limnky, = 0
and thus (S.3) is equivalent to I\ < I, Yo €]0, N[, and this is easily checked
since I < 0.

Example 3.2. Let N >3, consider the functionals defined on D!%(Q)
—where @ = {xeR", |x|>1}— by

Ew) = Jn a(|x|)|Vu|? dx, J(u) = [9 K(jx])|u[ NN =2 gy

where a, K are positive continuous, @, K = a®, K” > 0 as |x| = c. We then
consider

L = Inf |8(u)/u eDV*(Q), Ju) =\, u spherically symmetric}.

We compute easily: 5> = +o0, Y = 4+, VvyeQ and
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2 = Inf {a"“ JRN |V u|?dx/ueD"*R"), u spherically symmetric,
K [ V™2 i =),

And (S.3) reduces (since i = N\ "2V, K =\""2N[?) to
LT < I_)‘:c

If this condition holds, all minimizing sequences are compact and a minimum
exists, while if /,® = I there exists a minimizing sequence which is not com-
pact and any such sequence (u,). satisfies: 3(on)» €10, o[ such that o, — 0,
an N 22y,(% ) is relatively compact and its limit points are minima of I

On
4. Problems in compact regions

4.1 Yamabe problem

Our main goal in this section is to explain T. Aubin’s results on Yamabe problem
in the light of our general arguments. We first recall the nature of the problem.

Let (M, g) be a C* N-dimensionnal Riemannian manifold. We denote by
A the Laplace-Beltrami operator on (M, g); in local coordinates this operator
is given by

1 d i 0
E Dl )
where X ; gijdx' dx’ is the metric, g¥ = (gij) ™!, g = det(gy).

Let k be the scalar curvature of (M, g). One is interested in the determina-
tion of all functions K which can be realized as the scalar curvature of a metric
which is pointwise conformal to g i.e. of a metric g obtained by multiplying
g by a positive function on M. Now if we introduce the unknown function u
(positive on M) such that

5=y N-2

g &,

the above condition on K is equivalent to the so-called Yamabe equation (see
H. Yamabe [84], T. Aubin [9]; H. Eliasson [33] for the detailed computations)

~ 2Au + ku = KuWN+»’WN=-2 in M, u>0 inM Y)

—4

—where of course N > 3. In fact, H. Yamabe considered in [84] only the case
when K is constant and claimed that in this case the problem could always be
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solved. As it was remarked by N. Trudinger [79], the argument in [84] was
not complete and the case when K = 1 is still an open question (at least for
3K<NK)).

Let us mention at this point that related questions concerning scalar cur-
vature and deformations on variations of metrics are considered in J. L. Kaz-
dan and F. W. Warner [(47], [48], [49], [50], J. L. Kazdan [46]; A. E. Fischer
and J.E. Marsden [37]; J.P. Bourguignon and J.P. Ezin [17]; J.P.
Bourguignon [16].

Let N\ denote the first eigenvalue of the operator

N-1

—4—" A
oAtk

on H!(M); it is easily seen that:

i) if A1 > 0 and K £ 0, no solution of (Y) exists;

ii) if A1 = 0: no solutions exists if K # 0, K < 0 or K > 0; trivial solutions
exists if K =0 (and are unique up to a multiplicative constant);

iii) if A; < 0: no solution exists if K > 0 while if K <0, K # 0 it is a stan-
dard exercize on semilinear elliptic equations to show that (Y) has a
unique positive solution (one can also make a few remarks of the same
spirit if K has both signs). We refer to T. Aubin [9] for a brief exposi-
tion of these facts.

In view of these remarks, it is natural to assume

A1 > 0; Max K > 0. 61)
M

In this case, one way of finding (possibly) solutions of (Y') is to look at the
following minimization problem

I=1Inf {8w)/ue H' M), Jwu)=1) (62)

where

8(u)=j 45_—1|Vu|2+ku2, J(u)=j K|uMW=-2,
M N-2 M

Then any minimum of (62) is, up to a change of sign and multiplication by
a positive constant, a solution of (Y). Let us emphasize that the converse may
be false! Let us also mention that, as long as (62) is concerned, it is not
necessary to consider only a function k£ which is the scalar curvature and in
what follows, k, K are arbitrary functions in C(M) satisfying (61).

At this stage, we want to explicit the condition (S.1) (which, as it should
be, will be the critical condition needed to solve (62)): first of all since
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L =\%="2N 150 (where I is the same infimum as in (62) with J(u) = 1
replaced by J(u) = \), we see that (62) reduces to

I<I® (16)
and we have to compute
I® = Inf I™7;
YeM

I°7 = Inf{&*?(u)/u e DV*RY), J*¥(u) =1}

&*7(u), J=(u) being obtained by concentrating u in R" at 0 by the dilations
(a'(N‘Z)/zu(';), 0 0+) and bringing it back at y on M by a local chart.
Remarking that if a;; = a;; > 0

— a_u a_u 1,2/ Ny 2N/(N-2) _
I(a,\) = Inf U‘RNa,, PP axja’x/u e DUARY), LN || dx =X\

= det(aij)l/NxN/(N—z)Io
where
Iy = Inf URN |Vu|? dx/u € D *(RY), JRNlulzN/(N—z) dx = 1}

@(.e. I5 /2 is the best constant for Sobolev inequalities, cf. Part 1 [65]); we
deduce easily that

N-1

7 = 4mK(y)_(N_ 2)/N10 if K(y)>0
= 4o if K(») <0.
Therefore we have
N-1
I"=40— (m;[lxK) ~W-2/NE, (63)

and we already know that 7 < 7I%.

Theorem 4.1. We assume (61). If I < I”, any minimizing sequence of (62)
is relatively compact in H (M) and a minimum exists. If I = I, there exist
minimizing sequences which are not compact and any such sequence (Un)n
satisfies (up to subsequences)

u,~>0 weakly in H'(M),
PN = (max K) e, [Vl > I (0 DGO (64)

K(xo) = max K.
M
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Let us immediately mention that this result is a small extension of a result
due to T. Aubin [6] (see also [9], [11], [12]) where it is proved that, if 7 < I,
a minimum exists by a different method. In addition in T. Aubin [6], (16) is
discussed in details and in particular if k is the scalar curvature, K =1
(Yamabe original problem) it is proved that (16) holds for «most» manifolds
Mif N>6.

Remark 4.1 1In addition to (64), we may prove that one can find cut-off func-
tions &, € C*(M) supported in B(xo, €n) With e, — 0 such that v, = &u,— 0
in H'(M) strongly, and if w, is the sequence in D'*(R") obtained from v,
by local charts, there exists (0,)n in 10, [, (¥)» in RY such that

on—= 0, Ynu/on—=0, o5 V2w ((- + yn)/on) is relatively
compact in DV2(RY) and its limit points are minima of I~

The proof of Theorem 4.1 is an easy adaptation of arguments given before
(in particular Theorem 1.2 in Part 1 [65]): we just observe that M being com-
pact the tightness of p, = |Vits|* + |u|* @ ~?) is automatic and that we have
the:

Lemma 4.1. Let (un), converge weakly to u in H*(M). We may assume that
|Vin|?, |tn)*™ N =2 converge weakly to some measures p,v. Then we have

v=uMND 4+ 3 vidy (65)
jeJ
w3 | Vul® + I > vV PN, (66)
JjeJ

for some at most countable family J, and where v; > 0, x; are distinct points
of M.

We skip the proof of this lemma since it is totally similar to the proof of
Lemma 1.1: let us only point out that I in (66) corresponds to RY (=T,;M)
and that this comes from the localization procedure around X; used in the
proof of Lemma 1.1.

