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Introduction

The aim of the present work is to present a geometric formulation of higher
order variational problems on arbitrary fibred manifolds. The problems of
Engineering and Mathematical Physics whose natural formulation requires
the use of second order differential invariants are classic, but it has been the
recent advances in the theory of «integrable» non-linear partial differential
equations and the consideration in Geometry of invariants of increasingly
higher orders that has highlighted the interest of being able to work with a
general formalism for higher order variational problems (see for instance [5],
[71, [8D).

As in the case of first order problems, the central point of the theory lies
in the construction of the Poincaré-Cartan form associted to a Lagrangian
density. The method followed here for such a construction has been to analyse
the reiterated process of integration by parts classically employed in the local
deduction of Euler-Lagrange equations. The conclusion reached is that if we
wish to carry out this process for an arbitrary fibred manifold p: ¥ — X, this
depends essentially on the choice of a derivation law V on the vertical bundle
V(Y) and on a linear connection Vo of the manifold X. By means of the
derivation laws V, V it is possible to define an operator L, called the total Lie
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derivative, which will allow us to globally perform this process and through
which the diverse differential forms of the theory are expressed with intrinsic
and explicit formulas. Furhtermore, the process itself, understood in this way,
gives rise to the definition of the Poincaré-Cartan form © associated to an r-
order Lagrangian density £v (Proposition 5.1 and Theorem 5.2). In fact,
from a methodological point of view, this work could be considered as an ex-
tension to higher order problems of the method used in [2] for first order pro-
blems. These are the main characteristics of our method for the construction
of higher order Poincaré-Cartan forms. Other different procedures to obtain
such forms have also been presented recently ([1], [9] and [12]).

In the classical cases (i.e. when either r < 2 and # is arbitrary, or n = 1 and
r is arbitrary) the form © depends neither on Vo nor on V and its expression
coincides with that obtained by different authors using different methods (see
[21, [6], [7], [14], [16]). In the general case (i.e. when r > 2 and n > 1) © does
not depend on V but it does depend on Vy; that is, we have a family of
Poincaré-Cartan forms ©(Vy, £Lv) which are parametrized by the linear con-
nection Vo. Regarding this, it should be noted that the expression in local
coordinates of the Poincaré-Cartan form for higher order variational pro-
blems which appears in certain works, even recent ones (and which in our con-
struction corresponds to the form associated to the flat connection determined
by a coordinate system) is not covariant in the general case; that is, when r > 2
and n > 1. Hence, the results obtained by using the aforementioned form are
strictly local. In a more geometric sense, we could say that the only global
results of higher order variational calculus are precisely those which remain
convariant with respect to the linear connection Vo which parametrizes the
Poincaré-Cartan forms.

According to the procedure in [2] and by an adequate differential
characterization of the notion of infinitesimal contact transformations, we
formulate an r-order variational problem as a problem of invariance of the
functional defined by an r-order Lagrangian density with respect to the Lie
algebra of the infinitesimal contact transformations of the fibred manifold Y.
This geometric presentation of variational problems (which is sufficient for
the aims of this work) has the advantage of showing from the start the fun-
damental group of transformations which plays a part in the theory and which
allows us to give a strictly differential treatment to it. In this context, the
variational formula of Lagrangian density is expressed by an equation in the
bundle J¥ ~ 1(Y) among the diverse differential forms of the theory. Natural-
ly, when this equation is integrated along a holonomic section we obtain the
expression in terms of the Euler-Lagrange operator well-known in the func-
tional formulation of variational calculus (Proposition 9.1).

It is interesting to make the observation that, from this point of view, our
construction of Poincaré-Cartan forms is invariant with respect to the group
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of vertical automorphisms of the fibred manifold Y. Indeed, if ¢ is a vertical
automorphism of Y, we have J* ~'(¥)*6(Vo, £v) = O(Vo, S ¥)*(Lv)). In
fact, this formula is a particular case of Theorem 10.1 in which the behaviour
of O(Vo, £v) is analised with respect to an arbitrary automorphism of Y (not
necessarily vertical). This theorem also has an important repercussion in the
definition of the Poisson brackets on the space of Noether invariants (Pro-
position 10.5).

Both the variation formula of Lagrangian density and the principal results
of §9 are based on an explicit formula for the exterior differential of the form
O obtained in §7. This formula also contains good information about the
geometric properties of the variational problem defined by £v. For example,
it allows us to decide when the form © (defined on J* ~1(Y)) is projectable
to J¥~"Y)for h=2,...,r(Corollary 7.7). This is an important question in
that since O is defined in a jet bundle other than that of £v, the notion of
regularity for higher order problems in Field Theory has an aspect very dif-
ferent from its usual one. This problem will be dealt with in a later work.

