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Introduction

Throughout the paper, we let F denote a totally real algebraic number field

of degree n, and a the set of all archimedean primes of F. Given a set X, we

denote by X*® the product of a copies of X, that is, the set of all indexed

elements (Xv)vea With x, € X. If y € X*, y,, will detnote its v-component. Put-

ting H = {z € C|Im(z) > 0}, we let SLo(F) act on H? through the injection of

SLy(F) into SL>(R)*. For g € Z* and v € a, we define a differential operator
o on H* by

5= —4y;~%(0/02.)y51(8/8%0),

where z, is the variable on the v-factor of H® and y, = Im(zy).
Given a congruence subgroup I' of SL,(F) and A e C?® we denote by
Q@(o, \, ) the set of all C*-functions f on H? such that

) f(v(2) = IT vealcvzo + du)™f(2) for every vy = (¢ }) €T,

ii) Lyf = \yf for every vea,

iii) fis slowly increasing at every cusp.
Further we let S(g, \, ") denote the set of all cusp forms, defined as usual,
belonging to Q(g,\,I'), and 9U(o,\,I') the orthogonal complement of
8(o,\,I') in G(o, N\, T).

Now the main purpose of this paper is to show that 9U(s,\,I") can be
spanned, in most cases, by certain Eisenstein series, which are functions
E(z,s;p) of the variable z on H*, a complex parameter s, and another
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discrete parameter p € C*. Namely, given o, \, and I", we can choose so and
p so that a suitabie finite set of E(z, So; p) spans IU(ag, A\, I') (Theorem 7.3). If
F = Q, the parameter p indicates nothing but the weight o, but if F # Q, p in-
volves a variable in R* which parametrizes the archimedean factors of Hecke
(Grossen-) characters of F. There are two cases in which Eisenstein series by
themselves cannot generate 9U(o, N\, I'). In fact, if 4\, = (1 — 0,)* for every
vea, we need dE/ds (Theorem 7.8); in the other case, we need the residues
of the E(z, s) (Theorem 7.9). These theorems are valid also for eigenforms of
half-integral weight, which can be defined by making suitable modifications
in the above definition. Our results are not complete in the sense that we have
to exclude the case of «multiple» A\, which occurs only when F# Q,
(1 — 0,)* <4\, eR for all vea, and (1 — 0,)? < 4\, for at least one v. We
believe, however, that our technique is applicable even to multiple A, and
therefore no serious difficulties are expected in the task of extending our
results to the most general case.

As an application, we shall show that every holomorphic Hilbet modular
form is a sum of a holomorphic cusp form and a holomorphic Eisenstein
series. This holds for all integral and half-integral weights 2% (Theorems 8.3,
8.4, and formula (8.3)). The explicit Fourier expansions of certain Eisenstein
series obtained in our previous papers [12] and [13] play an essential role in
the proof of this result as well as in that of the theorems on 3(o, A\, I').

Another application concerns an interpretation of the zeros of L-functions
of Fin the critical strip. To explain the idea, let us assume F = Q for simplicity.
Given ¢ = ( ;) € SL2(Q) and f€ (o, \,T) with \e C, s € Z and I C SL(Z),
we can speak of a Fourier expansion of fat the cusp £(e), which has the form

(CZ + d)—af(g(z)) — asyso—o/Z + aéyl—so—U/Z + Z bs(n’y)ez,,rinx/N

neZ

with 0 < NeZ, constants a; and at, and a complex number sy such that
N = (S0 — 6/2)(1 — so — ¢/2). Now we call f a cyclopean form of exponent
1 - 50— 0/2if 0 < Re(so) < ; and a: = 0 for every £ € SL>(Q). Then we shall
show that a nonzero cyclopean form exists if and only if there exists a
Dirichlet character ¢ such that L(2s¢, ¥) = 0 and ¢(—1) = (—1)°. The same
type of assertion can be made also for F # Q (Theorem 9.1). This result is
tautological if I' = SL»(Z), in the sense that it follows immediately from the
well-known Fourier expansion of the Eisenstein series of SL»(Z). The asser-
tion in the general case, however, is nontrivial, even when F = Q. In fact, the
L-functions involve Euler-products and Dirichlet (or Hecke) characters ¢
while our definition of cyclopean forms does not require any such multiplicative
structure at least on the surface, which is why we think that the fact deserves
a statement as we present here.

Let us conclude the introduction by mentioning the previous investigations.
The eigenforms were first studied by Maass in [3] and [4] for the congruence
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subgroups of SL,(Z). In particular, he proved a certain bilinear relation of the
coefficients of the constant terms of eigenforms and showed that 9U(s, \, I')
can be spanned by Eisenstein series when o = 0, A > 41 and I' C SLx(Z). In [7],
Roelcke generalized these to the eigenforms of an arbitrary weight with
respect to an arbitrary Fuchsian group. The present paper owes much to their
ideas in those papers; in fact, one of the key points in our treatment is a
generalization of their bilinear relations.

In the holomorphic case, the fact that an elliptic modular form of integral
weight is the sum of a cusp form and an Eisenstein series was proved by Hecke
[1]. This was extended by Kloosterman [2] to the Hilbert modular forms of
weight >2. The case of weight 1 was proved recently by Shimizu [8]. As for
the forms of half-integral weight, Petersson [6] obtained a corresponding
result for weight >3 when F = Q. Recently the case of weight 3 with F= Q
was settled by Pei [5].

1. Congruence subgroups and factors of automorphy

The symbols F, n, a, X*, and H we used in the introduction will have the
same meaning throughout the paper. In addition, we let f denote the set of
all nonarchimedean primes of F, g the maximal order of F, ¢* the group of
all units of F, and b the different of F. Each element of a will be viewed as
an injection of Finto R. Then F® oR and F ® oC can be identified natural-
ly with R® and C?*, respectively, through the map a ® b ~ (ayb)vea for a € F
and b R (or C), where a, denotes the image of @ under v. We write a> 0
for a e R? if a, > 0 for all v. For two elements ¢ and x of C?, we put

(1.1 =] ¥
vea

whenever each factor is well-defined (according to the context). We denote by
u the identity element of the ring C*. We have then

(1.2 ¢ = T] ¢ for seC.
vea
Given an associative ring R with identity element, we denote by R* the
group of all invertible elements of R, and by M>(R) the ring of all
2 X 2-matrices with entries in R, and put SL»(R) = {£ e Ma(R)|det(§) = 1}
when R is commutative. For £ = (2’ g) € M>(R), we write a = az, b = bg, ¢ = ¢y,
and d = d;. For a € SL>(R) and ze C, we put

(1.3) a(z) = (@az + bo)/(Caz + do), J(a,2) = CaZ + da.

Further, for o = (av)vea € SL2(R)* and z = (Zv)vea € C*, we put
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(1.40) Ot(Z) = (Olv(Zv))usa, jv(a, Z) = j(av, Zv),
(1.4b) Ja(2) = j(@, 2) = (ju(at; 2)vea (€C?).

With u as in (1.2), we have x“ = Ng,o(x) for x € F and also

Jo@)" = T jule, 2).

We define our basic group G and its parabolic subgroup P by
(1.5) G = SLy(F), P={aeG|c, =0}.

We identify M>(F) ® o R with M>(R)* and embed M>(F) and G into M>(R)* and
SL,>(R)?; then we let G act on H® (or even on C*) through this embedding.

Given an integral ideal 3 and fractional ideals r and y in F such that ry is
integral, we define a subring o[r, y] of M>(F) and subgroups I'[r, y] and I'[3]
of G by

(1.6) oft,9] = {a e Mx(F) | an€g,da €8, ba €L, Ca €Y},
(1.7a) I'[r,y] = olr, ] NG,
(1.7b) I'l={aeGlan=da=1,bo=ca=0 (mod3y)}.

A subgroup I'' of G is called a congruence subgroup of G if it contains I'[3]
as a subgroup of finite index for some 3.

We are going to consider automorphic forms of integral and half-integral
weights with respect to congruence subgroups of G. A weight will be an ele-
ment ¢ of (1/2)Z* such that 2¢,(mod 2) is independent of v. Our treatment
will be divided into two cases according to the parity: Case I for o € Z* (in-
tegral weight) and Case II for o ¢ Z* (half-integral weight). We consider the
group G, consisting of all couples («, /) formed by o € G and a holomorphic
function / on H* such that /(z)* = £j.(z)* with a root of unity ¢, the group-
law being defined by

(1.8) (a, (', 1) = (e, U/ (2))'(2)).

In Case I, G, is obviously isomorphic to the direct product of G and the group
of all roots of unity. For &£ = (a,/) € Gs, wWe write o = pr(§), / = I, ar = aq,
b: = ba, C: = Cqa, dr = do, and put £(z) = a(z) for z € H*. The group G, is in-
troduced for the purpose of dealing with Case II. We consider it even in Case
I, simply in order to make our exposition uniform.

Let F, denote the v-completion of F for each veaUf. If ¢ is a fractional
ideal in F and v € f, we denote by r, its closure in F,. We put G, = SL1(Fy)
and define the adelization Ga and Pa of G and P as usual. We denote by Ga
and Gy the archimedean and nonarchimedean factors of Ga; we identify G
with its diagonal embedding into Ga, and SL>(R)® with Ga. For ¢ and y as in
(1.6), we put
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(1.9a) DIly,y] = lfIU D[z, vl,
_(80Q) = {xeGy|xx =1} (vea),
(190 Dole, vl = [o[x, 9]N Gy e,

where o[r, plv is the closure of o[r,y] in M>(F,). We observe that I'[r,y] =
= GN DI, y]Ga. There is another important subset

(1.10) W = GNPa-D[207 1, 2b]

of Ga. Obviously P- W-T[2b~1,2b] = W. In [13, Proposition 3.2], we
assigned, to each 8 € W, a holomorphic function 4z on H® that satisfies the
following conditions:

(1.11a) he(2)* = js(2™  (and hence (8, hg) € Gur);
(1.11B)  hogy(2) = ha(2)a(v(2))h(2) if € P, Be W, and yeT 207", 20];
(1.110) ho(z) = |do|*? if aeP;

(1.11d) h%/j;,‘:(d.,/ld.yl)"<§(»\/d_1)-/£> it yel[2~",28].

Y

As for the last two properties, see [13, Proposition 1.2 and (3.13)]. We then
define, in Case II, a map A¥: W— G, for each odd integer k by

(1.12) AS@B) = B, hEj§~“P  (BeW).
Then (1.115) implies that
(1.13) AaBy) = A()A4B)AL(y) for a, B, v asin (1.11D).
In Case I, we define an injection A%: G — G, by
(1.14) AYB) = (B,J§  (BeO).
Given an integral ideal ¢, we put
AY(T[c]) (Case ),
(1.15) Akl =
Af({Bel2cd™ 1,27 cb] |as — 1€c¢})  (Case II),

assuming that ¢ C 4g in Case II. Here and henceforward, we understand that
k =0 in Case I. There is a congruence subgroup I' of G such that

1.16) AX(y) = Al(y) for every yeT.

This follows from (1.11d) and [10, Lemma 7.4].
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Now, by a congruence subgroup of G,, we understand a subgroup A of G,
satisfying the following two conditions:

(1.17a) pr gives an isomorphism of A onto a subgroup of G;

(1.17b) A contains A[a] as a subgroup of finite index for some a and k, where
k should be 0 in Case I.