Remark 4.2. Of course similar results hold for (u,), bounded sequence in
wm™P(M).

Remark 4.3. The proof of T. Aubin [6] concel'ni;lg the existence of a
minimum if (16) holds uses heavily the «best constant» C\ of the Sobolev ine-
quality on M

(JM |u|2N/(N—2)>(N—2)/2N < CX(JM quI2 n )\uZ)l/Z
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and the fact proved in T. Aubin [7] that C\{Co as AT o where Cp is the best
constant of the Sobolev inequality in RY. In fact our methods also prove this
elementary fact easily: indeed consider

= Inf”MIAu|2 + )\uz/leuPN/(N'z) =1, ueHl(M)}.

Applying Theorem IV.1 we see that I* < Ip, VA > 0, I*| as AT, I is achieved
if I* < I, (and this happens for \ small since I*{0 as M\{0 ). Therefore either
I = I for A < o > 0 (and this is a very interesting situation where the best
constant Cp is achieved on M?), or I < Ip. We claim that in this case ™t Ip
as AT + oo, If this is not the case, denoting by u, the minimum corresponding
to I*, we have

[ [V — alo, 0, =0 in LA(M).

A=

Thus

[Van|? = > Lo 3 vV~ PNy,
jeJ

Juj M VD oy = 3 viby,
JjeJ

and this would give

Io>oa 2l 5 vV PN 2 I X v )V N = k.
jeJ JjeJ

Therefore we have proved not only that I*1 I, as A1 but also that either
I* = Ip for \ large or I is achieved and any corresponding minimum u
satisfies (up to subsequences)

2 2
jM|Vu>\| 3 o, jMux—):O
Vil dobeer [PV D 8

for some xo € M.

We next present some new existence results concerning (Y) using «sym-
metries». Assume that (M, g) is embedded in R? (for some p > N) and that
(M, g), 8, J are invariant under the action of a group G of one to one trans-
formations of R”. In particular we have: vhe G

E(uh-))=8w(-)), Juh-)=Jw), VueC™M).

Our typical example is S” with the usual metric, then we may take for G any
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subgroup of the group of orthogonal transformations O(p) and our assump-
tion just means that K is invariant by G.

Any minimum of the following minimization problem is still a solution of
(Y) (invariant by G, giving a new metric invariant by G)

I=1Inf{&w)/Ju) =1, ueH'M), uis G-invariant}. (65)

We denote by: w(y) = {h-y/he G}, s(¥)= #w(y) and we set

I = K(y)”" V" Ns(0)N if K(»)>0, s(y)<w 66)
77— e it K(0)<0, s()= +c.
I = Inf I ©7)

yeM

(notice that s(»), I are not, in general, continuous on M).
We have immediately the following:

Theorem 4.2. We assume (61). Then I < I” and if I < I all minimizing se-
quences of (65) are relatively compact in H'(M) and there exists a minimum.
While if I = I, there exists a minimizing sequence which is not relatively com-
pact and any such sequence (un). satisfies

i

. I
un,—0 weakly in H'(M); |Vun|? —
S(X0) zewtxo)

r4

2N/(N-2) -1
u = K(xo)
| nl 5(X0) z€w(xo) ‘

for some xy satisfying
K(x0) >0, s(x0) <,  K(xo)” N2 Ns(xo)”N = Inf K(y)~ N~ Ns(y)*’V
yeM

Remark 4.4. If K =1 and Inf s(») = p > 1 then for p large I < I*: indeed
yeM

take u = 1 in (65), T < [ak < p”M], for p large.

Remark 4.5. If M = S and K is invariant by a subgroup G of O(N + 1)
such that Inf s(y) = p. Then
YeM |

I_oo >p2/N(maxK)—(N—2)/N10-

If (for example) M = S?, if K(x1, x2, x3) = K(x3) (for x = (x1, X2, X3) € S?) and
K(+1) <0 orif K(x1, X2, x3) = K(x2, x3) and K < 0 for x3 + x3 = 1, then [ =
= 400, Vy € M and a minimum exists. These last examples may also be ob-
tained by symmetrization and results corresponding to Appendix 2.
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4.2 Related problems

In this section, we consider various problems strongly related to Yamabe equa-
tion: the first one concerns Yamabe equation in a bounded open set Q@ of RV
with Dirichlet boundary conditions and we will present some variants of results
due to H. Brézis and L Nirenberg [23] and also some new results when sym-
metries occur. We will also briefly consider the case of Newmann conditions.
The second class of problems we consider is the problem introduced in Cher-
rier [25] which extends the Yamabe problem to manifolds with boundary.
We thus begin with the following problem: let @ be a bounded open set of
RY with N > 3, let a;;(x), c(x), K(x) be continuous functions of Q satisfying

(@ij(®) = (@ji(x)) = vIy, VxeQ, for some »>0 (68)

dp a8
Vo € D(Q), Zau ‘P ¢+C‘P dx > 0‘"90“%-1(1,(9)

for some o > 0
max K > 0. (70)
Q

We want to solve the following equation

0
—Zax <a,—,~5xﬂ> +cu=KuN*P'N=2 inQ ulsa=0, u>0, inQ,
i J
(71)
and we thus consider
I=1Inf(8w)/uecH§Q), Ju)=1)}. 72)

where

8w) = | 2la— 0u —a——+ cu’dx,  J(u) =J K|u|®®N=2 gx.
Q i,j a dx, X Q

In view of the homogeneity of the problem (I = A" ~2/7T) (S.1) once more
reduces to
I<r (16)

where I = Min I**” and
yel

=7 = Min{ Zau(y) (X)—(X) dx/ueD"?,
RN i,j
j K(y)lulZN’(N‘z)dx=l}
RN

= det(ay(»)"""K(»)~ ¥ "N, if K(») > 0;
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I’ =+ if K(») <0.

The strict analogue of Theorem 4.1 is the following result (and we skip its
proof):

Corollary 4.1. We assume (68) — (70). If (16) holds, any minimizing se-
quence is relatively compact in H§(Q) and there exists a minimum of (72) and
a solution of (71). If (16) does not hold i.e. I = I”, there exist non-compact
minimizing sequences and any such sequence (un). satisfies (up to subse-
quences)

a n a n
(un— 0 weakly in H§Q); Za,-j—u— 9n _, (det @;;(x®)) M o650,
i,j ax,- an

[ta| 2NN =2 > K(x0) "6y, for some x°eQ satisfying )

] (det a;(x%) VK (x%) = N2’V = Min (det a;(x)) VK (x) = NN
xeQ

on—= 4+, IeRY, Yafon—=x° o7 VO Nuu((- + yn)/on) — i

.. (1]
minimum of I**

~

Of course we know explicitly the minima of I***° (cf. Part 1 [65]).

Remark 4.6. In H Brézis and L. Nirenberg [23], the case when a;j(x), ¢, K
are independent of x is treated: not only the fact that (16) implies the compact-
ness of minimizing sequences is proved but also discussed in details (following
their argument we discuss below (16)). But it is worth pointing out that the
method used in [23] to pass to the limit on minimizing sequences cannot work
as such in our general setting: indeed the main point is to avoid the weak con-
vergence of (un), to 0. In [23], one simply says that if u, = 0 then

) - | a2 a';'f dx—0

but this is not enough to use (16)! The loss may be seen on the fact that we
give criteria below which show that (16) holds for c¢(x) =\ > 0 under ap-
+ propiate conditions on a;;, K.