A lot of the material contained in sections §1-§7 was part of the author’s
PH.D. thesis at the University of Salamanca and their main formulas were an-
ticipated (without proof) in [3]. I should this like to reiterate my thanks to
Professor P.L. Garcia for his interest and encouragement. Nevertheless,
other results are new (for example, the independence of the products (, )«,n
for kK + /= 2r + 1 in Theorem 7.2 and Theorems 8.1 and 10.1). Such results
complete the development of the theory.

1. Preliminaries and notations

Let p: Y — X be a fibred manifold (i.e., p is a surjective submersion). We shall
use the notation V(YY) for the sub-bundle of 7(Y) of vertical vectors over X.
If f: X' — Xis a differentiable mapping, we denote by f*(Y) = X’ the induced
fibred manifold; we shall also write Y. = f*(Y) (specially when fis an open
immersion). If £— X is a vector bundle, we denote by I'(E) the C”(X)-mo-
dule of differentiable sections of E over X; for any open set U C X we write
T(U,E) =T(Ey). If E;— X, is a vector bundle and f;: X — X; is a differen-
tiable mapping, with i = 1, 2, we shall denote by E; ® x E,, Hom, (£, E,) the
vector bundles f}(E,) ® f3(E,), Hom (f¥E,, fE,), respectively. Let E be a
vector bundle over X and w, a E-valued g-form. We recall that by pulling w,
back via a differentiable map f: X' — X, we obtain a f*(E)-valued g-form
J*(w,) over X'; we shall often denote this form by w, ras well (specially when
f+ X' = Xis a submanifold). All the definitions and results concerning valued
differential calculus have been taken form [11]. The interior product and the
Lie derivative (relative to a derivation law) of a valued g-form w, with respect
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to a vector field D will be denoted by ipw, and Lpw,, respectively. The ex-
terior product of valued forms with respect to a bilinear map of vector
bundles B: E; X x E, = E; will simply be denoted by w, A 5,, but we shall also
write w, A (5, When we need to specify the bilinear map under considera-
tion. The interior product of a E,-valued g-form with respect to an E;-valued
vector field relative to the bilinear map B can also be defined by imposing that
ip®e(wg ® &) = (ipwy) ® Bley, €y).

The k-jet bundle of local sections of p: Y— X is denoted by p,: J* =
= JXY/X)— X and p%: J* - J*, h > k, stands for the projection p%(j*x) = jks;
we set n = dim X, n + m = dim Y. Any fibred chart for ¥ with local coordinates
(x5 ¥), 1 <Jj < n, 1<i< m,induces a fibred chart for J* with local coordinates
(x;, y.) defined by: y = y;, yh(jks) = 0'*!/ax*)(y; 0 5)(%), 1 < |a| < k, where
a= (o, ..., 0,)isamulti-index and |a| = a; + - - - + a,. If f: Y Y’ is a mor-
phism of fibred manifolds whose induced mapping on the base manifolds
f: X — X'is a local diffeomorphism, we can define a map J*(f): J5(Y/X) -
- J5(Y'/X") by J¥(f)(j%s) = js', where x' = f(x) and 5’ = fosof L.

As is well-known ([2], [3], [6], [13]), the k-jet bundle J* is endowed with
a canonical V(J* ™) c-valued 1-form 6, called the structure form of order k,
whose local expression is '

(1.1) g% = 21 |Z< i® 0/0y8),  6i=dyk— 2y, adx;,
i |a J

where (/) stands for the multi-index (j), = 8 (6; being the Kronecker index).

For a geometric definition of the form 8% by means of the notion of vertical

differential of a section, one may consult [13]. We recall two basic properties
of the structure forms:

(1.2) A section 5 of p,: J* > X is the k-jet prolongation of a section s of p
(i.e., § = j*s) if and only if 6% = 0.

(1.3) The structure form 6% is a section of the vector sub-bundle
Homy (T(J* 1), V(J*~ 1) of Hom (T(J*), V(J* 1)) = T*(J*) ® j«
®x V(J¥~ 1) and it determines a retract of the injection of V(J* ™)
into T(8* ~!);«. Thus, the exact sequence

(Pk - 1),

0— V(J* YWy» T Hpe —> T(X)j—0

splits canonically. We shall denote by by: T(X)« = T(J* ™)« the sec-
tion of (p,_1)« associated to the retract determined by 6%; that is,
bz, D) = (* 7 '9)4(D,) with z = jks, D,eTx(X).