If A is a congruence subgroup of G,, then so is £A¢™ ! for every £ € G,. This
is trivial in Case I, and is proved in [13, Proposition 1.3] in Case II.

2. Autemorphic eigenforms

For a function f: H*— C and a € G,, we define f| a: H*— C by
2.1 (f | (@) = l2) ™ f(2)).

From now on, we always put ¥, = Im(2s), ¥ = (Jv)vea, and view y as an R®-
valued function on H?. Then we have

2.2 Dl = o i Y e (peR* aeQ,).

For vea and o € R?, we define differential operators €., 67, and L acting on
C=-functions f on H* by

(2.3a) eof = —yb - 0f/0Z0,
(2.3b) 0of = yv - 0(yu*f)/0zv,
(2.3¢0) L3f = 487 ¢y, oh= 0y — 2.

We have then

(2.4) LY = —4y23%/82,0Zy + 2i0vyu0/0%0
— 0y + 4€,05.

Il

It can easily be seen, for every £e€G,, that

(2.50) AL =) | & with & = (pr(9), j2"L),
(2.5b) el f] &) = (euf) | &« With £ = (pr(£),ji 2Ly,
(2.5¢) Lif] &=L | &

Furthermore, if p e R®, we have

(2.6) L3y? = pu(1 — v — pu)y*.
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Let A be a congruence subgroup of G,. By an automorphic eigenform with
respect to A, we understand a real-analytic function f on H?® satisfying the
following three conditions:

Q2.7a) fla=f forevery «ae€A;
2.7b) Lf=N\of with NeC forevery vea;

(2.7¢) for every £ €G,, there exist positive numbers A, B. and c (depending
on f and §) such that y”'* |(f| & (x + iy)| < Ay** if y“>B.

We denote by Q®(o, A\, A) the set of all such f, and by G(c, N) the union of
Q(o, A\, A) for all congruence subgroups A of G,. Condition (2.7¢) concerns,
in essence, only finitely many elements £ of G,. In fact, put

(2.8) ®, = {£€Go|pr(§) e P}.

Then A\G,/®, is a finite set as will be seen in Section 3. The inequality of
(2.7¢) is true for all £e€ G, if it is true for the members of a complete set of
representatives of A\G,/®,.

Given two continuous functions f and g satisfying (2.7a), we define their
inner product {f, g) by

2.9) (L) =@ " [ for dud) (& =AH,
where
W@ = [, dud) and dux) =y~ TI dxvdy,.

véa
This does not depend on the choice of A. We see easily that
(2.10) (f,8) = fla,g|a) forevery aeG,.
To study the Fourier expansion of an eigenform, let us put
2.11a) e(w) = e*™ for weC,

(.11b) ea() = € Zzu) for zeC™

vea
If fe @Q(o, \, 4), f has a Fourier expansion of the form

(2.12) fx+iy)= hZ b(h, y)ea(hx)

with a lattice m in F, where Ax = (huXv)vea (i.€., the product in the algebra
C®). We can find a subgroup U of g™ of finite index such that

AX(diagla,a " '))eA forall aeU.
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Then
(2.130) f(a’z) = |a| - ®Pug=o+®&Dufzy  for every aeU,
(2.13D) b(a*h,y) = |a|* "¢~ ®Dp(h, a*y) for every aeU.

Now (2.7b) implies that b(#, y) as a function in y, satisfies
(2.14) (¥20%/0y3 + 0uyv0/0ys — 4w hiys + 2mhuouyy + No)b = 0.

If 4, # 0, the solutions are given by Whittaker functions. To present them in
a normalized form, we introduce a function V(g; «, 8), defined for 0 < geR
and (a, B) € C?, which has an expression

(2.15) Vig; a,B) = e #%g°T'(B) ! j:e—fg(l + 0% P gy

for Re(B) > 0. This can be continued as a holomorphic function in («, 8) (and
real-analytic in (g, o, 8)) to the whole C2, and satisfies

(2.16) Mg 1-6,1-a)=WgapB),
(2.17) lim e#*V(g; a, B) = 1.
g

These facts are well known. For the reader’s convenience, we give in Section
10 a self-contained treatment of Whittaker functions of this type including the
proofs of these and other properties of V.

Now, given g € C* and \ € C*, we take o and 8, so that

(2.18) Oy = Oy — Bu, )\u = 61}(1 - au),
and define a function W, for re R* by

V(4xt; ow, Bv) if t>0,
2.19) Wit; o, \) =
|4xt| = V(—4nt; Bo, aw) if £<0.

If (aw, Bv) is a solution of (2.18), then the other solution is (1 — Bv, 1 — @)

(which may be equal to (ay, 8v)). In view of (2.16), W, is well-defined. Now

it can be verified that Wy(h,y; 0, N) as a function of y, satisfies (2.14); it is

O(yy) with ¢ € R when y, — o, as can be seen from (2.17); moreover, such a

solution of (2.14) is unique up to constant factors (see Proposition 10.1).
We now put, for re (R*)?, ceR?, and A e C?,

(2.20) W(t;,o,N) = [ Wolts; o, N).

vea

Then conditions (2.7b, ¢) imply that b(k, y) is a constant multiple of W{(hy; o, N),
and hence
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2.21) S&x+ 1y) = bo(y) + 0 2. buW(hy; o, Nea(hx)

Zhem

with a function bo(y) and b, € C. The nature of by will be examined in the
next section. We call by the constant term of f, and understand, by a cusp
Jorm, an element f of G(c, \) such that the constant term of f | £is O for every
£€G,. We denote by 8(o,\) the set of all such forms and put $(o,\, A) =
= Q(a, N\, A)NS(a, N).

Proposition 2.1. Let f and by be as in (2.21). Then:

(1) There exist constants p > 0 and q > 0 such that |bx| < p|h|"™* " for all
hem, #0.
(2) There exist positive constants A, B, and C such that

y7* 3 |uW(hy;0,N| < A -exp(-By*™) if y*zC.

0#hem
(3) ([, g> is meaningful if either f or g is a cusp form.
4) If f is a cusp form, we can take q = 0 in (1).
Proposition 2.2. Put A* = {(£*|£€ A}, Ay = (&« | E€ A} with £ and &4 of
(2.5a, b). Then
esQ(0, N\, A) C Q0 — 20, A — (0w — 2)v, Ay),
65Q(a, N\, A) C Q0 + 20, \ + 0,0, A¥),

where v is viewed as the element of C* of which the v-component is 1 and all
other components are 0.

Proposition 2.3. Q(o, \, A) is finite-dimensional over C.

These propositions will be proved in Section 11.
Define subsets (g, ) and 9(a, \, A) of G(a, \) by

(2.22a) Mo, N) = {ge @0, N|{f,g) =0  foral feS(o,N},
(2.22b) (o, N\, A) = [g€ (o, N\, 4)[(f,g) =0 forall feS(s,\, A)}.
Then we see easily that

(2.23a) Q(o, \, &) = 8(0,\, A) @ (o, \, A),

(2.23b) @(a, N) = 8(,\) @ (o, ),

(2.24) Mo, N, A) = TN(a, )N Q(0, \, A).
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The inclusion 9U(o, N\, A) C 9U(g, M) is not completely trivial. To see this, let
g € (o, \, A); take any normal subgroup A’ of A. Then g = f+ &k with fe
€ 8(o, N\, A’) and & € 9N(o, N, A"). For v € A, we have g = f|y + h|v. Observing
that f|y € 8(a, \, A’) and &y € MN(o, N\, A’). We obtain f|y=fand h|y=h
and hence fe8(o,\,A) and A€ (o, N, A). Therefore g = he I(o, \, A),
which shows that g € 91(a, N).

Proposition 2.4. For each v € a, we have

(2.25) (euf, &) = (f,008) for feQo+2v,)N), geQo,N\),
if either f or g is a cusp form;

(2.26) (Lof,g) = (f,Lvg) for feS(s,N), ge€Q(o,N).

These formulas are actually true for C*-functions f and g satisfying only
(2.7a, c), under a suitable condition on the convergence, as will be shown in
Section 6; (2.26) follows from (2.25), since

(Lof, 8) = 487 Peuf, 8) = 4euf, €vg) = {f, Log).

(Formula (2.25) was proved also in [14, Lemma 2.3].) This shows also that
(fy Lofy = 4<euf, euf ) = 0. Therefore 8(o, ) # {0} only if 0 <N\, eR for
every v ea.

Proposition 2.5. Every holomorphic function on H?* satisfying (2.7a, c)
belongs to Q(o, 0, A). Moreover, every element of 8(o, 0) is holomorphic on
H?,

Proor. A function f on H?® is holomorphic if and only if e,/ = 0 for every
v € a. Thus the first assertion is obvious. If f€ 8(a, 0), we have 4{e,f, euf) =
= (f,Ly,f) =0, so that ¢,/ = 0, which proves the second assertion.

3. The constant term of an eigenform

Let U be a subgroup of g™ of finite index. We call an element 7 of R* U-
admissible if

(3.1 Ix|"=1 forall xeU and 3 7,=0,

vea

and denote by Ty the set of all U-admissible 7. We call 7 admissible if it is
U-admissible for some U. We can easily prove
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(3.2) {(peC*||x[P=1 forall xeU} =iTu® Cu.

Now let b(y) be the constant term of an element of @(o, \). Putting 2 =0
in (2.14), we have

(3.3) (v50%/3y5 + 0uyu8/3ys + No)b = 0.
A pair of independent solutions of this equation can be given as follows:

(3.4a) y£ and y¢ with the roots p and g of X?>— (1 — gu)X + \v if
Ay # (1 = 0v)?,

(3.4b) y¢ and yllogy, with g=(1—0,)/2 if 4\ = (1 — o)’

Therefore b(y) is a linear combination of the products of these functions for
all v e a. However, not every product can appear. In fact, in view of (2.13b),
we can find a subgroup U of ¢ * of finite index whose elements are all totally
positive and such that

3.5 b(@*y) = a~°b(y) for every aeU.

This imposes a nontrivial condition on the combination of the solutions of
(3.4a, b). To be precise, we have:

Proposition 3.1. The constant term b(y) of an element of Q(a, \) has one of
the following forms:

Q) If 4\ = (1 — au)* for all vea, then b(y) = a1y? + axy?logy* with
a;i€C and g = (u — 0)/2.

(i) If 4\, # (1 — 6,)* for some v € a, then b(y) = Y., ayy® with a, € C and
peC? Each p must satisfy the following two conditions:

(3.6a) Mo =pu(l — 0y —pu) forall vea;
(3.6b) p=su— (o —ir)/2 with seC and 7€ Ty.

ProOF. Putb = {vea|4\, = (1 — 0v)*} and (logy)* = I vealogys, ford Cb.
Then b(y) = Jacn 2pAp, ay”(logy)® with constants A, 4 and p, as in (3.6a).
Take a maximal subset d of b such that A, a4 # 0 for some p. Fix such a p.
Then (3.5) implies that a°*?” = 1 for a € U; hence o + 2p = it + 2su withse C
and 7€ Ty by (3.2). Thus p must be as in (3.6b). Suppose d # ¢J and let
d =eU{w} with an arbitrarily fixed w. Then (3.5) implies that
YAp xlogal =0 for every aeU, where the sum is taken
over all (v, x) such that {v}Ue = x C b. Since A, 4 # 0, this can happen only
when e = ¢ and b = a. Then p = (u — 0)/2, b(y) = AY? + DveaAvy?log o,
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and Y,Ayloga? = 0 for all a € U, and hence we obtain (i). If A, 4 = 0 for all
d # ¢J, then we obtain (ii).