Let us also mention that the difference on the methods may be seen on the
following («artificial») problem

I= Inf”n [Vu|? dx — xjg [u]? dx/u e WH*(Q), jﬂ lu|?dx = 1} (74)

where 1<p< N, g=Np(N—-p)~!, 0<A<M (N is the largest constant
p > Osuch that: u fo|u|” dx < [o|Vu|? dx). Then if p # 2, the arguments of H.
Brézis and L. Nirenberg [23] do not apply anymore while we may still prove
that if I < I, (74) is «well-posed».
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Remark 4.7. 1In order to analyse (16), we may follow the choice of T. Aubin
[6], H. Brézis and L. Nirenberg [23] (this choice was explained in section III)
and we find, if N > 5 for example, that (16) holds provided there exists a
minimum point x° of (det(a:))""V*~ ®~2/¥ on Q@ which lies in 2 and such that

> a0 yiyiyen(l + |y») " Ndy

i,J,k,1
(det a;;(x°)"N _
< CJIV>\ + C2 —](,U(—T);— . ZKu(XO)J’zJ’J(l + |y|2) Ndy
LJ
for some explicit positive constants Ck, C%. Here we took ¢ = —\. Observe

that a;j, K are independent of x, this condition holds automatically and it may
hold even if X\ < 0.

We now turn to a problem which is somewhat similar to the previous ones:
we assume that Q is smooth, (68), (70) and

Voe H'@), &)= aleli (699
for some o > 0. And we consider
I=Inf{8u)/ueH'(Q), Ju) =1} (74)
Again (16) is the key assumption and we have to compute I i.e. I™”
if ye®, K(0)<0, I =+
if yeQ, K(u)>0, I™ = (deta;(»)"K(y)" N 2N,
if yedQ, K(O)>0, I™=2"YNdeta;(y)" K(y)~ V27,

(observe that K is l.s.c. on Q), and I® = Nglél I*?. The value of I if y € 09,
y

K(y) > 0 comes from the fact that, if we concentrate u at y on 9%, extending
u evenly across 92, we obtain at the limit, since 9L is smooth, the above value
of I that is

1
ro =gt Sao)g WM hpuent?, | KPP ax=2].
2 0x; 0x; RN

And exactly as before we have:

Corollary 4.2. We assume (68), (69"), (70) and that Q is smooth. If (16)
holds, any minimizing sequence is relatively compact in H'(Q) and there exists
a minhere exists a minimum of (74).

Remark 4.7. 1f I = I”, we may analyze (as in (73) what happens for the non-
compact minimizing sequences. Let us also mention that we could treat as well
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problems where i) the nonlinearity K(x)|u|**®™~? is replaced by a general
nonlinearity F(x, ¢) such that

lim F*(x, t)|t|"*M® -2 = K, (x), uniformly for x e Q;

[t] =
iil) we consider nonlinear terms on the boundary for example
Jw) = |

with “l|im G* (x, t)|t] 2N -DW -2 — g™ (x), uniformly for x € Q.

. G(x,u)dS

Example 4.1. Let a;i(x) = §;, K(x) = 1, c(x) = \; (69) is equivalent to A > 0.
Choosing # = meas(2)~ V=22V we see that (16) holds if \ €]0, o[ with
No = I"meas(Q) ">V = 27 ymeas(Q) ">". In addition for A small the
minimum is unique and is # (easy consequence of the implicit function
theorem). We do not know much more information except that if N\; —
— x93 N < 0 —where )\ is the second eigenvalue of —A on H'(Q)— then for
N\ in ]O, Mo + 8[ where 6 > 0, (16) holds and any minimum is constant.

Indeed, if for A = \o, # were a minimum, writing the second-order condi-
tion for the minimality of #, we would find

4N 4N 2
voe H(Q), I Vo> - —— p?dx + measQ”(j > >0
peH(Q) QI o N3¢ N gymeas@ 7 | ¢

and this is impossible if \; — N—‘i—z Mo < 0. Let us mention that it is easy to find
examples of sets Q for which this inequality is true.

Remark 4.7. 1t is interesting to observe that, for y € 8, the quantity =
depends on the regularity of dQ at y. For example if Q is given by

Q=W X,..., X0, @ smooth region of R™
then
for yeQ X QX ... X, I2= (deta;(»)V K+ ()~ V-2V,
while
if yeddi X ...XQm, L=m ¥Ndetay;(»)V"K*(y)~" N2V,

i.e.

1 ou u
© - i K* 2N/(N=2) gy — }
I; = —Inf UR 2 aii(») ™ axjdx/ LN ()|ul X =m

N i, j
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We conclude these considerations on Yamabe-type problems by considering
the effect of symmetries on the existence of solutions to

—Au=u™*N=D in Q, wulse=0, u>0 inQ. (75)

It is a well-known result due to S. Pohozaev [70] that if Q is star-shaped with
respect to, say, O then (75) has no solution. On the other hand if Q is an
annulus (2 = {xe R", r < |x| < R}, for some r, R > 0), it is well-known that
(75) has a radial solution (see for example Kazdan and Warner [51]). If we
wish the understand the implications of these two observations, we need to in-
troduce the following setting: assume that 0 ¢ Q, that Q is invariant by a group
of orthogonal transformations of RY and set

I= Inf”Q |Vu|2dx/jg UM N-Ddx =1, ueH)Q), uis G—invariant];

s=Infs(y), s(»)=+#la=g-y, geG}.
vel (76)

Our methods immediately yield:

Corollary 4.3. LetI” = s¥ Lifs< 0, I° = + o ifs= +o. Thenif I < I,
all minimizing sequences of (76) are relatively compact in HYQ) and there
exists a minimum of (76) and a solution of (75).

Remark 4.8. if Q=Q;xQ with Q; arbitrary in R™ (V;>0) and
Q= {xeRY"M r<|x| <R} for some r,R>0, then s = +oo and (75)
has a solution (this can also be seen on the results of Appendix 2). If 0 ¢ Q
and s>2 (s=2 if Q is symmetric with respect to 0!), and if
TE = {(xe RY/r < |x| < R} C Q for some 0 < r < R, then clearly

I<Ir,R) = MinUTR |Vu|2dx/jTR |u N N-D gy = 1,
ue HY(TR), u is spherically symmetric].

By the dilation invariance I(r, R) = I(fk, 1) = A(;—Q) and \ is a continuous, in-
creasing function on ]0, 1[ such that

lim N(¢) = lo, lim N(¢) = +oo.
t—0 4 t—1_
Hence there exists a unique ds such that
Nds) = sV,  di—»1 if - 4

and thus if %, < ds, the condition I < I” is satisfied.
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Recently, by a critical point argument (instead of a minimization argument)
J.M. Coron [30] —using arguments of section 4.6— was able to prove the
existence of a solution of (75) without using symmetries if we assume 78 C Q
and ;( < d-.

We conclude this section by a last example of applications of our arguments
namely the problem introduced in P. Cherrier [25]: let (M, g) be some N
dimensionnal compact Riemannian manifold with boundary, let N be its
boundary endowed with the Riemannian structure induced by M and let
M = M\N, we assume that M is orientable and we denote by 3’1;, the derivation
with respect to the vector field of outward unitary vectors (for the metric g)
normal to N (in M). If we look for a new metric § pointwise conformal to
g: § = u*%-2g for some u > 0 on M such that the new scalar curvature and
the new mean curvature are prescribed functions K, K’, we are led to the
following equation —see P. Cherrier [25]

—Au + ku = Ku™+»/N=2 in M

77
ay—-%—k’u:K’uN/(N‘Z) on M a7
on
where k, k', K, K' e C(M) and where we assume (to simplify)
K,K'>20 on M; max(K+K)>0; \N>0 (78)
7

where \; is the first eigenvalue of the operator (—A + k) on H'(M) with the
boundary condition (g: + k'u = O) i.e.

A= MinUMwuV + ku* + [ k'u?/ue H'M), jMuZ - 1}.