.Let p: Y— X be a fibred manifold and £ — Y be a vector bundle. We set:
WX, E) = Ti(X) ®vE, TH(X) = (®" T*(X)) ® (®' T(X)), and similarly for
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the symmetric powers: S5(X, E) = S}(X) ® yE, SL(X) = $"T*(X) ® S'T(X).
Any bilinear mapping of vector bundles B: E; X yE, — E; induces a bilinear
map on the symmetric powers

Blltlh SZ(X, E)) x YS;;,’(X’ Ey) - S;;til;'(X, E;)
by the formula
(1.4) B (T,RTTHRT' ®,Re, T, T ®e,) =

h'h'!

=G T T @@ TH @ Bew, e,

where the dot on the right hand-side stands for the symmetric product.

Let / be a now-negative integer such that / < A,/ < iandletj: {1,2,...,1} =
- {1,2,...,h}, k: {1,2,...,k} = ({1,2,...,i} be two injective mappings.
We write j = (ji,...,J), k=(ky,...,k). We denote by cJ’-‘: t(X,E)—
- T}iZY(X, E) the contraction of the covariant indices j with the contravariant
indices k; that is,

(1.5 cwm® - @W,R®D,® -+ ®D;®e) =
= Wj;(Dg,) -+ Wj[(Dkl)(wji® Q@ Wiy_ @D ® -+ @ Diri_, R e),

where ji< - - <ji_; ki <---<kj_, are the complementary sequences of
{Jis . sai}s k..o k) in {1,...,h}, {1,...,i}, respectively and
Wiy, W€TE(X), Dy, ...,D;eT,(X), ecE,, with p(y) = x.

It is easily verified that ¢/ maps S;(X, E) onto S;7%(X, E) and also that
the restriction of c}‘ to Si(X, E) does not depend on the indices j, k chosen.
Thus, we can define a homomorphism cj ;: Si(X, E) — S,~}(X, E) such that,

(1.6)  ci(w-- W ®D,---D;®e) =
= Z,Z(le “ W) Dy, s D )Wyg - - Wy, @ Dyy -+ - Dy, ® €),
Js

where the indices j, ¥ on the right hand-side run over all the sequences such
that 1<j;<---<j;<h, 1<k <---<k;<i, and j{i<---<ji_y
ki < -+ < kj_,are as above. In other words, c,’;, 11is the contraction of / covariant
indices with / contravariant ones in the vector sub-bundle of totally symmetric
tensors of type (4, i).

The homomorphisms cﬁ,, ; satisfy the following properties:

1.7) cihroch =ch o if I+I<h and [+1'<i.

(1.8) Let B: E; X yE, — E3 be a bilinear map and wq, 77, wy, 1 differential
forms taking values in Si(X, E1), SL(X, E2), S?_,(X, E1), §?_ (X, E»), res-
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pectively. Then
@ ¢iZli-i(Ch, ) M) = ¢l wgAny),  for <<,
(®) izl imwpAch,m)) = ci iy A, for I<h<i,

where the exterior products are taken with respect to the bilinear mappings in-

duced by B according to (1.4).
The proof follows from a simple computation and will thus be omitted.

2. Total lie derivative

Let p: Y — X be a submersion and E a vector bundle over Y. The total con-
traction is the homomorphism

AT N ® kSHXGE) > AT T*U* ™) ® 1S+ (X, E)
given by
(cw)Dy, ..., Dy Doy, Dpywy, oo, W) =
1 h

h+1j;)wq(bkp;,pz,...,pq;pg,,...,15;-,...,,0;,, Wiy ey W),

where b;: T(X )Jk - TJ*~ l)Jk is the section defined in (1.3).

Proposition 2.1. The total contraction satisfies the following conditions:

(@) coc=0.

(®) clngNnp) = (eng) Ay + (=1 N (cny), where ng,m, are differential
forms with values in S} (X, E1), Si(X, E,), respectively, and the exterior pro-
ducts are taken with respect to the mappings induced by a bilinear map
B: E1 X YEZ —’E3.

(©) On MT*(J* " H® S0 (X, E),  we have ci jococifloc=0.