Thus, given o and N\, b(¥) belongs to a two-dimensional space if 4\, =
= (1 — 0,)* for every v € a, and to a 2"-dimensional space otherwise. The latter
space can actually be reduced to a 2-dimensional space in most cases. In fact,
take p, 7, and sasin (3.6a, b). Let g = u — 0 — p. Then g = (1 — s)u — (¢ + i1)/
/2, and hence g, —7, and 1 — s satisfy (3.6a, b). Since 4\, # (1 — 0,)* for
some v, we have p # g, and therefore y” and y? form a two-dimensional vec-
tor space. Now our question is whether y’, with r different from p and g, can
occur. Suppose it can, and let r = tu — (o — ix)/2 with t € C and x € Ty, Then,
for each v, r, must coincide with p, or g»,. Decompose a into the disjoint
union of three subsets b, ¢, and d so that r, = p, = gy for veb, ro, = pu # qu
for vee, and r, = gy # py for ved. Then ¢ # ¢ and d # ; ¢ + ixy/2 =
=5+ itpy/2 for vebUc and ¢ + ixy/2 =1— s — iTy/2 for vebUd. Hence
Re(s) = Re() = Re(1 — s), so that Re(s) = 1/2. Therefore Re(p) = (u — 0)/2.
Observing that (1 — 0,)> <4\, €R if and only if Re(py) = (1 — 0v)/2, we
obtain

Proposition 3.2. The constant term b(y) of an element of Q(o, \), for fixed
g and \, belongs to a two-dimensional vector space unless the following condi-
tion is satisfied:

3.7 F#Q, (1 — ou)* <4\ eR forall vea, and (1 — 0,)> < 4\, for at least
one v.

If this is satisfied and if p is as in (3.6a, b), then Re(p) = (u — 0)/2.

We call \ critical if 4\, = (1 — ¢,)? for all v € a; otherwise we call \ non-
critical. We call \ simple if either \ is critical or \ is noncritical and there are
only two p’s satisfying (3.6a, b). In the latter case, if p is one, the other is
u — o — p. We call A multiple if it is not simple. Any p as in (3.6a, b) is called
an exponent attached to \. In Remark 5.5 below, we shall give an example of
multiple A.

Hereafter we fix a weight ¢ and write simply G and @ for G, and ®,, where
@®, is defined by (2.8). Given an admissible 7, we put, throughout the rest of
the paper,

(3.8) p=(o—ir/2 (eC?.
Then, for A\ and p of (3.6a, b), we have
(3.9a) Ao = (s — pu)(1 =5 — pv),

(3.9h) D =Su-—p, u—oc—p=0-su-np.
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Let A be a congruence subgroup of G and let I' = pr(A). Then pr gives a
bijective map of ®\G/A onto P\G/T", which is a finite set corresponding bi-
jectively to I'\(FU {®}) via the map o — o~ (). Therefore we call a coset
®£A with £ € G a cusp-class of A. Given a cusp-class ®£A, we call it p-regular if

(3.10a) Yy Ply=y"" forevery ye®NEAE™ !,
or equivalently,
(3.100) I;'d,)°"" =1 for every ye®NgAE™ L.

It can easily be seen that (3.10a) is in fact a condition on ®£A, independent
of the choice of a representative £. The meaning of this condition is explained by:

Proposition 3.3. Let p, \, and p be as above; let fe Q(o,\, A) and £€G.
Then y* or yPlogy* can appear nontrivially in the constant term of f| ¢!
only if ®¢A is p-regular.

This follows immediately from our definition.
If all cusp-classes of A are p-regular, then the same is true for every con-
gruence subgroup of A. Such a A indeed exists because of

Proposition 3.4. Given p = (¢ — i1)/2 as above, there exists an integral ideal
a such that all cusp-classes of AX[a] are p-regular.

Proor. Take an integral ideal b so that x> 0 and X" = 1 if xeg™ and x — 1 €b.
In Case II, choose b so that b C 4g. Write simply A[a] for A¥[a]. In either case,
we have G = ®ZA[b] with a finite subset Z of G. We can find an integral ideal
a C b such that Afa] C Nrez ¢~ A[b]¢. Obviously G = ®XA[a] with a suitable
subset X of ZA[b]. If £ € ¢A[b] with ¢ € Z, then £A[a]é ™! = ¢AJal¢ ™! C A[b).
Let y € ®NA[6]. Then, in Case II, we have L, = |d,|***dS~ */?* by (1.11c) and
(1.12). Hence our choice of b implies (3.106) for A = A[a]. The same can be
verified in Case I in a similar way.

4. Eisenstein series

Given a congruence subgroup A of G, we define its Eisenstein series by

(4.1 E(z,s) = E(z, 5;p, A)

“=r|a,
ae(@NA)N\A
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Here se C and p = (¢ — i7)/2 with an admissible 7. To make the sum mean-
ingful, we have to assume that y~°|y = y ~* for every y € ®NA, that is, A
is p-regular. The series is covergent for Re(s) > 1, and can be continued as a
meromorphic function in s to the whole s-plane. (See Theorem 4.2 below for
a precise statement.) Assuming this result, we have obviously E(z,s) | vy =
= E(z,s) for every v € A, and moreover, by (2.6) and (2.5¢),

4.2) L3E(z,8) = ME(z,s) with A= (s— po)(1 — 5 — pv)

for every v € a. Therefore, if E(z, ) is finite at s, it satisfies (2.7a, b) as a func-
tion in z, and in fact belongs to @(o, \, A) as (2.7¢) can be shown in our later
discussion.

From our definition, we can easily derive a relation

4.3) [®NA: PNA']E(z, s; p, A) = 7§\A E(z,s;0,A) |y

for every congruence subgroup A’ C A. For each p-regular cusp-class ®£A (see
(3.10a, b)), we put

(4.4) E(z, 530, & A) = E(z, 5 p, EAE ™) [ £.

Then we see easily that

(4.5) E(z,s;p, & A)|v = E(z,5;0, &, A) for every yE€A,

(4.6) E(z,5;p,afy, A) = I3 V|do|* ¥ E(z,5;p,£,4) if ae® and yeA.

Thus, ignoring elementary factors, we associate with A exactly as many Eisens-
tein series as its p-regular cusp-classes.

We now introduce another type of Eisenstein series, which is attached to an
integral ideal ¢ in F and a Hecke character y: Fi/F* — C*. We assume

4.7a) 4g D ¢ in Case II;
(4.7b) Wl =1
(4.7¢) the finite part of the conductor of  divides ¢;
4.7d) Y(x) = |x]"(x/|x])” for xeFa
where

Case 1),
“4.8) - iz — (k/2)u ECase Ii),

FX denotes the idele group of F, and Fx'its archimedean factor. We fix ¢,
assume ¢ C 4g in Case II, and put
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_ {Dlg, (Case 1),
(4.9a) b= {D[Zb‘l,Z“lcb] (Case 1D),
(4.9b) T'o(c) = GNDGa.

Writing simply I' for I'o(c), take a complete set of representatives B of
P\(GNP,D)/T. Take, for each 8 € B, a complete set of representatives Rg
of (PNBTR~H\AT'. Then we put

(4.10)  Ex(z,8;0,¥,0) = X, Nag)™ >, W(datg Waldo)y™ ~°| Ak(e),
BeB a€Rp
where ag = cgg + dgg in Case I and ag = 2csd ~ ! + dgg in Case II, and ya is the
archimedean part of ¥; we use the same letter  for the ideal character attached
to y; we understand that Y(d.as "Wa(ds) = ¥(as ') if ¢ = g. The right-hand side
of (4.10) is convergent for Re(s) > 1 and satisfies (4.2). In Case I, we have k = 0,
and so we write simply E for Ex. As for the relation between the series of type
(4.10) and that of (4.1), see (4.24) and Proposition 5.3 below.
Define the L-function L(s, ¢) of ¢ as usual and put

(4.11) Le(s, ¥) = L(s, ¥) IlI [1 = ¥()N®) ~°],
ple
where p denotes a prime ideal in F.

Theorem 4.1. The series Ex(z, s; p, ¥, ¢) can be continued as a meromorphic
function to the whole s-plane. More precisely, put

II T(s + (Jou| + iT0)/2)L (25, Y)E(Z, S; p, ¥, ©) (Case ),

vea

TI Tu(s + ito/2)Le(4s — 1, Y*)Ex(z, 5; p, ¥, ©) (Case 1I),

vea

D(z,s) =

where 'y in Case II is defined by

I'(s + (0u/2)) if 200> —1,

rv(s)=r(s+(0v/2)'“/4))'[r(s-(av/z)) if 20,< —1

with the smallest nonnegative integer 0, that is congruent modulo 2 to
gy — 1/2 or o, + 1/2 according as 20, = —1 or 20, < —1. Then there is a real
analytic function on H* x C that is holomorphic in s and that coincides with
s(s — 1)D(z, s) in Case I and with (s — 3/4)D(z, s) in Case II for Re(s) > 1.
(Thus we are able to speak of possible simple poles ats = 0, 1, or 3/4.) In Case
1, the pole at s = 0 occurs if and only if ¢ = g, ¥ = 1, and 0 = 7 = 0; the pole
at s =1 occurs if and only if Yy =1 and 0 = 1= 0. In Case II, the pole at
s = 3/4 occurs if and only if Y* = 1 and, for every vea, o, — 1/2 is either an
even nonnegative integer or an odd negative integer.



16 GORO SHIMURA

The result in Case II is merely a paraphrase of [13, Corollary 6.2]. In fact,
the symbols &, p, u, and 7 there correspond to &, o', 7, and 0 here. If we denote
by E*(z, s) the function E(z, s; k/2, p, ¥, ¢) there, then, comparison of (4.10)
with [13, (4.7¢)] shows that

(4.12) Ex(z, 830, ¥, 0) = y P PE*(z, 5 — k/4),

and hence our assertion follows immediately from [13, Corollary 6.2].