In [25], conditions are given for a solvability of (77) with K, K’ replaced by
0K, 6K’ ghere 6 is some Lagrange multiplier. Using our method we may extend
the results of [25] (for N > 3) but we prefer to solve directly the exact pro-
blem. To this end, we consider the artificial constraint method i.e.

I=1Inf{&w)/ueH'WM), Ju)=0, u=o0) (79)
where

N-2
&) = j |Vu|? + ku? — ——=K|u/N V-2 4
M N

k'u? — N - IK,Iulz(N—l)/(N—z)
+ JN N ’

JW) = (&'(u), u) = jM|Vu|2 + ku? — K|u|"™V V-2 4

_{_J k'u? _K,lulz(N—l)/(N—z)
N .
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We next compute I*7;
i) if yeM, K(»)=0 orif yeN,K(»)=K'(y)=0thenI*? = +
ii) if yeM, K(y)>0, I is given by
7 = MinURN |Vu|? - %K(ynuﬁmw-” dx/u e DVHRY),

u=0, j qulzdx=J K(y)|u|2N"N‘2)dx}
RN RN

2
_ 2 IN2g ) - N-272
N0 )

iii) if yeN, K(»)+ K'(y)>0, I™” is given by
N—
> = Min{J‘ 'Vulz _ ___gK(y)luIZN/(N—Z)dx +
(N> 0) N

N-2 _ _ ,
+ j K’(y)]ulz(N 1)/(N-2) dX/
N-1Jan=0

JueD (xny>0), u#0, L ) |Vul* — K)|uMN-Ddx =
XN >

— J Kl(y)lulz(N—1)/(N-2)dxl}'
(Nn=0)

And we let I” = MinI*"”. We obtain as before the
yYeM

Theorem 4.3. We assume (78). If I <I®, any minimizing sequence is
relatively compact in H*(M) and there exist a minimum of (79) and a solution
of (77). If I = I”, there exist non compact minimizing sequences and any such
sequence (un). satisfies (up to subsequences)

(un—0 weakly in H'M); |Vun|>— abeo, s/ ~2 - 88,0

pn = y8x0  for some x°eM which minimizes I™* on M,

N N

) l-f xOEM, a=71w’ B=”2"K(x0)—11w, 7=0,
N-2 N-2

IfXOEN’ a_—IV_K(XO)B-V_—lK’(XO)'Y=Im;

a - Kx)B - K'x)y =0
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where uy is the measure on M, supported in N such that

Vo € C(M), Igod,u,,, = le“"iz(N-D/(N_z)ﬂp-

4.3. An inequality for holomorphic functions

In this section, we want to discuss some inequalities for holomorphic func-
tions. Let Q be a smooth domain of C: if I' = Q, we consider the space E?(Q)
(for p > 1) of holomorphic functions in @ with traces on I'' in L? i.e. (for ex-
ample) holomorphic functions f such that

fim [ 1/@)” |dz] <

where I'c = {G(z, 20) = €}, if 20 € Q, G(z, 20) is the Green’s function. The nota-
tion

[/ @7lax| = Fm [ |f@)]”|ez]

will be used everywhere below. Then if fe EF(Q), the following inequality
holds

([o /@I drdy) 2 < Cy( [ 1/ 71d2] ) (80)

We will see below that if p > 1, this inequality is very easy to prove. If p = 1,
it was proved by Carleman [24], Aronszajn [4] for simply connected domains
Q and by S. Jacobs [43] for arbitrary domains.

If p > 1, one just needs to observe that |f(z)| = u(x, ) is subharmonic and
thus by the maximum principle: |f(z)| < w(x, y) where

—-Aw=0 in Q, w=|f| on T
this boundary value problem may be solved by duality one finds

Il wie.ey < CLS | Loy

and we obtain (80) using Sobolev inequalities. It is worth pointing out that
such an argument is false for p = 1. .

In S. Jacobs [4] the question of the best constant C; was solved for p =1
for arbitrary domains. If Q is simple connected C; = (47) ~ '/ and this best
constant is achieved for the Bergman kernel function. For a multiply con-
nected domain, the problem to solve is

: I=InfUr|f|”|dz| /feE"(Q), L; |f|2dedy=1} (81)
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(if p = 1, Q is simply connected, the result recalled above just says: I = @m)'?).
The underlying dilatations invariance is

S=o ()

Notice also that 7 is not changed if we replace Q by @’ provided Q and Q' are
conformally equivalent, and that the functionals are preserved by conformal
self maps of Q.

The main result we want to discuss is the:

Theorem 4.4. (S. Jacobs [41]). Let p =1, Q be multiply connected then
I < (47)"? and any minimizing sequence of (81) is relatively compact in L*(Q).
In particular there exists a minimum of (81).

Our goal here is to interprete this result as an example of application of our
method (thus providing a simpler existence proof). To this end we have to
understand why I° = (4x)/%: first of all it is clear that I’ = + o if yeQ
(local compactness of holomorphic functions...), next if y € dQ the concentra-
tion around y shows that we are led to the problem in small neighborhoods
of 0 in an halfspace or by the conformal equivalence to the some problem but
in the unit disc and thus I° = 4n)"?if p=1;if p> 1

17 = Inf{ [ |f17ldz] [ [, 1 /1*|dz]| = 1].

where D is the unit disc and 7 = 9A.

Then the compactness of minimizing sequences in the above result in im-
mediately deduced from the analogue of Lemma 1.1 (Lemma 2.1,...) that we
give below. Notice that our method also yields that if 7 < I* (for any p > 1),
then minimizing sequences are compact and the infimum is achieved.

Lemma 4.2. Let (f,)n be bounded in E*(Q), assume that f, converges weakly
in L**(Q) to some f, where p € [1, o[. We may assume that | f,|** converges
weakly to a measure v on Q and that the measure p, given by

voeC@,  [edun= [ olful?|dz|
converges to some measure p. Then we have
D ov =11+ 2 vy
jeJ

i) g+ 202176
JjeJ

for some at most countable family J, constants v; in 10, o[, point z;j on T.
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The proof of this lemma is again a repetition of arguments given several
times before: if f= 0, then clearly » is supported on I and we find that for
all ¢ holomorphic in Q, continuous on Q

([plelrar) < c| leldp

By a density result, this inequality actually holds for all ¢ € C(I") and we
deduce that » is an at most countable sum of Dirac masses (and Z v}'? < )
—cf. Lemma 1.2 of Part 1 [63]—.

Indeed we claim that {|¢|ir, ¢ holomorphic in @, continuous on Q) is
dense in C . (T"): we need to prove this claim only when Q is (|z| < 1).

A short proof of this claim (which was indicated to us by J. M. Lasry) is
as follows: any ¢ € C+(I') may be approximated by a real nonnegative
trigonometric polynomial

P= Z anein9
n=-N

then we consider the following holomorphic function (on C) ¢
2N
P(2) = 2> an-nZ"
n=0

son that p(e’’) = e™*P and |p|r = P

The general representation of » (part i) is then deduced as in the previous
cases from the a.e. convergence of f, to f (cf. Lemma 1.1).

Finally part ii) is obtained as before (usign the same density result as above)
observing that if z; is fixed, we may always find a simple connected domain
w C Q such that points of dQ near z; belong to dw and essentially work in w
instead of Q.

We conclude observing that i) and ii) imply

im (el 17 (], o~ 11%) ) > [ 1

and if p = 1, this was the crucial lemma in [41] for the proof of the existence
of a minimum.