Proor. Condition (@) is an immediate consequence of the definition. First we
shall prove (b) when 5, is an ordinary (non-valued) differential form and
B: (Y X R) X yE> — E; is the natural bilinear mapping. We proceed by induc-
tion on q. If w is an ordinary one-form, we have

C(WAW;)(Du- -'iDr;DE):- "!D;l! Wi, . ..,W,‘) =

1k R
h+1 Zl(bD)(w/\n,)(Dl,...,D,;D(),...,D},...,D;“w,,...,wi)=
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12 <
=7 1 Z (ka})"I;(DI,---’Dr;DE),---,D},-..,D;,,WI,...,W,-)—

1 r ~ R
~ i 01}]( 1 " 'wD)ny(be D} Dy, . .., Dy, ..., Dy
s

Do,...,D},...,D;,,wl,...,w,-)
= (wAn)Dyy ..., DDy oo Dy Wy, s W)
_wAcﬂlr)(Dl,-- -’Dr;DE),-- -,D;n W],...,W,').

proving (b) in this case. Now, if w, is an ordinary g-form, according to the
induction hypothesis,

c((wAwg) Amp) = clwA(wgAnp)) =

= cwN(wyAnp) — wA(cw, Ay + (=1)w, Acnr) =
=cwAw)An+ (1) wAw)Acn,.

In the general case,

Mg =wg@Wr W, ®D1---Di®e,
M=, @wi- Wy ®D7 - Dip®e’
and by setting D; = b,(d/dx;), from the above result we obtain
h!h'!
AN/ [ —
O = DT 4
®D;---D; Di’--'D§f®B(e, e’)
hlh'!

A= ——
(c"")@ T RA R ) 5
®D,---D;-D7---Dj® Ble, e’)

ZID(quwr)®dx WI Wh'wll"'w;ll®

Z ((ID wq) A wr) &® dx Wiee- Wy Wll W ®

and similarly for 5, A (cy;). Hence c(n, A ;) = (cng) Ay + (= 1), A (cn;), and
thus (b) is proved. Finally,

(¢ 0ococitlo)w,®Dy---Di®e) =
= 3 2 D) Dx)ipipw) ® Dy Dy~ Dy Di® e =0

a#h j,l
In what follows we shall consider a derivation law Vo in 7(X) (i.e., a linear
connection of X) and a derivation law V in the vector bundle E— Y. As is
well known, Vo induces a derivation law V& in the vector bundle
p*T(X) = T(X)y. We define an operator

L:TAT*J* ™) @ -1 SH(X, E)) » TAIT*(JX) @ x Siy+ 1(X, E)),
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called the total Lie derivative associated to the pair of derivation laws (4, V),
by the formula

L=cod+doc,

where d is the exterior differential with respect to the derivation law induced
by V§and V in the symmetric powers S,(X, E).
It is clear that the operator L is R-linear and commutes with c, that is,

Loc=colL.
Furthermore, L satisfies the formal property of a derivation. Namely, we

have

Proposition 2.2. Let V; be a derivation law in E;, with i=1,2,3, and
B: E, X yE, — FE; a bilinear map compatible with these derivation laws. Then

L(ngAnp) = (Lng) Ay + g A (Lny),

where n,, 1, are differential forms taking values in S WX, Ev), Sy(X, Ey), res-
pectively, and the exterior products are taken with respect to the bilinear map-
pings B}y

Proor. This follows from (b) of Propostion 2.1 and the properties of the ex-
terior differential for valued forms.

3. Structure forms associated to a pair of derivation laws

Given a linear connection Vo of X and a derivation law V in the vertical bun-
dle V(Y), we define a sequence of differential forms (6%, 09, ...,0%,...)
by the following recurrence relations:

(3.1) W =9, the structure form on J'; 0¥ =L9%-V, for k> 1.

Thus, 8% is a (S¥ ~!T*(X) ® j« V(Y))-valued one-form on J* which is call-
ed the structure form of order k associated to the pair (Vo, V).

We shall now determine the local expression of the forms 6%. Let (x;, ;)
be a fibred coordinate system for Y; we set

(3.2) VO(&/axj)(a/ axy) = 21: f‘jk (9/0x)),

(3.3) V(a/axj)(a/a}’i) = Z F_‘;i(a/aya)’ V(a/ayh)(a/ayx') = Z I_1;111‘(3/3}’11)-
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For the sake of simplicity, we shall henceforth denote by D; the derivation
of the ring A = lim C*(J¥) defined by the formula

3.4 D; = d/0x; + 202 yiz+(j)(a/ayfx)'

i |lal=0

Note that D;(f) = b,(3/0x)(f) if feC=(J*~Y, or, in other words,
(D;f)oj*s = (8/3x)(foj* 's) for every local section s of p:Y—X.
Moreover, (dx)® stands for the symmetric product