The result in Case I can be obtained by modifying the formulation of [12].
To be more specific, take m = 1 in [12]; using the same notation, we define
a function f on G, by

_f{o if x & PaD,
(“413) J0) = Lbf(dp)'l\,bc(dw)'lJ(x, i)~! if x=pw with pe Pa and we D,
where
vi(a) = };[f Y(av), Ye(a) = %_l‘[ Y(av),
and

T i)y =TT j0co, )] jCeo, )] 77,

vea

We then define a series £, on G, by

4.14) Ex(x,8) = 2, flax)e(ax)™  (xeGa,s5€C)
aeP\G

with e of [12, (2.11)]. We can éasily verify that
(415) E(Z, S50, ‘% C) =y_pEA(x’ S)J(X, i)

if x € Ga and x,(i) = z, for vea. Put

(4.16) E'(z,5) = E@ 530, ¥, 0| Asm), 7= <(1) _(l)>'

This has a Fourier expansion of the form

(4.17) E'(z,s) = 2, a(h, y, s)ea(hx)
heb

with b = (cb) ~'. Applying the methods of [12] to E’ with obvious modifica-
tions, we find that if ¢ # g,

(4.18a) a(h,y,s) = N(b) ™ V*N(e) " as(h, s)y™ ° T1 &, ho; S + pv, S — pu),

vea

4.185) ar(h,s)= T oo, b W(r)gs ™),

vef,vfc
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where £, «, 7y, and g, are defined by [12, (3.18), (3.22), and (3.23)] (in the
one-dimensional case). In particular

(4.19) &g o, B) = [ e(~h0)(x + i)~ *(x — ig) P ax.
As for az, we have

L2s—1,y) if h=0,

(4.20) L(2s, Y)as(h,s) = {ElL(Q)N(Q)I—ZS it B0

where a runs over all integral ideals in F prime to ¢ and dividing Acb. This result
for A = 0 is already given in [12, Theorem 7.7, I]. If 4 # 0, the Euler v-factor
for vt hcd is determined by [12, Proposition 4.6]. The «bad factors» can be
determined by the methods of [13, §6]. In fact, the present case is easier than
[13, §6]. Thus after an easy calculation, we obtain a final result as given in
(4.20). As for £ of (4.19), we have

4.21a) H (v, 05 aw, Bu) =

vea

= i"Qmy' @) "¢ I T+ Bo = DTe) " 'TB)

vea

(4.21b) )’6 H E(Vv, hu; o, Bv) =

vea

= (=20 h = Why; 0,0 T Ty~
vea
where o and \ are determined by (2.18), {a} = 2veaw, and v, = oy or By
according as 4, > 0 or A, < 0 (see [11, (1.31), (4.34K)]). Therefore we obtain
our assertion on D in Case I by examining the local behavior of each Fourier
coefficient of E’, provided that ¢ # g. To treat the case ¢ = g, we first observe
that if ¢ D e, we have (in both cases ¢ # g and ¢ = g)

(4.22) E@z, 50,90 = 2, Yel(d) ™y "E(V(2), 530, ¥s €),
vE€To(e)\I'o(c)

which can be proved in the same manner as in [12, Proposition 2.4, (ii)]. Sup-
pose ¢ = g. Take an arbitrary e # g. Then our result on E(z, s; p, ¥, ¢) shows
that the poles can occur only at s = 0 and s = 1; the pole at s = 0 is produced
by the difference of L(s, y) from L.(s, y). To see that these poles do occur
when ¥ =1 and p = 0, we apply the method of [12] to E(z,s) (instead of
E’'(z,s)) to find that

E@z,s0,%,0=y"""+ 2] b(h, y, s)ea(h),
heb—

with Fourier coefficients » which are similar to but somewhat more com-
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plicated than the above a(k, y, s). It is easy, however, to see that b(h, y,s) =
= a(h, y,s) if ¢ = g, and hence the poles at s = 0 and s = 1 occur if ¢ = 1 and
o = 0. This completes the proof of Theorem 4.1.

Now observe that E(z, s; p, A¥[¢]) is meaningful if and only if

4.23)  |x|"(x/|x])” =1 for every xe€g* suchthat x=1 (modc).

This holds if and only if a Hecke character y satisfying (4.7b, c, d) exists.
Assuming (4.23), let ¥ be the set of all such characters ¢ with fixed ¢ and p,
and |¥| the number of elements in ¥. Then we have

(4.24) |Y|E(z,s; 0, AS[c]) = 2, Ex(z, 550, ¥, 0)
Jyev
for the same reason as in [12, Proposition 2.4].

Theorem 4.2. E(z, s; p, A) can be continued as a meromorphic function in s
to the whole plane in the sense that there exist a nonzero holomorphic func-
tion A(s) and a real analytic function B(z,s) on H* x C, holomorphic in s
such that A(S)E(z,s;p,A) = B(z,s) for Re(s) > 1. Moreover, E(z,s;p,A) is
holomorphic in s except at the following points:

(1) 0 < Re(s) < ¥ in Case I and 4 < Re(s) < Y2 in Case 1T,

(2) a possible simple pole at s = 1 in Case I, which occurs only if p = 0;

(3) a possible simple pole at s = 3/4 in Case II, which occurs only if =0
and o is given as at the end of Theorem 4.1;

(4) possible poles at the roots of a polynomial T,(s) given by

To(s) = I T'(s+ (Jou| + i10)/2)/T(s + (6v + i15)/2) (Case I),

vea

Tos) = TI Tuls + iro/2)/[T(s + (iro/2) — })T(s + (7/2) + ;)]  (Case II),

vea
where 6, = 0 or 1 according as o, is even or odd, and T, is as in Theorem 4.1.

PROOF. In view of (4.3), it is sufficient to prove our theorem when A = A¥[¢].
Let Dy denote the function D defined in Theorem 4.1, and put

II T'Gs + B0 + i70)/2)Le(25, ¥) (Case 1),

vea

Ry(s) = I I‘(S + (ito/2) — ‘%)1"(5 + (ito/2) + %)Lc(4s -1, ybz) (Case II).

Then Ry(s) # 0 except at the points of (1). By (4.24), we have

(4.25) |¥|E(z, s; p, AK[c]) = J/ZW Dy(z, 8)/[To(S)Ry(S)].



ON THE EISENSTEIN SERIES OF HILBERT MoDULAR GRrRouUPs 19

Observing that 7,(s) is indeed a polynomial in s, we obtain our assertions
from Theorem 4.1.

The polynomial 7,(s) has no zero when Re(s) > Y4 . Therefore E(z, s; p, A)
is holomorphic in s if Re(s) = Y2 except for a possible simple pole described
in (2) or (3) of the above theorem. The pole at s = 1 does occur if p = 0. In
fact we have

Proposition 4.3. For a congruence subgroup I" of G, let r(I") be the residue
of E(z, s;0, AY(I")) at s = 1. Then r(T") is a positive number with the following
properties:

@ r@)/r@) = [:I"}/[PNT:PNIV] if T'CT;
(i) r(SL2(g)) = 2" *7"Df '¢,(2) 'Ry, where D, is the discriminant
of F, ¢ris the zeta function of F, and Ry is the regulator of F;
(iil) (Mu@T\H?) = px(PNT)O\K), where K= {ze H*|Im(2)" =1},
furnished with a certain invariant measure py (see the proof below).

Proor. Assertion (ii) follows immediately from (4.24) and the explicit Fourier
expansion given in the proof of Theorem 4.1. This together with (4.3) proves
that r(I") is a positive number satisfying (i). As for (iii), we give here only a
sketch of the proof. Put 4 = {yeR*|y> 0} and B= {ye A |y*“ = 1}. Then
every y € A can be written uniquely y = /"y’ with 0 < teR and y’ € B. Let
d*y = y~*dy with the Euclidean measure dy on R®. Then d*y = ¢t~ 'dtdy’
with a Haar measure dy’ on B. Since K =R® X B, we can determine a
measure px on K by dug(x + iy) = dxdy’. Now take I' = SL,(g) and put
U= {a*|aeg™}. By a well known principle, we have

(4.26) [ae0d*y =2"""Re [ ot ™ dt
for a continuous function ¢ on A. In particular, this implies
4.27) pr(PNI\K) = 2"~ 'D}?R,.

Take ¢(f) = e~ 't*. Then

2"~ 'DY*RI() = | exp(=y"We P dp@) = [, 2 MG, 5) du(@),

(PNIO\H?2 \H2

where

M@z, s)= 3 exp(~Im(e(2)") Im(e(@)®* .
ae(PND\T

Since 1 — 1< e "< 1, we have, for 1 <seR,

E(z,s+ 1) - E(z,s +2) < M(z,5) < E(z,s + 1),
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where E(z, 5) = E(z, 5; 0, AY(I")). Then we see that lims-osM(z, s) = r(I"), and
hence r(Mu(I'\H?®) = 2"~ 'DY?R;, which proves (iii) when I' = SLx(g). The
general case can be proved in a similar way; alternatively, it follows from the
special case by virtue of (i).

Combining (ii), (iii), and (4.27), we find that

(4.28) WSLAY\H*) = 27~ "Dy *¢p(2),

which is classical.

Proposition 4.4. Let Q be a finite set of functions of the form E(z, s)| o with
a€G and E of type (4.1) or (4.10), and let g(z,s) = 2qe0fe(5)q(z,s) with
meromorphic functions fy on C. Then, for every s, € C, there exists an integer
m and a neighborhood V of so such that (s — s0)"g(z, S) is a real analytic func-
tion on H* X V that is holomorphic in s. If in particular, g is finite at s = so,
then g(z, So) is an element of Q(o,N) wWith Ay = (So — pv) (1 — So — pv).

This will be proved in Section 11.

5. The constant terms of Eisenstein series

Lemma 5.1. Let ¢ be a lattice in F and v its dual lattice defined by
y={beF|Treqbr) CZ}.
Further let

S B =2 G+a) *G+a) " (ze H*; o, B CP).

aer
Then this is convergent and real analytic (at least) on

H* X {(a, B) € C* X C*|Re(aw) > 1, Re(By) > 5 for every vea),
and has a Fourier expansion

pR*/DSCe + iy, 150, B) = D ea(h)EW, h; . B),

hey

E()’,hml,ﬁ): H E(_yus hU; aUaBU)

vea

with ¢ of (4.19).

This can be proved in the same fashion as in [11, (1.32), Lemma 1.4] (see
the last sentence of [11, §11).
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Proposition 5.2. Let Y be a complete set of representatives of p-regular cusp-
classes of A in the sense that every p-regular cusp-class is given as ®£A with
exactly one (€ Y. Let Ey, for E€ Y, denote E(z, s; p, £, A) with fixed p and A.
Then, for (¢,9) €Y X Y, we have

E¢|n™"' = 8py™ 2 + fa(s)y* ™7 + 0; gen(h, s, y)ea(hx),
ey

where f, and gz, are meromorphic in s, ég, is Kronecker’s delta, and y is a lat-
tice in F.

ProoF. The point of our assertion is merely in the shape of the constant term.
Fix one ¢ and put A;=(A£™!. Put r(a) = A’é(é ‘f) for aeF. Then
r(F)NA; = r(r) with a lattice ¢ in F. Take a subset ® of A so that 1 ¢ ® and
{1} U® is a complete set of representatives of (® NAg)\A:/r(r). Then 1 and the
elements ¢r(a) with ¢ € ® and a e represent (® NAg)\A; without overlap.
Therefore
Eef¢7  =y™=2+ 3 2™ | er(a).
pved

aeyr
Fix one ¢ € ® and put ¢ = ¢,, d = d,. Then ¢ # 0, and

Sy er@ =ty e P Y g+ e M+ a) G+ dd+a) P
uEr a€er
with a = su + p, 8 = su — p, and a constant # such that || = 1. By Lemma
5.1, this has an expansion of the form

ty*™~ee” T FuRY/D) T 3 ealh(x + ¢ ')EW, by, B).

hey

u—su—p

By (4.21a), the term 4 = 0 produces a function of the form 7c~*~ "p(s)y
with a meromorphic fuction p independent of ¢. Taking the sum over all
¢ € ®, we obtain the Fourier expansion of E¢|£~! in the form stated in our
proposition. The meromorphic continuation of E¢| ¢~ ! implies that of fi and
8 to the whole s-plane.

Next let £#neY. Let Z be a complete set of representatives of
(®NA\EA ™' /[(F)NA,]. Then the elements ¢r(a) with {eZ and
r(a) € r(F)N A, represent (® NA)\&An ~* without overlap. Therefore the same
argument as above establishes the Fourier expansion of E¢|n ~; the only dif-
ference is that y**~* doesn’t appear this time.