4.4 A remark on some isoperimetric inequalities

We want to discuss here some properties of the following isopermetric ine-
quality

QW1 < Co [, Vol dxdy,  vveD(R;RY) (82)
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where Co = (327) '3, and Q is the functional defined by
o) = j V- (xAvy)dxdy. (83)

The proof of (82) —which is an isoperimetric inequality for the graph of
v— may be found in Wente [83]. By density (82) still holds for
ve HY(R?* R)HNL(R?% R and C, is achieved for

0, ¥) = (1 + x>+ y») " (x, 3, 1)

(see Wente [83], H. Brézis and J. M. Coron [18] for more details).

Finally let us mention that Q may be defined actually on functions in
H'(R? R*) with compact support and that vy A vy is not only meaningful in L'
but also in H ~! for such functions V.

We next want to observe that (82) is invariant by translations and dilations
and that Q, & are invariant by

vou(Z),  Ve>0
where
&) = [, |Vo|* dxdy.
Therefore to check if we may apply our method to such functionals we need
to see if the analogues of Lemma 1.1 still hold true here: let us thus consider
a sequence (v™"), bounded in H}(Q; R*) where Q is bounded in R? (so that v"

extended by 0 is in H'(R?; R). We next want to define a distribution 7™ given
by: T" = v" - (vF Avy), T" will be supported in @ and is defined by

(T @) = (pv", VEAD)), VoeD(R)
and thus 7" is (for example) bounded in W~ 17 (R?), vp > 2. In addition:
QW™ = (T", x), for any x e D(R?), x=1on Q.

We may now state the

Lemma 4.3. With the above observations, we may assume that |Vuu|*, T,
converge in D'(R?) to p, T and that v" converges weakly to v. Then we have

i) T=To+ Y, vby
JjeJ

where Ty is defined through v as T, is defined through v", J is some at
most countable set, (vj)jes€ R — {0}, (x))jes are points of Q.

ii) p = Vo> + (1/Co) Z; |aj|*3 b,
JjE
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iii) If u e H§(Q; R%) and if we denote by T, the distributions associated with
v" + u as T, is associated to v" the (up to subsequences)

|V@" + w)|>* =4,  ji-peLl(R?)
Tn i TO + Z Vjaxj
JjeJ
where To corresponds to u + v.
iv) In particular

lim &(va) — CL |0 — V)7 = 8(v).
n 0

The proof of lemma 4.3 is totally similar to the proofs of the corresponding
results we proved before: considering first the case when v = 0, we obtain for
all ¢ € D(R?)

KT™, %] = 1QGev")] < CF( [, IV(ev")I?)*
and thus passing to the limit
(T oD < Co [P dn),  VoeDR).

But this implies easily that 7 is a signed measure on R?; and the reaminder
of the proof is then totally similar to the proof of Lemma 1.1 (and of the other
related results...). '

This observation enables us to apply the general concentration-compactness
arguments and we may now give in interpretation of the results of H. Brézis
and J. M. Coron [18] on the existence of a second solution to H-systems: we
refer the reader to [18] for the motivations of the introduction of the follow-
ing minimization problem which, if solved, yields the existence of a second
solution to the Dirichlet problem for H systems (a similar analysis works also
for the Plateau problem). We thus consider

I=1Inf{&()/veH§Q; R, OW) =1}. 84
where Q is bounded in R?, & is given by
&) = [, |Vo* + 4H [ u- (A vy)

and u is a given function in H'(Q; R*) —for example—, H is a given positive
constant—, in [18], u is in fact the «first» solution of the H system, solution
obtained by Hildebrandt [41], [42]. In order to have a non trival minimization
problem, we assume

3a>0, YoeHIQRY), &) > a|Vu|ia (85)
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Clearly enough we have for all ye Q

I° =1 = Inf(§) / ue D(R; R’), Q) =1} = %; (86)
0

and by homogeneity (81) reduces to
I<I® (16)

Therefore we deduce from our general arguments (and Lemma 4.3) that i (16)
holds, any minimizing sequence of (84) is relatively compact in H}Q; R%). To
conclude our interpretation of the results of [17], we recall that in [17] it is
proved that if u € C%.NL* then (16) holds if and only if  is not constant on .
We emphasize the fact that we did not prove here any new result but we only
show one needs to compare I with & = (327)"/?(=I®) and this again is a
consequence or our general method.

4.5 Harmonic maps

As in the preceding two sections, we will not prove any new result but we will
just explain in the light of our systematic treatment the solution of some
minimization problem associated with the question of harmonic maps. We
will thus follow the presentation of H. Brézis and J. M. Coron [18] (see also
J. Jost [43] for related results). By no means, the remakrs which follow pre-
tend to cover the subjetct of harmonic maps and we refer the interested reader
to the deep work of J. Sacks and K. Uhlenbeck [72], R. Schasen and S. T. Yau
[73], Y. T. Siu and, S. T. Yau [75]. To simplify we will consider only harmonic
maps from the unit ball @ of R? into S? with a precribed boundary condition

u=+ on 09

(where v is, of course, the restriction to Q2 —the trace— of some function v
in H'(Q: S» i.e. ve H'(Q; R*), ve S? a.e. in Q).

Harmonic maps from Q into S? with the above boundary condition are
critical points of the functional

8w = [, [vul?

«restricted to the set» 4 = {u e H'(Q;S%); u = v on dQ}. Clearly & achieves
its minimum on A: let #p be such a minimum.
Following [18], we consider for u € H'(Q; R})NL>(Q; R®) the functional

1
O(u) =4—J u- (UxNuy)
™ Ja
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and we recall (see [18] for more details) that if u;, u2 € A then

Q(u) — Q) eZ

(identifying Q with the northern hemisphere of $2, and «reflecting» u, we may
consider (u1, #2) as a map from S% to S? and Q(u1) — Q(u2) is the degree of
this map).

We set
J() = Q(u) — QO(uo), VueA;

so that J is integer-value on 4 (and J(A) = Z).
Then let k£ # 0, if we find a minimum of

I = Inf{&W) /uecA, Ju) =k} 87)

then such a minimum will be a local minimum and thus a critical point of &
on A.

We may now apply the concentration-compactness argument: we then need
to define the problem at infinity (the underlying scaling invariance is: u — u(;)
for ¢ > 0)

2= Inf“m |Ve|? / ¢ € C(R?; S?), ¢ constant near infinity,
r2 @ (xNgpy) = 47ru}-

Using the above remark on the degree and the value of Cj in the preceding
constant, we find

ID=+0o if péZ, I = |p|IT if pez
I = 8.

Then in this setting, (S.1) reduces to
< I+ IZ-y, vieZ - {k}; (88)
with, in fact,

I =8|k - I|; Io=IEf8<Ik, vkeZ - {0}.

And it is now a straightforward application of our arguments to show that
(88) is a necessary and sufficient condition for the compactness of all minimiz-
ing sequences of (87). But in addition the very especial form of I}, enables us
to make the following remarks: if / > 2k and £ > 0 (or / < 2k, k< 0)

L+ I, =L+8x(-k) =l +8rk=1+ I¢
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therefore (88) is equivalent to
<+ I¥-; =L+ 2wk ~ 1], v/ between 0 and 2k, [#k, (89)
In particular if k = £1, (89) reduces to |
Ii<Ip+ 8w (90)

And we recover the crucial inequality of [18] (inequality (3), Lemma 2) as a
very particular case of (S.1); in [18], it is proved that if + is not constant, (90)
holds either for £k = 1, or for kK = —1. In both cases this yields the existence
of a local minimum different from uo. Of course (90) is the major difficulty
in the proof of the existence of such a second critical point (let us just mention
that the method folowed in [18] to check (90) follows the empirical rule given
in section IIT) but our goal here is to show that (90) is natural and had to be
expected!