Proposition 5.3. Let T'=Tq¢(), IV={yel'|d,—1€ec}, A= AXT), and
A’ = AX(T). Assume (4.23). Let D, B, and ag be as in (4.9a) and (4.10). Then
®aA' is p-regular for every o€ AS(GNP,D). Moreover, if Ts is a complete
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set of representatives of (PNBTB~Y\BI'/IV, then

Ex(z,8;0,¥,¢) = ﬁZB N(a;a)’“’EZ; Wdsag Waldy) - E(z, 53 0, AS(5), A).
e €Ty

PRrOOF. Put &@ = A¥(a) for « € GNP, D. Observe that
®Naa'a™ ' = APNal"a™Y).

Then the first assertion can easily be verified. Let S; be a complete set of
representatives of (PNEMVE™ H\EI. Then the S; for all £ T form a disjoint
union, which gives a complete set of representatives of (PNBI'8~ 1)\BT'. Tak-
ing this union as Rg of (4.10), we obtain our formula.

Proposition 5.4. Let E, denote the function of (4.10), and let { € G. Then the
constant term of Ey|¢ ™" contains y*~* nontrivially if and only if pr(¢) e
€ GNP,D with D of (4.9a). Moreover, the term involving y**~*” has the
form ab’y*™ ~* with aeC and 0 < beR.

Proor. Let a = pr(¢). By Propositions 3.3, 5.2, and 5.3, y* ~* appears non-
trivially in Ey| ¢~ only if o € PBT" for some 3 € B, that is, only if « € GNP,D.
Conversely, if « € PBI" with 8 e B, such a 8 is unique, and o € PEIY with a
unique £ € Tg. Therefore, Propositions 5.2 and 5.3 show that y** ~* appears
nontrivially in E,|{ ™' in the form as claimed.

Remark 5.5. To show that the exceptional case of Proposition 3.2 can happen,
take [F: Q] = 2 and set a = {v, w}. Take 0 so that 7T, = Z6. Then 0o = —6,.
Let p=su—(c—im0)/2 and r=tu — (6 — in6)/2 with s= (1 + in6,)/2,
t=(1+im86,)/2, and m, neZ. Suppose |m| # |n|. Then y?, y*~°7P, y',
y“~ 97" belong to the same set of eigenvalues {\y, \w}, Where 4\, = (1 — 0,)® +
+ (m + n)*0% and 4\, = (1 — 0w)* + (m — n)*02. If we put p = (¢ — im6)/2 and
p' = (6 — in6)/2, then y?, y*~ 7P y" and y*~ 7 can appear nontrivially in
E(z,s;0,4), E(z,1 — s;p,4), E(z,5;p0',4A), and E(z,1 — t;p’, A), respectively,
for a sufficiently small A.

6. Bilinear relations

Let A be a congruence subgroup of G and let I' = pr(A). Take a minimal finite
subset X of G so that G = (Jsex ®£A. For each £ € X, let Qr = PNpr(¢A:™1).
We consider a group

a b
6.1) 9=HO a“‘}

ae Ul,bem}
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with a fractional ideal m of F and a subgroup U; of g* of finite index. We
choose U; and m so that A¥(©) C ¢A£~! for all £€ X and a> 0 for every
ae Ui.

Let fe Q(o, \, A) and g € @(g, ', A). Assuming that both A\ and \’ are non-
critical, put, for each £€ X,

(6-20) flE =Dapy” + ...,
p

(6.25) gle™ = D bgey? + ...
q

with constants a,,, by, and p € C* as given in Proposition 3.1, where. .. in-
dicates the nonconstant terms of the Fourier expansions. If both X and N\’ are
critical, we put

(6.3a) FlE7 = ay? + alyPlogy“ + ...,
(6.3b) gl&™ ! = bey” + biyPlogy* + ...

with p = (u — 0)/2.

Theorem 6.1. Suppose N’ = \ and \ is noncritical and simple. Fix one expo-
nent p attached to \ and put q =u — o — p. Then

2 vil@p,tbg, e — g, tbp,5) = 0,

teXx
where v = [Qe{ £1}:©{ £1}]17 Y. If \ =\ and \ is critical, one has

2. ve(@rbt — atby) = 0.
teX

Proor. For 0 < reR, put
T, = {zeH*|y* >r}, M, = {ze H*|y* =r}.

We can find an 7 such that the sets £~ '(Q:\T,) can be embedded into I'\H*
without overlap. For each £, take a positive number r(§) > r. Also take a
union J of small neighborhoods of elliptic fixed points on I'\H?®. Let K be
the complement of Usex £~ (Q:\Try)UJ in I'\H?. Then K is a compact
manifold with boundary, and

oK = E;{E— NO:\Mip) — dJ.

Let ¢ be a '-invariant C*-form on H* of codegree 1. Then

(6.4) jKd¢=J6K¢=£§V5j35¢.S_I—JBJ‘p’
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where B; = 6:\M,¢; (with a natural orientation). We fix one v € a and put

w=y_2u H deAdyu,

vea

Co=(/2)y"*dzoA 1] dxwAdyw,

wFE U

and ¢ = fhy°¢, with two C®-functions f and 4 on H?® satisfying (2.7a) with
A and A (of Proposition 2.2), respectively. Then it is easy to see that

do = f6rhy°w — eof - hy'w (7 =0 — 2v).
Applying (6.4) to this and taking the limit when r— o, we find
(6.5) (S, 80h) = {eof, h)

provided that these inner products are meaningful, and that f or 4 is rapidly
decreasing in the sense that the inequality of (2.7¢) holds for every c e R. This
proves (2.25). Now take 4 = e,g with g of weight ¢. Then

do=1fLg ¥ v — euf - €08 - y'w.
Putting similarly ¢’ = ge,f - ¥’¢v, we find that
do —do' =3(fLig — Lif - g)y°w.
Applying (6.4) to this form, we obtain
D[ ULig—Lif-gp'o= S nfy (0= 0! = [0~ &)
We now assume that f and g are eigenfunctions with expansions as in (6.2a,

b). Then

pot = _%quﬁp,qu,Eyﬁ+q+v+ofv +...,
p.q
¢ o 5_1 = %Zl_’vﬁp,ébq.é}’i]+Q+u+U?v +....
P.q

Here the unwritten terms contain some contributions to the «constant terms»
of the Fourier expansions, but they tend to zero in our later limit process.
(This can easily be shown by virtue of (2) of Proposition 2.1.) Put U =
= {a*|ae U;}. Then ©\M, may be viewed as the product of R*/m and
{reR*|y> 0,y =r}/U. Then we can easily prove

Lemma 6.2. Let t = su + it € C* with s e C and 7 in the set Ty of (3.1). Then

[oug?" " 250 = (—i/2Dp@®®*/m)Ryr*
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where Ry, is the regulator of U defined by Ry = Rplg™: U{ +}] with the
regulator Rr of F.

Applying this to the first terms of (¢ — @) o £~ !, we find that
No= o) [ Soy'w +4 [5,(0 = @)
= w(R*/m)Ry > v >, (Do — qu)iip,bq,er§P? + . ..
p,q

teX
where e(p, @) = Dwea(Dw + gw + 0w — 1)/[F: Q). Suppose that '’ = X and \ is
simple. Then, with one exponent p fixed, the sum >, 5 can be written as

(2Pv — 1 + 00)(@p,bu—o-p,t — Au-o-p,bp,0).

Since \ is not critical, 2p, — 1 + o, # 0 for at least one v. Therefore, taking
the limit when J— ¢ and r: = o, we obtain the first assertion of Theorem
6.1. The second one can be proved in a similar way.

If \ is not simple, e(p, g) can be a pure imaginary number which is not
necessarily equal to 0. Therefore we obtain certain linear relations even for
multiple A, whose nature is somewhat different from that for simple A.

7. Construction of 91(s, A, A) by Eisenstein series

We are going to show that the space 9(o, \, A) of (2.23a) is generated by the
- series of type (4.1), their derivatives, and their residues. Given ¢ and \, we are
interested in the case where Q(a, \, A) # 8(g, A\, A), that is, the case in which
nontrivial constant terms appear. Then A must be given as in Proposition 3.1.
We assume throughout that A is simple. Then

(7.1) No=(So—p)(I —S0—pv), p=(c—1in/2

with so € C and an admissible 7 € R®. Notice that (so, p) may be changed for
(1 — s0, p) without changing (o, \). Notice also that (7.1) includes critical \ as
a special case. In fact A is critical if and only if so = ; and 7= 0; then p = 3.
This is so if and only if sou — p = u — sou — p.

In this section, we fix a complete set of representatives X of ®\G/A, and
also a subset Y of X that represents all p-regular cusp-classes of A; we then
denote by » the number of elements of Y. Further we let &[p, A] denote the
complex vector space spanned by the functions E(z, s; o, &, A) for all £e Y. For
a complex number so, we denote by &[so, o, A] the subspace of &[p, A] con-
sisting of all functions g(z, s) that are finite at so, and by &(so, p, A) the vector
space consisting of g(z,s0) for all ge &[so, p, A]. Similarly we denote by
&*[s0, p, A] the set of elements of &[p, A] that have at most a simple pole at
so and by &*(so, p, A) the residues at so of all elements of &*[so, p, A].
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Proposition 7.1. Both &(so, p, A) and E*(So, p, A) are contained in (o, \, A)
with \ of (7.1).

Proor. The spaces in question are contained in ®(o, A\, A) by virtue of Pro-
position 4.4. To prove that they are orthogonal to cusp forms, take a con-
gruence subgroup A’ C A so that

PNA = {Afﬁ((g Z”)) lae U1,beb}

with an ideal b and a subgroup U, of g* of finite index consisting of totally
positive units. Then (® NA')\H?® can be represented by B X A, with B = R*/b
and A= {yeR*|y> 0}/U where U= {a*|aec U;}. We now consider an
integral

L L;?Gé + iy)dx -y Dutegy

for fe 8(s, N, A) with any fixed \'. Since the constant term of fis 0, this is
obviously 0. If Re(s) is sufficiently large and ® = A’\H?, the integral can be
transformed to

‘f { 2 MthHo 'vz dp(z) = WP S, Ez, 55 0,47)).
& (ye(@Nan\a’

Therefore { f, E(z, s; p, A")) = 0 for sufficiently large Re(s). The same holds
with A instead of A’, by virtue of (4.3). Then the desired orthogonality can
easily be shown by analytic continuation.

Proposition 7.2. (i) dim &[p, A] = ».
(ii) The map g(z,s)— g(z,S0) gives an isomorphism of &[so,p, Al onto
&(S0, p, A) provided that \ of (7.1) is noncritical.

Proor. Assertion (i) follows immediately from Proposition 5.2. Let g =
= Yieva:E(z, s;p, £, A) € &[s0, p, A]l. Then we have
7.2) gz s0)|n ™" = @yl + (Z aefen)(so)y“-%"‘ﬁ +...

teY
for every ne Y. If N\ is noncritical, we have sou — p # u — Sou — p, and
therefore, if g(z, so) = 0, we have a, = 0 for all y € Y, so that g = 0. This pro-
ves (ii).