4.6 Morse theory

We want to explain on the example of Yamabe type equations what informa-
tions the results such as Lemma 1.1 (and the related weak convergence results)
imply on the possibility of using Morse theory on functionals associated with
the preceding problems.

To simplify the presentation, we will only present our results in the case of
Yamabe equations even if they apply to all the situations considered before
(convolution, trace, H-systems, holomorphic functions, harmonic maps...).
We will thus consider a sequence (¢,), in H§(Q) —where Q is a bounded open
set in R"— satisfying

—Aty = |un* N Pu,+ f, in Q, f-f in H Q)
91
Sn(un) = ¢

where ce R is fixed,

N-2

S [P YR dx = (fu ).

1
S.(v) = | =|vv? -
= | 51w
We denote by S*(v), S(v) the functionals corresponding to f, = 0, fn = f.
The reasons for considering (91) come from the (P.S.) condition which is the
crucial condition for the application of critical point hteory. The following
result is an obvious aprlication of Lemma 1.1:
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Corollary 4.4. Assume that (un), satisfies (91), then u, is bounded in H}(Q)
and assuming that un, |Vu.|*> converge weakly to ue H¥Q), p bounded
nonnegative measure on Q we have:

i) u solves:
—Au=u* Dy +f in Q, ue HyQ) 92)

m
ii) w=|vul> + Z pibx;

i=1
where m > 0; X1, . . ., Xm are m distinct points of Q and (pi); satisfies
pi = 107 (93)
where

Iy = MinUrE]V|Vz¢|2 dx [ ue DVHRY), J'RN[uIZN/(N—Z) dx = 1}_

m
iil) |ua|* N2 converges weakly to: |u|*™ M= + 37 46y,
=1

. 1 Z
iv) ¢ = S(u) + ~N > wi

i=1

Remark 4.9. The fact that compactness is lost at most at a finite number of
points was first observed by J. Sacks and K Uhlenbeck [72] in the study of
harmonic maps; see also Y. T. Siu and S. T. Yau [75], K. Uhlenbeck [85, 86],
C. Tanbes [78]. :
Remark 4.10. Take f=0, then (92) implies that S(u) >0 and thus
¢ > I4"*. Hence critical point theory (or Morse theory) may be applied on
level sets below c¢: this was used in H. Brézis and L. Nirenberg [23]; see also
C. Taubes [78] for related g%nsiderations.

Notice also that if ¢ < ng—, only one point (one Dirac mass) may occur;
similarly if u, is nonnegative and c € | £ 18", Z I8"”?[ no Dirac mass may appear
and u, converges in H' to u. This observation is used in J. M. Coron [30].

Remark 4.11. If one had a complete description of solutions in D' 2(RY) of
—Au= |u|¥®" Dy in R

one would be able to obtain (in a straightforward way) a much more precise
behavior of u, nearby each point x;. This programa was recently completed
(in great details) by H. Brézis and J. M. Coron [20] in the case of H-systems;
and that should be a general phenomenon.
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PROOF OF COROLLARY 4.4. If 4y — 1 = v, and |Vva|?, |va]* ¥ =2 converge
weakly to po, vo, Corollary 4.4 will be proved if we show that uo = »o. Indeed
by Lemma 4.1, we know

Ko > Z Iovj(N_Z)/NBXjQ Vo = Z Vj6Xj, w — Ko ELI(Q)
JjeJ JjeJ

nad po = »o would imply that J is finite and parts ii) — iv) of Corollary 4.4
(part i) is an exercize on weak limits).
To prove that po = »o, we observe that for all ¢ € C}(Q)

In 0| Vn|* + va(Vop, VUn) dx =
= [ U+ 0a[ @20 + v0) = VD) - vapdx + (fu — S, vnp)
and passing to the limit as n goes to o, we obtain

[oedmo= [ edv,  voeC'@.

Appendix 1. Existence of two solutions of the Yamabe
problem in RY

We want here to present a few results concerning the existence of solutions of

a du o
2w (aij(x) 55) + ku = Ku ™D i RY (A1)
u e HL (RMNCp(R™); 3¢o>0, u=co onRY (A.2)

where k, K € Cp(R™) (for example), aij = aji € Cp(R™) and
VR< o, >0, VXEBR, (aij)) = vin.

We will first present some results due to W. M. Ni [68] (see also [69], Kenig
and Ni [52]): the main assumption for the application of Ni’s method is the
following

31 € HE (RMYNCH(RY), Ap; =0 in RY, p1=c1>0 onRY; (A.3)

where A is the linear operator given by the left side of (A.1).

Of course (A.3) holds if aij(x) = é;, kK =0 (this corresponds to the usual
metric on R™) or under convenient decay assumptions at infinity (cf. Kenig
and Ni [52]). We also gave in section 1.5 conditions which ensures that (A.3)
holds (and they may be easily extended...). Notice that (A.3) implies that the
first eigenvalue of A in Hy(Q) is positive for any bounded open set Q.

The result which follows is an adaptation of the method of Ni:
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Theorem A.1. (cf. [68], [69]). We assume (A.3). If we assume
3 e Hy (RMHNL®(RY),  Aa>|K| in RN (A.4)

then there exists a sequence of solutions (un)n of (A.1) — (A.2) satisfying:
SUD Un — 0. In addition if K has a constant sign, (A.4) is necessary for the
R

the existence of a solution of (A.1) — (A.2).

Proor. First, if K > 0, (A.4) is clearly necessary and if (A.4) holds we may

assume that: irg~ @ > 0 (if it is not the case, we consider & + u¢e1 for p large).
R:

Then for 6 > 0 small, 6# is a supersolution of (A.1) while Ay; is a subsolution
for all A > 0; and the method of sub and supersolutions immediately yields the
above results. Next, if K < 0 and if u solves (A.1) then we have

N +2)/(N-2 N+2)/(N-
A(—u) = (~KuN+/N=-D 5 (N+2/N-D) g |

and (A.4) holds. On the other hand if (A.4) holds, replacing, if necessary,
by @# — ue; for p large, we may assume: inf 7 > 0, where ¥ = —#. Again, for
6 small, 6 is a subsolution of (A.1) while Ay is a supersolution for allA > 0
and we conclude.

Finally for some arbitrary K, we consider u,, v, solutions of (A.1) — (A.2)
with respectively |K|, —|K| such that SUD Un, SUD U — 0; u, is a supersolution

and v, is a subsolution. And we conclude.

Let us mention that the above proof actually shows the existence of an un-
countable infinity of solution of (A.1) — (A.2).

In order to have a more precise description of the solutions of (A.1) — (A.2)
at infinity, we will assume instead of (A.3).

3p1 € HL (RM)NC(RY),  Ap1 =0 in RV,
(A.S5)
¢1>0 in RY, p1—1 as |x]— .
Observe that if ¢; exists, ¢; is unique. Similarly, we will strengthen (A.4) to
e HL (RHNCy(RY),  Aa>|K| in RV, (A.6)
(and this implies that # > 0 in R" and the existence of # such that
Aii = |K| in RV, i € Hi, (RM)NCo(RY), >0 in RM.
We may now replace (A.2) by

e Hp (RHNCRY), u—p as |x]>o (A.7)
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where p > 0 is given. And we have the:

Theorem A.2. We assume (A.5) — (A.6).
i) If KO0, for any u>0, there exists a unique solution u, of
(A.1) — (A.7). In addition: u, < pp1 on RY and u, is increasing in p.
ii) If K = 0, there exists po €10, [, po < o if K # 0 such that for p. > po,
there does not exist a solution of (A.1) — (A.7) and for p. €10, pol, there
exists a minimum solution u, of (A.1) — (A.7). In addition: u, is in-
creasing in p, u, 2 pe1. Finally under the assumptions of Corollary 1.4,
u, — pe DVAR) and as ptpo, u, increases to u,, the minimum solu-
tion of (A.1) — (A.7) (for p = po).
iii) If K is arbitrary, there exists po €10, [ such that for p €10, pol there
exists a solution of (A.1) — (A.7).

ProoF. We first prove part (i). We remark that pe; is a supersolution
of (A.1) which satisfies (A.7). Next if & satisfies

Aii= -K inRY, deHLRMYNC(RY), #>0 inRY

we set ¥, = (up1 — MiD)* for some \ > 0. We then have by standard
results

Aty < L, = \NK < Ky N+2’WN=2 on RN

if N\ is chosen such that

‘EN+ D/WN=-D & ()N +D/O+D <)\

IR

Thus u , is a subsolution of (A.1) satisfying (A.7) and the existence part is
complete.
The various uniqueness and comparison results are deduced from the
following claim: let v, w e H (RM)NCp(RM) satisfy
Av + Ko™+ W =D <0 inRY, v>0 inRY, limsupv<p

x| = o0
Aw + [KjwN+2NV=2 50 in RN, w>0 in R, liminfw > pu.
x| = e
then v < w on R". Indeed for all e > 0, we may find R large enough such that
v<(+ew=w for x| >R.

since we have on Br

N
A(We — v)-—N+

2 )
5 IKI W4/(N_2)(W5 _ U) 2

214(.“)E _ U) + IK,(W£N+2)/(N-2) _ U(N+2)/(N-—2)) ? O
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and since the first eigenvalue of 4 and thus of

N+ 2

A+
N-2

[K| W‘Et/(N— 2)

is positive (on H§(Br)), we conclude: w. > v in RY.

Observe also that part iii) is easily deduced from parts i) and ii). We finally
prove part ii) and the arguments which follow are very much the same than
those used in the study of semilinear elliptic problems with convex increasing
nonlinearities in bounded domains (see for example M. G. Crandall and P. H.
Rabinowitz [31]; F. Mignot and J. P. Puel [66]: D. G. De Figueiredo, P.L.
Lions and R. D. Nussbaum [36]; P. L. Lions [64]). By the proof of Theorem
A.1 we already know that for u small there exists a solution of (A.1) — (A.7).
We then let uo = sup{ x > 0/3v supersolution of (A.1), v satisfies (A.7)}; so
that po €10, . If u €10, po[, we set u® = pe; and we define by induction ©”
as follows

Au" = K(u"—l)(N+2)/(N_2) in rRN, u" g as ]Xl = oo, unEI-Il}achb

then observing that v > u°, we deduce that »” increases (strictly if K # 0) to
u, solution of (A.1) — (A.7). By arguments similar to those used above, we
also check that any supersolution v of (A.1) satisfying (A.7) actually satisfies:
v > per; and thus u, isthe minimum solution.

We next claim that if K# 0, po < o: indeed if u, solves (A.1) — (A.7),
sience u, > up1, we have on a fixed ball Bg (such that K # 0 on Bg)

Au, > K(pe)*® Py, in Br, u,>0 on Bz

and thus the first eigenvalue of 4 — K(ue1)*’ ' ~? is positive and this is not
possible for p large.
Next, we claim that if u €]0, uo[ the first eigenvalue of

N+2 -
A KD

is positive on H§(Bg) for all R < o and thus

3¢ 9 N+2
Vo € D(RY), jz © %% 4 ketdx>

4/(N-2)
aiji— Ku ©°dx.
RN 77 Ox; dx; TN-2 )

Indeed if we denote by v" = u, — u" (assuming that X # 0), we have

N+2

N+2
N

>

Av N-2

“N-2
v">0 on RY

K(un - 1\4/(N - Z)Un in I-RN

K(un - 1)4/(N— 2)vn -1 >
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and thus the above claim is proved (observe that if the first eigenvalue in Bg,
is nonnegative, it is positive in Bg for R < R').

Now if we assume the conditions of Corollary 1.4, observing that u, — pe:
(with the above notations) belongs to D! 2(R"), we deduce multiplying (A.1)
by u, — pe1 that we have for some 6 > 0

0 [ IVt — o) dx + (1 + 8) [ Kul/ VP u, — pr)’ dx <
< [ K"V D, — pey) dx.

and we conclude easily (using the properties of K) that u, — ue; is bounded
in D2

The analogy we have used above of (A.1) — (A.7) with semilinear problems
strongly suggests of seeking a second solution above u, for u €10, po[. This is
what we prove below (under convenient assumptions). To simplify the presen-
tation, we will assume from now on that a;j=6;, k=0, K >0 (so that
o1 = 1). Our main assumption on K will be

Ke LPF(RMNCy(RY), for some pell,}] (A.8)

(it is possible to extend this assumption by a careful inspection of the proof
below).

Notice that this insures that (A.6) holds and thus there exists po > 0 such
that for 0 < u < po, there exists a minimum solution u, of (A.1) — (A.7)
(which is increasing in u).

In order to find a second solution of (A.1) — (A.7) above u, we are going
to apply the Mountain Path lemma of Ambrosetti and Rabinowitz as in [31],
[36] on the translated problem

—Av = f(x,v) in RV, ve DIHRY) (A.9)

where f(x,t) = K(X)(u,(x) + t V)N *2N=D _ Kiou, (x)™*+2’N =2 Hence
we consider the functional

1
&) = J‘ ~|Vv|? = F(x, v) dx,
RN 2
where

F(x, 1) = J flx,s)ds = %K(x)(u,‘(x) 4PN N=D) _
0

N-2 ) i
— WK'(x) u“(x)ZN/(N 2) _ K(x)u#(x)(N+ 2)/(N 2)t +
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But two difficulties occur: first of all we have to prove that 0 is a «local
strict minimum» of &; next in order to apply the Mountain Path lemma, we
need to check Palais-Smale condition which in view of [23] or section 4.6
holds provided we check that the tentative critical value is below ,%,I 2. The
first step is thus:

Theorem A.3. Under assumption (A.8), either there exists a second solution
i, of (A.1) — (A.7) satisfying: 4, > u, on R", or there exists 8y > 0 such that

&) =0, vveDLHRY), o] < 6o (A.10)
Inf (&) /veDVA(RY), |v]| =68}>0, V5e]0,d)]. (A.11)

Proor. We first show (A.10) assuming that there does not exist a second
solution of (A.1) — (A.7) such that &, >u, on RY. To this end we set
Iy = Inf{8(v) / ve DV *(RM), |v| < 8}. We argue by contradiction and we
thus assume: I5 < 0. If we show that the infimum is achieved for v = vs, our
nonexistence assumption yields that |vs| = 6 for 6 small and thus there exists
6s > 0 such that

—(1 + 05) Avs = f(x,v5) in RY, vs>0 in RY, |vs| p1.2 = 6.

Recalling that in the proof of Theorem A.2 we have proved

MKu(N“‘ VWN-D2dx>0; (A.12)

V I,ZIRN’ V 2_
peDRY, | ve - 1 Kuf

it is easy to deduce that 6 >0 as 6 > 0.

Then one shows by standard regularity results that vs — 0 in L®(R") as
6 — 0. : hence for 6 small u, + vs < u,, for some p’' € Ju, po[. Observing that
u, + vs is a subsolution of (A.1) — (A.7), we deduce the existence of a second
solution of (A.1) — (A.7) between u, + vs and u,. The contradiction proves
our claim.

There just remains to show that the infimum of I; is achieved for 6 small
if Is < 0: we apply the concentration-compactness arguments and we set
pn = |Vin|* + x| N~ where (un)r is a minimizing sequence. If pn
vanishes, because of (A.8), lim &(u,) > 0; while dichotomy or tightness up to
an unbounded sequence cannot occur still because of (A.8) since, for instance,
if pn is tight up to y. and |yn| — .