Theorem 7.3. With \, so, and p as in(7.1), suppose \ is noncritical and simple;
suppose also that &[p,A] = &[so,p,A]l and §&lp,A]l = &[5, p,Al. Then
(o, N\, A) = &(So, p, A), and Q(o,\, A) is the direct sum of $(o,\,A) and
&(So, 0, A).
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PROOF. Put p = sou — pand g = u — o — p. Let Y’ be the set of all £e X such
that ®£A is p-regular, and »' the number of elements of Y’. Given
feQ(a,\, A) and g € Q(a, \, A), we consider expansions

(7.3a) flé =ap? +apy?+ ...
(7.3b) gl P =bey? + biy? + ...
for each £ e X. By Proposition 3.3 and Theorem 6.1, we have

(7.4) Z veazby — Z veaiby = 0.

teY teY
Moreover, the map

(7.5) S ((@)zey, (@h)iev)

gives an injection of Q(a, \, A)/8(a, \, A) into C* with u = » + »’; a similar
statement holds with g and X instead of f and \. By Proposition 7.2 and our
assumption, &(so, p, A) is x-dimensional, and &(3o, p, A) is »’-dimensional.
Each g in the latter space produces a linear relation of type (7.4), and hence
the image of the map of (7.5) is at most »-dimensional. This combined with
(2.23a) completes the proof.
Remark 7.4. (1) If Re(so) = %, then, by Theorem 4.2, &[p, A] = &[so, p, A] ex-
cept whenso =1 and p = 0in Case I and sp = %, 7=0, and o is as in Theorem
4.1 in Case II. If &[p,A] = &[so,p, Al and Re(so) =1, then we have
automatically &[p, A] = &[S0, p, A], since 5p = So and p = p in those exceptional
cases.

(2) The pair (o, \) corresponds to (so, p) and (1 — So, ). Therefore, chang-
ing (so, o) for (1 — so,p) if necessary, we can take sp such that Re(so) 2%
without changing A.

Proposition 7.5. The number of p-regular cusp-classes of A is equal to the
number of p-regular cusp-classes of A.

Proor. Given p and A, we can find so so that &[p, A] = &[so, p, A] = E[1 —
— S0, 0, 4], &[p, Al = &[0, p, A] = &[1 — 50, p, A], and \ of (7.1) is noncritical
and simple (cf. Proposition 3.2). Then we have 9l(g, N\, A) = &(So, p, A) =
= &(1 — s0, p, A), which proves our proposition.

Proposition 7.6 Suppose I(o, \, A) = &(So, p, A), and \ is noncritical and
simple. For fe Q(g,\,A) and £€ Y, put

flEt=ay? +aty?+ ...
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withp=sou—pandgq=u—o—p. Ifa;=0 for all £€Y, then f is a cusp
form.

Proor. Let f = g(z,S0) + h with g € &[so, p, A] and % € 8(o, \, A). Writing g as
in the proof of Proposition 7.2, we see that the assumption a; = 0 implies that
g=0.

Theorem 7.7. Suppose every p-regular cusp-class of A is also p-regular.
Define a C*-valued meromorphic function Ea(z, s, p) by
(7.6) Ea(z, s, 0) = (E2, 53 0, &, A))zey.

Then there exists an End(CY)-valued meromorphic function ®4(s,p) on C
such that

(7.7a) Ea(z, s, p) = ®als, p)Ea(z, 1 — s, p),
(7.7b) ®a(1 — 5, p)Pals, p) = 1.

Moreover, there is a diagonal matrix A, depending only on A and Y, whose
diagonal entries are positive integers such that

(7.70) ®4(s, 0)A - "Ba(l — 5,0) = A.

PRrROOF. Put Au(s) = (s — pu)(1 — S — pu), p=5u —p,and g = u — 0 — p. Sup-
pressing the symbols z and A for simplicity, we have

(7.8a) E(s,0,8)|n"" = 6" + fan (57 + ...,
(7.8b) E(1-5,0,89|n"" =6y + g (1 — )P + ... (EneY)
with meromorphic fz, and gg. Then, for every ¢ € Y, we have

(7.9) {E(l ~550 = % gall - s)E(s,p,m} ” ¢ =
=0y* + {65; - n;ygg,,(l - s)f,,;(s)}y" +....

Now we can find a nonempty open subset W of C such that E[p, A] =
= &[s, p, A] = &[1 — 5, p,A], E&lp, A] = &[5, p,A] = &[1 — 5,p,A]l, and that
A(s) is noncritical and simple for every s € W. (As to simple \, see Proposition
3.2.) Now the left-hand side of (7.9) without | ¢ ! belongs to 9(a, A(s), A) for
s € W. By Proposition 7.6, we have

E(I - S, 5’ E) = Zygfﬂ(l - S)E(S’ P, 77),
ne

b = 2 8t (1 — )fye(5).
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Writing ®(s, p) for the matrix (fz,(s)), we obtain (7.7a, b). Now
E(1-50,8]17" =607+ fu(l — 507 + ...,
and E(1 — §, p, £) belongs to G(o, \, A) for se W. By (7.4), we have

Z V[0 05y — Sfen(S)fey(1 — 5)] = 0.
neyY
Denoting by D the diagonal matrix whose diagonal elements are »,, we obtain
D = &(s, p)D - '®(1 — 5, p), which proves (7.7¢).
By Remark 7.4, (1), E(z, s; p, &, A) is finite at s = ; and hence ®a(s, p) is
finite at s = ;. Moreover, we have ®(3,0)* =1if 7=0.

Theorem 7.8. Suppose \ is critical (and hence p = g) Let 8’(% R A) denote the
space spanned by (9g/95s)(z, ;) for all g € &[p, Al, and (3 , p, A) the subspace of
8'(% , 0y A) consisting of (0g/ds) (z, %) Sfor all such g satisfying g(z, ;) = 0. Further
let v . (resp. v _) the multiplicity of 1 (resp. —1) in the eigenvalues of d)(i , p).
Then x =vy + v_, dimS(%,p,A) =v,, dimSé(%,p,A) =vy_, and

&'(3.0,4) C U, N, 4) = &(5,0,4) @ 845, 0, 4).

Moreover, 8(% R A) consists of the elements of (o, \, A) that do not involve
y(u —-0)/2 logy".

Proor. For simplicity, let us suppress the symbols p and A occasionally. That
an element of 8’(%) satisfies (2.7a, b) can be verified immediately. That it
satisfies (2.7¢) is shown in the proof of Proposition 4.4 in Section 11, and
hence 8’(%) C @(o, N). The orthogonality with cusp forms can also be seen,
because the integral expressing < f, g(z,s)) is uniformly convergent in a
neighborhood of s = ; for every fixed cusp form f. Thus §'(3) C 9U(s, N). Put
p = (u— 0)/2. From (7.8a) we obtain

E(3,0.8) |07 = [ba + fa(5)7 + -
QE/3s)(3,0,8) | 17" = [8er — fun(3) 7" log y* + (@fen/dS)(5)7" + . . . .

For g(z,5) = 2Cc:E(s, p, £) with ¢ = (c)ieyeC¥, we have g(z, ;) =0 if
and only if ‘@(%)c= —c. Hence dim 8(%) =p,. If ’@(%)c= —c, we have
(ag/as)(z, %) ” 7~ ' =2c,y"logy™ + ..., which shows that dim 86(%) =p_.
Since no element of &(}) involves y”log y*, we see that §(3) and &¢(}) form

a direct sum of dimension ». Now Theorem 6.1 shows that 91(o, A\, A) has
dimension <x. Therefore we obtain all the remaining assertions.
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Theorem 7.9. With \, so, and p as in (7.1), suppose that \ is real, noncritical,
and simple. Suppose &[p, A] = &*[so, p, A] and a cusp-class of A is p-regular
if and only if it is p-regular. Then (o, \, A) has dimension x, and is the direct
sum of &(So, p, A) and &*(so, p, A).

Proor. Define R:&[p, A] = &*(so,0,A) by R(g) = Ress,g(z,s). Then
&[s0, p, A] = Ker(R), so that, by Proposition 7.2,
dim &(so, p, A) + dim E*(so, p, A) = »x.

Let & € &(so, p, A)NE*(s0, p, A). Then A(z) = r(z, So) = R(g) with r € E[so, p, A]
and g € &]p, A]. Put

(7.10) r= aE@zs;p,&4), g= 2 biEQz,s;p, £ A)
teY teyY

with a, b; € C. Then, for n € Y, we have
hln~!=ay” + (2eaefen) (SO + ...
=0y” + (ZgbgResngn>yq + .o,

where p = sou — p and ¢ = u — 0 — p. Hence a, = 0 for all 5, so that 2 = 0.
Thus &(so, p, A) and E*(so, p, A) form a direct sum of dimension ». Consider
again the map of (7.5) of Q(c,\, A)/S(0, \, A) into C?*. Now the relation of
Theorem 6.1 shows that the image of the map has dimension at most ». This
completes the proof.

Remark 7.10. Given o and \, we can take 5o and 7 so that Re(so) > %and (7.1)
is satisfied. By Theorem 4.2, we have &[p, A] = &*[so, p, A] if Re(so) = %;
moreover, the pole occurs only when so = 1 or =3, and p = 5. Theorem 7.9
is applicable to such cases.

Remark 7.11. If p = 0 and 5o = 1, we see that *(1, 0, A) consists of the con-
stants, as shown in Proposition 4.3. Therefore we obtain

(7.11) dim &(So, p,A)=x —1 if p=0 and so=1.

Combining Theorems 7.3, 7.8, 7.9 and Remarks 7.4, 7.10, we obtain
Theorem 7.12. If \ is simple, (o, \, A) has dimension x.

In this section, we treated 9U(o, \, A) only for simple A. If N is multiple,
(o, N\, A) is probably generated by Eisenstein series with several different
(50, p), as Remark 5.5 suggests. The proof of this fact does not seem very dif-
ficult, though the author has no complete result.



ON THE EISENSTEIN SERIES OF HILBERT MobpuLAR GRoupPs 31
8. Applications to holomorphic forms

Let 3C(0, A) denote the set of all holomorphic functions on H® satisfying
(2.7a, c¢), and 3C(o) the union of ¥C(o, A) for all congruence sugroups A of G,.
(It is well known that (2.7¢) follows from (2.74) and the holomorphy if
F 3 Q.) If fe 3C(0), it has an expansion

8.1) ) f(2) = bo + Oghl brea(hz)

with a lattice m in F and complex coefficients bo and bx. Given a subfield K
of C, we denote by ¥C(o, K) and 3C(o, A, K) the subsets of 3C(¢) and IC(o, A)
consisting of all f such that the coefficients by and bx belong to K. We shall
be especially interested in the case where K is the maximal abelian extension
of Q which we denote by Qgsp.

Proposition 8.1.
(i) 8(0,0,4) C (o, A) C C(a, 0, A);
(i) 8(o,0,A) = ¥(o,A) if 0 ¢ Qu.

Proor. Assertion (i) is a restatement of Proposition 2.5. If fe 3C(0, 4), £€ G,
and co is the constant term of f | £, then (2.13b) shows that co = a°co for every
a in a subgroup of g* of finite index. Therefore ¢o = 0 if o ¢ Qu, which
proves (ii).

In order to study the holomorphic elements of 91(s, 0, A), put

8.2) NI (g, A) = (0, A)N (o, 0, A).
From (2.23a) and the above (i), we obtain
(8.3) 3C(0, A) = 8(0, 0, A) @ INIH(o, A).

The main purpose of this section is to show that 913C(o, A) can be obtained
from Eisenstein series. By (ii) of the above proposition, the problem concerns
only the case o € Qu.

Proposition 8.2 Let E(z, 5) denote any series of type (4.1), (4.4), or (4.10) with
2p = 0 = tu, 0 < t €(3)Z. Suppose k = 2t in Case II. Then the following asser-
tions hold:

() E is finite at s = t/2.
(ii) If t >2 or t = 1, E(z, t/2) belongs to 3C(tu, Qap).
(iii) Suppose t =2 or t = 3/2; suppose also F # Q. Then E(z, t/2) belongs
to 3C(tu, Qas).
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(iv) Suppose F=Q and t>1. Then Ei(z,t/2;tu/2,¥,c) belongs to
JC(tu, Qup) except in the following two cases; (A)t=2and Yy =1;(B) t=3/2
and J* = 1.

(v) Suppose t = 1/2. Then E(z, s) has at most a simple pole at s = 3/4 and
the residue is w~ "Ry times an element of 3C(tu, Qab), where R is the regulator
of F.

Proor. The assertions in Case II are included in [13, Theorem 2.3]. In Case
I, the results are essentially due to Hecke [1] when F = Q, and to Kloosterman
[2] and Klingen in the case [F: Q] > 1, though our formulation is different
from theirs. In the present formulation, the assertions in Case I are included
in [12, Theorem 7.1] as special cases.

Theorem 8.3. Let 2p = ¢ = tu with 0 < te(i)Z. If t >3, one has

(8.4) NIC(o, A) = &(5, p, A)NI(0, A).
Moreover
(8.5) N3IC(o, A) = &(5,p,4)

except in the following three cases: (i) t = 1; (i) ¢t = 3 and F = Q; (iii) ¢ = 2
and F = Q.

Proor. The last assertion follows from (8.4) and Proposition 8.2. Now Pro-
position 3.2 shows that \ is simple if A\ = 0. Moreover, A is critical if and only
if ¢ = 1. Therefore, putting so = § with 7 > 1 in Theorem 7.3, we obtain

(8.6) N(o,0,4) = §(5,0,4) if 1>1,

which proves (8.4). If ¢ = 1, the last part of Theorem 7.8 proves (8.4).
As for the case ¢ = 1, we have

Theorem 8.4. 913C(%,4) = 8%(2,%, A).

ProoF. By Proposition 8.2, (v), 8%(2,%,A) C 3¢(%, A). In view of Theorem
7.9, it is sufficient to prove that O is the only holomorphic element of
8(%,"{-,A). To see this, let re 8[3—,;‘,A] and express 7 as in (7.10). Then we
see that

u/2

n(z3) “n‘1=a,,y +opt...

with ¢, € C for every € Y. If r(z, 43) is holomorphic, we have a, = 0 for every
1, so that r = 0, which proves the desired fact.
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Remark 8.5. The result of [13, Proposition 6.4] tog>ther with (4.3), (4.12),
and (4.24) shows that the elements of 8*(‘3;,}4‘-, A) are theta series.

As to the previous investigations on 913C(a, A), the reader is referred to the
papers mentioned in the introduction.

9. Cyclopean forms

We call an element f of Q(o, \) a cyclopean form (or simply a cyclops) of expo-
nent g, if the following conditions (9.1a, b, ¢) are satisfied:

9.1a) feI(a, N);

(9.1D) forevery £€ G, the constant term of f| £ is of the form cy? with c; € C;
that is, it has no term of the form by” with p other than gq;

2~ 0v)/2 (Case I),

9.1¢0) (1 —0s)/2 <Re(gy) < {(3 ~ 20,)/4 for every vea (Case II).

By Proposition 3.2, (9.1¢) implies that X is noncritical and simple. By (3.65),
we can put ¢ = (1 — so)u — p and p = (¢ — i7)/2 with so € C and an admissible
7. Then (9.1¢) is equivalent to

0 (Case I),
1
©.2) 2 > Re(so) > L’; (Case 1I).
We also note that
9.3) o = gu(l = 00 = qu) = (50 = po) (1 — S0 — Bv)-

Put p = sou — p. If fe R(o,\), we have, for £€G,
fle=bey? +cy?+ ...

Thus (9.15) means that b; = 0 for every £€G.

Theorem 9.1. Let p = (0 — i7)/2 and g = (1 — so)u — p with so € C and an ad-
missible 7. In Case 11, let k be an arbitrarily fixed odd integer. If there exists
a nonzero cyclopean form of G(o, \) of exponent q, then there exists a Hecke
character Y of F such that

(9.4a) L(2s0,¥) =0  (Case I),
(9.4b) L(4so — 1,¥») =0  (Case II),

9.5) Y(x) = |x|="(x/|x|)" for x e FX, where ¢’ = o in Case I and
o =0 — ku/2 in Case II.
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Conversely, suppose there exist a Hecke character ¥ of F and a complex
number sy satisfing (9.2), (9.4a or b), and (9.5). Then there exists a nonzero
cyclops of Q(o,N\) of exponent q. More explicitly,

[L2s, YE(z, 550, ¥, )ls=so (Case I,
[L(4s — 1,YDEk(z, 530, ¥, Ols=so  (Case II)

are cyclopes, for every multiple ¢ of the conductor of ¥ that is divisible by 4
in Case II.

Proor. We prove this only in Case II; Case I can be treated in a similar way.
Suppose L(4so — 1, y?) # 0 for every ¢ of type (9.5). Then 5 has the same pro-
perty. Let f be a cyclops of exponent g belonging to 9U(s, \, A). Theorem 4.1
together with (4.3) and (4.24) shows that &[p, A] = &[so, p,A] and
&Elp, Al = &[S0, 0, A]l. By Theorem 7.3, we have f(z)= h(z,s0), h=
= Dieva:Er(z, 550, £, A) with a; € C. Putting p = sou — p and employing the
notation of Proposition 5.2, we have

Sl =ap? + <Z asf@)(So)y" +...
teY

for n € Y. Hence a, = 0 for all ne€ Y, so that f =0, a contradiction.
Conversely, suppose L(4so — 1,¢?) = 0 for so and y satisfying (9.2) and
(9.5). Take any common multiple ¢ of 4 and the conductor of ¢, and put

g(z,s) = Lc(4s — 1, YPEk(z, 5; 0, ¥, ©).

By Theorem 4.1, g is finite at so. Hence g(z, so) belongs to 91(e, \) by Proposi-
tions 7.1 and 5.3. Now, for every { € G, we have, by Proposition 5.4.

8(z,9) | ¢ = ac’Le(ds — 1, Y2 " + ...

with e C and 0 < ceR. Therefore g(z, so) satisfies (9.15). To show that
2(z, so) # 0, we consider an element 7o of G as in [13, (4.10)]. Then the Fourier
coefficients of g | A%(no) has been determined in [13, §6]. In particular, its
constant term at Sp is a nonzero constant times L.(4so — 2, y?)y?. Since
—1 <45y — 2 <0, this term is nonvanishing. This completes the proof, since
L./L is nonvanishing for this value.

Proposition 9.2. Let so be a complex number satisfying (9.2). Define ®4 as
in Theorem 7.7 for each A such that a cusp-class of A is p-regular if and only
if it is p-regular. Then a Hecke character y of F satisfying (9.4a or b) and (9.5)
exists if and only if det ®a(s, p) has a pole at sy for some A. Moreover, the
maximum number of linearly independent cyclopes in 9(ag, \, A) with \ of
(9.3) is » — rank ®,(1 — S0, p).
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Proor. By Theorem 7.3 and Remark 7.4, (1), we have 9U(g, N\, A) = §(1 —
— S0, 8, A). Given (a row vector) ce CY, we have

_ | -
S eeB(l = 50,5, 8 " Nl =+ Seega(l = s’ + ...

with the same notation as in (7.85). This gives a nontrivial cyclops of exponent
q if and only if ¢ # 0 and ¢®a(l — So, p) = 0, which proves the last assertion.
The first assertion follows from this fact, Theorem 9.1, (7.7b), and Proposi-
tion 3.4.

10. Appendix I: Whittaker functions
For y > 0 and (a, 8) € C?, we put
(10.1) 0, o, B) = j:e-ﬂ(l + 0P gy,

This is convergent if Re(8) > 0. We have obviously
]
(10.2) <5>T(}’, «, B) = _T(.y’ a’B + 1)'

Since (1 + )™ = (1 + H*~ (1 + #), we obtain

(10.3) 7y, +1,68) =7y, a,8) + 7(¥, o, B + 1).
Integration by parts shows

(10.4) Br(y,a+ 1,8 =yr(y,a+ 1,6+ 1) — ar(y,a, B + 1).

From these formulas, we obtain easily

(10.5) [y(—a—»)Z t@+B-y)- 9 B}T(y, o, B) = 0.
ay ay

Let us now put

(10.6) Vi, o, B) = e >yPT(8) " '1(y, , ).

From (10.3), we obtain

(10'7) V(y,Ol+ 1’:8)= V(y’a"' 1,B+ 1)—ay_1V(y,a,B+ l)

This shows that ¥ can be continued as a holomorphic function in (¢, 8) to the
whole C?. Now we have

)’BT(y, a,ﬁ) = j:e_t(l +.Y_12‘)°‘_1t6_1dt_
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Therefore we see, at least for Re(B) > 0, that

(10.8) lim e?V(y, o, B) = 1.

y oo

Since this is consistent with (10.7), we can easily verify that (10.8) holds
uniformly for (a, 8) in any compact subset of C>.
We now consider a differential equation

(10.9) VL) + apf () + N+ Aoy — Ay))f(3) = 0

with A eR>, (6,\) eC? and 0 < yeR.

Proposition 10.1. Let o and 8 be complex numbers such that o — 3 = o and
B(1 — a) = \. For fixed a, B, and A, define a function f, by

V(2Ay, a, () if A>0,

fA(y)= [|2Ay|_UV(_2Ay’6a Ol) l‘f A<O.

Then f, is a solution of (10.9). Moreover, if f is a solution of (10.9) and
f(») = O(y®) with BeR when y — w, then f is a constant multiple of f.

Proor. That £, is a solution of (10.9) fellows from (10.5) in a straightforward
way. Let f be a solution of (10.9) such that f(y) = O(y®). Then

Oy =y (f" + oy )=y (4> — Aoy~ = D) f= 00

with C € R when y — co. It follows that y°f’, as well as f*, is O(y?) with D e R.
Now put h=ff —fuf. Then h'=f,f"—fif= —oy~'h, and hence
h = ay ~° with a constant a. Since both £, and f are O(e ™ *P"?) as can easily
be seen from (10.8) and (10.2), we see that ¢ = 0. Therefore f is a constant
multiple of f.

In Proposition 10.1, we can change (¢, 8) for (1 — 8,1 — o) without chang-
ing o and \. Therefore V(24y,1 — 3,1 — o) for A > 0 is a solution of (10.9),
and hence must be a constant multiple of f,. In view of (10.8), we thus obtain

(10.10) Vy,1-8,1-0a)=V,a,p).

We note also that, given a compact subset K of C?, there exist two positive
constants B and C depending only on K such that

(10.11) |V, B)| <Ce™* (1 +y~B) fory>0and (a,B) eK.

This can be proved in an elementary way by means of (10.1) and (10.8); for
details, see [11, pp. 282-283].
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With o, \, A, and £, as in Proposition 10.1, define a function ¢, on H by
(10.12) ealx + iy, 0,N) = e"f,(»).