&(un) = J{RN% |Vun|? dx — JRNF(x, Un) dx > —LRNF(x, Un) dx
0< [ JForudx<e+ | . Floundx

and the last integral goes to 0 in view of (A.8) and since | yn| — .
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Now if p, is tight and u, converges weakly and a.e. to u, we observe that

N-2
2N

] j FC un) — Fx, u) - K)|ttn — u)™N -2 dx| - 0.
R

And this yield observing that |u| < 6 and denoting by v, = (u» — )

>Is+ i Vo, |? 2N/(N-2)
Is 2 Is llrrln J.RN ) | V| N |vn] dx

1
> 1o + lim = [va|* = ey oYV
n

and since |v| < 26, we deduce that for 6 small v, — 0 strongly and u is a
minimum of 7.

To prove (A.11), we first observe that without loss of generality we may
assume that: &(v) > 0 for |v| small, v # 0. Next if for all 6 >0

I = Inf{&(v) / ve DVARY), [v|*=6}=0

we may prove exactly as above that J; is achieved and we reach a contradiction
(notice that (S.1) holds since I5° = ¢, Iy = 0 for &' small).
The second step is given by:

Theorem A.4. Under assumption (A.8), and if there exists a path v i.e. a
continuous map v from [0, 1] into D*(R™) such that

1
max 8(y(t)) < —<sup K) SN-D2IN L g((1)) O (A.13)
1€10, 1] N\ rN

then there exists a second solution u, of (A.1) — (A.7).

Of course (A.13) holds of there exists v; in D'2(RY) such that

max &(fv;) < 1 (sup K) =222
t=0 N\ rv
And this strict inequality may be checked with the method of H. Brézis and
L. Nirenberg [23] and we find, for example, that if there exists a maximum
point x° of K such that: D’K(x°) for 1 <j < [(N — 2)/2] (where [x] denotes
the integer part of x, and where of course K is assumed to be nearby x°) then
(A.13) holds for N > 4 (notice that if N = 4,5, this condition is automatically
satisfied).

Proor orF THEOREM A.4. We may assume that (A.10), (A.11) and (A.13)
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hold. We then set u; = (1),
c = inf max &(¥(¢))
yeI'tel0, 1]

where I' = {7 € C([0, 1], DI2(RM)), 7(0) = 0, ¥(1) = u1}. In view of (A.10),
(A.11): ¢ > 0. We need to check Palais-Smale condition i.e. if (#.). satisfies

—Aup = f(x, Un) + €n in D'(RY), e—0 in (DVHRMY

E(un) —c
we have to show that u, is relatively compact in D''?(R").

First of all observe that for 6 small (A.11) yields

: vu|? - N2 s ov-m2 gy

O<C<8(U)SJ‘ N—2 P

RV 2
if ve DP2(RY), v >0, |v|p1.2 = 8. Therefore we have in fact

1 2 N+2 4/(N-2),,2 2
— |V —_ > \v4 .
dy > O, j‘RN | Ul N—2 Kuﬂ vedx 2V RNI U' dx

The enables us to prove that (u,), is bounded in D"2(R™): indeed we have

[ 1Vtnl> dx = [ fC6, tn)ttn X + Ceny Und 2

N+2
> [k K P s

1 N+2
by [ P = 5 Ry Kt P e Ll

where «y € |2, 7225 is arbitrary. And usign (A.14) it is easy to show that (un)n

is bounded in D 3(RY).

If u, converges weakly to u e D*(R"), using (A.8) one may prove that
(|Vtn|? + |t/ ™ =) is tight and thus u, — u (by Lemma 1.1) concentrates
at some points (xj)jej and we have (see section 4.6 for more details)

—Au=f(x,u) in RV, ueDVYRY)

1 -
c=8w+ 2 N wiK () = IopfN =N
jeJ

hence
> )2 K(x)~ N-2/2 5 [N/2 ( sup K) -WN-2/2
RN
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And we reach a contradiction with (A.13) since

1 1 3 N+2
&) = 'LNE |Vu|2 — F(x,u)dx = J‘naNE |Vu|? - > mKuﬁ/(N_z)(u+)2dx+
1 N+2
) J o) =5 g KOy x>
R —
1 N+2
>3 [ 7~ R R
, -

1 N+2
- ; neNf(x, uyu — —AT:EKH,‘Z/(N—Z)(H +)2 dx >0

since > 2.

Appendix 2. Improved Sobolev inequalities by symmetries
We want to collect here a few easy remarks on classes of functions in D**?(R")
presenting i) symmetry properties, ii) support properties. Roughly speaking
if those functions possess enough symmetries and if fixed points of the sym-
metries do not lie in their supports, Sobolev inequalities may be improved.
The easiest example is the following: let H be the space of functions u in
DIP(RY) for some 1 <p< N such that i) u is spherically symmetric,
ii) Suppu C {|x| > 8} for some fixed 6>0. Then H < LYRY) for
Np/(N - p) < g < .

To simplify the presentation we will only treat the following situation: let
Q be an open set like @ = w X O; X ... X O,, where m > 1, w is a bounded
open set of RN (possibly empty), O, ..., On are given by

Oi= (xR /|xi| 28}, vie{l,...,m);

where N;>2, 6;>0. Clearly N=2",Ni. We will denote by x=
= (x0,X1,...,Xm) a generic point of . Let E be the subspace of
DIP(RNo x RN x ... x R¥m) consisting of functions which are spherically
symmetric with respect to each x; € R and let F = E € D§?(Q).

We begin with the case when Ny + m > p: then let u €e D(RM)NE and let v
be defined on R™ x (]0, [)™ by

m
Vo, b1y - o s tm) = L1t D Pulxo, x1, ..., Xm), Wwith |x| = ti.

i=1

Then v e DYP(Q) with Q = RN = (10, )™ and if N; > p of all i
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ou

M
<
<Clulz+C X |-

L

m
lv] DlrQ) S Clu|g+C _21
i=

< Clulg

u
|xi] 2

therefore: |v| 4 < C|u|g, where @ = (No + m)p/(No + m — p).

And we find in conclusion that if No+ m>p, p< N;, Vie {l,...,m}
(jRNP(x);ude) V8L Clulpiogny, YUEE (B.1)
where
m
P=TI |x|%
i=1

with 6; = (N; — 1)(@ — p)/p. Using Sobolev and Hoélder inequalities we also
find if ¢* = (Np)/(N — p)

(JRNPolu]qu) V4 < Clu|prpgny  VUEE (B.2)
for all g € [g*, g], where 6 = (§/q)(q — g*)(@ — g*) " '. And thus we have
lu] Laey < Clu|pirwnys YuekF, vqg € lg*, gl. (B.3)

Next, if p > No + m, p < N;, Vie {1, ..., m}; the same proof shows

lu| < C{ inf ]xjil_”/p}i 11 Ix,-l‘(N"‘l)/”} |Vu|», VueE (B.4)

isjsm i=1
where n = Ny + m. In particular, we find
| ¢l ey < Cl V| Loy, VueF (B.5)

for all g* < g < 0. The same result holds if No=0, m=1, p=1.

Similar results may be obtained for all u€ E in the remaining cases
(p<No+m,3i,p>=N; or p=No+ m; or p>Ny+ m. 3i, p > N;) but we
will skip them. Now for u € F, we indicate that if p < Ny + m then (B.3) still
holds, while if p > No + m, (B.5) holds for q € [q*, ] if p > No + m, for
gelg*, o[ if p=No+ m.

Indeed the above proofs are easily adapted for u € F.
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