Further define operators e and 6° on H by ef = —y?3f/0Z7 and &°f =
=y~ %(¥°f)/dz. Then we can easily verify, employing (10.2), (10.3), and
(10.4), that

N4AI) Yoz, 0 - 2,\ + 2 — o) if A>0,

10.13 ,0,N) = - i
(10130 eealz o) {MAn‘m@m—2A+2—0) if A4<0,

iAoz, 0+ 2,\ + 0) if A>0,

10.13b) ¢6° ;0,N) = ; i
( ) 0°04(2,0,N) [()\+g),A¢A(Z,a+z,)\+a) if A<O.

11. Appendix II: Proofs of Propositions 2.1, 2.2, 2.3, and 4.4

Throughout this section, we put Up= {aeg™ |a> 0}, u(y) = Min{y, | vea}
for y e R?, |z| = (|zv])vea and {z} = 2vea zy for z € C*. For example, we have
ea(i|h|y) = exp(—2x{|h|y}) for he F and 0 < y e R®.

Lemma 11.1 Lef a be a fractional ideal of F, and (3 an element of R®. Then
there exist positive constants A, B, and C such that

0 Z |h|6e3(i|h’y) < A(l + y.(y)—B) exp(—Cy”/”),

Z“hea
for 0 < yeR.
PrOOF. Let | k| = (A%} If ¢ >0, then |hy|° < |2]€, and

|h,,|"f=’h-" I Al < N@~<[h]"~ D for 0#hea.
wFU

Therefore |h|° < A| k| for 0 # A € a with positive constants A and b. Now
{|#|y} = n|hy|*" = nN(@)""y*" for such h. Put C = wnN(a)"’”. Then
2x{|h|y} = w{|hly} + CY*"" = 7u(y)| h| + Cy*". Therefore we have
Sn|h|P exp(—27{|h|y}) < A - exp(—Cy™"™) T | h|® exp(—mu(») | h]). Since
there are only finitely many A’s in a such that | 4] < 1, we may assume, chang-
ing A for a larger constant, that b is a positive integer. For 0 < m € Z, let pn
be the number of elements # of a such that m — 1< |A| <m. Then
Pm <Dm"™ ! with a constant D, and the last sum >} is majorized by
DYoo mbtnle! =™ with t = wu(y). Thisis < E(1 + ¢t~ ?~") with a constant
E, which completes the proof.
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Lemma 11.2. Let A be a congruence subgroup of G, and f a continuous func-
tion on H® satisfying (2.7a, c). Then there exist two positive constants A and
B such that

11.1) Y7 (x + )| AP+ y~ B forall x+iyeH

Proor. With a compact fundamental domain M of R*/g and 0 < ce R, put
(11.2) T.={x+iy|xeM,uy) > c}.

Then we can take a finite subset X of G so that H® = Ugea,sex BE(T?).
By (2.7¢), we can find two positive constants A and B such that
Y2 & (x + iy)| < Ay®* if w(y) >c and t(eX. Given z=x+iye H,
take BeA and £e€X so that z=p0&2) with z'=x"+iy'eTc. Let
pr¢"Y) =(, ¢)andpr(8)~'=(; ;). To prove our lemma, we may assume
that pr(A) C SL»(g). Then r, s € pg + gg. Let D be the smallest of M(pg + gg)
for all £e X. If r # 0, we have [r*| > D. Now y"™ = y"|rz + SI‘Z" <D ¥y,
and hence |y7*f(2)| = |yXf| BHE)| < AyB* < AD*»Y)™E if r=0.
When r = 0, we have y™ = s~ 2“y* < D~ %)%, so that |y”*f(z)| < A(D~*y*)%.
This proves our lemma.

Proor ofF ProrosiTioN 2.1. Given fe Q(o, \, A), define by as in (2.21). By
Lemma 11.2, we see easily that

(11.2) |y 2bn W(hy; o, N)| < A'(V%* + y~ %)

~with positive constants 4’ and B independent of y and 4. let U be a subgroup
of Uy of finite index such that A¥(diag[a, @~ ']) C A for every a € U. Now we
can find two positive constants c¢; and ¢, with the following property: given
0 <yeR? there exists an element @ of U such that ¢;y*" < aly, < cay™™
for every v € a. Hereafter ¢, for m = 3,4, ... will denote constants indepen-
dent of 4 and y. Given 0# heF, take ae U so that c¢i|h|"” < |avhs| <
< 2| h|*". By (10.8), we can find a constant d > 1 so that |V(g; aw, Bv)| =
>2"'e7#2 and |V(g;Bu, ) =27 e 2 if g>d. Put t=ci 'dhl """
Then ta,|hy| = d, so that

(11.3) |(tah)”"*W(tah; o, N)| > cs|tah|” e~ 2mehl}
where oy = sgn(h.)o,. Taking fa to be y in (11.2’), we find that

|(t@)"*by W(tah; o, \)| < A'(t"B + ¢t~ "B),
which together with (11.3) shows that

|h a/thI C4(tnB + l‘—"B)|tah| —a'/2e27rt{|all|}'
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Since ¢ = ci 'd|h|~*" and |avhy| < c2|h|*", we have |(tah),| < dca/c1, and
hence |2~ "?bs| < cs|h|B. This proves (1) of Proposition 2.1. Next, we see
from (10.11) that

(11.4) | W(hy; o, \)| < c6 Zg |hy|*ea(iny)
SE!

with a finite subset S of R*. Hence, by Lemma 11.1, we obtain

(11.5) o2 hZO | W(hy; o, N)| < ¢ Z;gys(l + p(») By exp(—Cy*’™)
= se

with constants B and C independen of s. Now the left-hand side is invariant
under y = a?y with a € U. Given y, take a € U so that c;y*/" < (a*), < c2y™™
for every v ea. Then u(a%y) > c1y*" and (a%)° < cs(¥P* + y %) with D in-
dependent of s. Hence, substituting 2y for y in (11.5), we obtain

(11.6) 723 b Why; 0, V)| < co(yF* + y = E*) exp(— Cy*™)
h#0

with a constant E, which proves (2) of Proposition 2.1. Assertion (3) is now
an easy consequence of (2) and (2.7c). To prove (4), take fe 8(o, \, A) and
take X as in the proof of Lemma 11.2. Applying (2) to f] £ for each £ € X, we
see that y*%f is bounded on the whole H®. Therefore we can take B = 0 in
(11.1) and also in (11.2"). Repeating the proof of (1) with B = 0, we can con-
clude that 2~ “?by, is bounded. This completes the proof.

Lemma 11.3. Let f be a C*-function of form (2.21) satisfying (2.7a, b). Sup-
pose |by| < p|lh|™** for 0 # h e m with positive constants p and q. Then f
satisfies (2.7¢).

Proor. Applying the above proof of (2) to f — bo(y), we obtain, from (11.6)
that

Y7 f = bo(y)| < AP + y~ Yy exp(—Cy*™).

Since bo(y) is a linear combination of the functions of Proposition 3.1, we
have y°?| f(z)] < A'(y’* + y~7*) on H® with constants A’ and J. Then (2.7c)
can easily be verified.

PRrOOF OF ProPOSITION 2.2. Let g € @(o, N\, A). It is straightforward to see that
evg and 67g satisfy (2.7a, b) with modified o, A\, and A as stated in the pro-
position. To verify (2.7¢), take £€ G,. Then (es8) | &+ = eu(g] £) by (2.5b).
Since g| £ € Q(o, N), it has an expansic. of type (2.21) with b;, as in (1) of Pro-
position 2.1. By (10.13a), we see that

(€08) | &4 = evbo + D, caW(hy; 0 — 20, N + (2 — 6u)V)
0#h
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with ¢ satisfying (1) of Proposition 2.1 with ¢ — 2v instead of ¢. Therefore,
by Lemma 11.3, €,g satisfies (2.7¢). The assertion for 6°,g can be proved in
a similar way.

Proor or ProrosiTION 2.3. We first note that given two positive integers a
and p, and a positive real number r < 1, one has

(11.7) >, m°x™ = Ca,)p°x? for 0<x<r
m=p

with a constant C(a, r) independent of p and x. In fact,
Z mexm™ P = Z (n +p)axn < Z <.>pa—1 Z nirt.
m=p n=0 i=0 \! n=0

Now take X as in the proof of Lemma 11.2. For f€ 8(o, \, A) and £€ X, put
My = Max|y**f| and

fl&= ; bu, e W(hy; 0, Nea(hx).

Since | y°/2(f] £)| < My, we have |bx, s| < AMy|h|”’* with a constant A4 indepen-
dent of £, as can be seen from the proof of (1) and (4) of Proposition 2.1. Fix
an integer p > 1 and suppose by, = 0 for all £ e X and all / such that | 4] < p.
Then, by (11.4), we have

|y7%f| | < BMj ZS |hy|”%* *ea(i| h|y)

with a constant B independent of f. The same reasoning as in the proof of
Lemma 11.1 shows that, for any fixed ¢ > 0, we have

Y72 f1E < CMy 35 me™ ™) if w(y)>gq
m=p
with a constant C and a positive integer @ independent of £. By (11.7), we have
|y 2f| &| < DaMyp®e ™™ for w(y) > q with a constant D, independent of f
and p. Take g to be c of (11.2). For every z € H*, take 8 € A and £ € X so that
z = B&z’) with 2’ = x' + iy’ € T,. Then

1Y% @) = 1y*f(BEE| = [y (f18H @),

and hence M; < D,Mp“e™ ™4. If p is sufficiently large, we obtain My = 0.
This shows that f = 0if b,z = 0 for || < p and for all £ € X. Thus §(a, \, A)
is finite-dimensional. Now the constant term of an element of @(o, \) belongs
to a 2"-dimensional space as shown in Section 3, and hence G(a, A\, A)/S(0, \, A)
is finite-dimensional. This completes the proof.
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Proor ofF ProrosiTiON 4.4. By (4.3) and (4.24), we may restrict E to the func-
tions of type (4.10). Then our first assertion follows immediately from
Theorem 4.1. Suppose g is finite at so. By (4.4) and analytic continuation, we
see that L7g(z, so) = N\vg(Z, So). In order to verify (2.7¢) for g(z, so), we con-
sider a function D’ which is obtained from D of Theorem 4.1 by replacing E
by E’, where E’ is defined by (4.16) in Case I and by [13, (4.10)] in Case II.
Then we take a Fourier expansion

(11.8) I(s)D'(z, 5) = ao(s, y) + IZO an(S)W(hy; o, Nea(hx),
1 7

where /(s) is the polynomial 1, s(s — 1), or s — i that cancels the pole(s) of D'.
Then for every compact subset K of C, we have |ax(s)| < A|h|*+ B forse K
with positive constants A and B depending only on D’ and K. This follows
from the explicit form of ax(s) given by (4.20) in Case I and by [13, Theorem
6.1] in Case II. Then Lemma 11.3 shows that /(s)D'(z, s) satisfies (2.7¢). Put
q(z,8) = I(s)D'(z, s)| £ with any £€G. Then g(z,s) belongs to @(s,\) and
satisfies (2.7¢) uniformly on K. By a well-known principle, the same type of
estimate holds for d™q/ds™ for every m. Now we consider a finite linear com-
bination 2, f,(s)q(z, s) with meromorphic functions f; on C. We observe that
if it is finite at so, it satisfies (2.7¢). This completes the proof.
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