(CT (on

3.5) dx)* =dxt'---dxy"=dx; - dx;---dx,- - dx,

and similarly for (3/0x)*. Hence, with the notations of (1.1) we have

Proposition 3.1. There exist unique functions @z,eC*(X), |B|<|al,
aheC=(J ) such that:

3.6 L= 5 S 8,050 @9,
u!lw =ulal=u
3.7 LG/ow) = 4 5 3 akiddr © /o)

These functions are completely determined by the following recurrence rela-
tions:

(3.8) G0 = 1
(3.9 g, = ; (083, o~ (j5/3%; + 85— (jy,a— () —
- j;l(l + oy~ 6; — 5kI)P§k&B,a+(1)—(j)—(k)

(3.10) ag' =&, Gy =T+ 2yl
G.11) P JZ [D,a{_';‘_ o+ %}a’gf_ (j)afj-)] -

- j;l(l + o = 4/ 6k1)r§ka§i+ - -

Finally, by setting
i |0| o _hi
(3.12) A"f, = ( oo o»
# asa%}lsml |°‘| ¢

we obtain

1 i o
(3.13) gk = 2 ARGE® (dx)° ® (8/3y).

k=D it R o1 105
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ProoF. Formulas (3.6) and (3.7) can easily be proved by recurrence on u and
v, respectively, using the formal properties of the operator L. In fact, assum-
ing (3.6), we have

1 . ot i
Zm(u)jaﬁa)eg@(dx) +U) 4

J

L““03=L(L"ez)=i|2 ¥ [

Ul 1B[=ulal=u

1 e )
i ; u+1 o0+ iy ® (@0 D + &g, 05 ® L(dx) ]

1 Q9 [) - .
D e | B Ol Bl ) @ @

o .
_ ,;Iazf‘fka'éa(?'é@(dX)“ (1)+(n+(k)],
Js K,

and similarly for (3.7). From that, (3.9) and (3.11) also follow. On the other
hand, we have

9% = L¥ =191 = ST LF 19k ® (3/dyp)) =
h

k-1
=2 2 < )(L"B'S)A(L"(a/ayh)) =
h u+tv=k-1 u
k-1 1

= 2 o _high
2 Z Z ”‘Eu|a'l=kz~l—uu!(k~ 1 - u)' aﬂo‘aa03®

hiu=0|8<u|

® (dx)* ' ® (8/dy) =

=(I€—"_ij-ih,i|6[sk—llal=k—l ||

SIS ) [%H ("")c‘%ﬁaaﬁ"_a}ei’a@ (@)’ ® (3/0y),
thus proving formula (3.13).
Remark. 1t follows from (3.12) that
(3.14) AgleC=(J1* 7 18l),
Moreover, from (3.9) we obtain by induction on |«,
(3.15) Qg = Ogola|!/a! for |B] = |al.
Then, from (3.10) and (3.12) we have

(3.16) Al = 8,:85,]0]1 /0! for |B] = |o].
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Corollary 3.2. The homomorphism Py @ _,S*T(X) @ pV*(Y)— V*(J")
mapping (f,, . . ., f) into the restriction of 8P o fo + 0P o fi + -+ + 8" Do f,
to V(J") is an isomorphism of vector bundles. '

Proor. First, note that the definition of P, makes sense because locally
6“* P o f, belongs to the submodule generated over C*(J") by (0%)is/=r as
follows from (3.13) and (3.14). Since the vector bundles V*(J") and
@k =0S¥T(X) ®,- V*(Y) have the same rank, it will be sufficient to prove
that P, is injective. We proceed by induction on r. The case r = 0 is trivial.
If P,(fo,...,[,) =0 wehave 8D of, + --- + 0" (D)o f, =0 for every
vertical tangent vector D in J'. In particular, by taking D = a/ay’é with
|8] = r, from (3.13) and (3.16) we obtain [(dx)’ ® (3/dy4)](f,) = O; that is,
fr=0. Hence, P,_;(fo,...,f,—1) =0 and according to the induction
hypothesis, fo=0,...,f,_;=0.

Corollary 3.3. With the above notations, we have 0, ...,09) = P} 080",
Consequently a section § of p,:J" — X is the jet prolongation of a section
sof p: Y= X if and only if 0®|; vanishes for k = 1, ..., r (cf. [13, Proposi-
tion 2]).

Proor. It follows from formula (3.13) that ker (8%,...,0") = ker6".
Therefore it is sufficient to see that (07, ..., 69)(3/3yg) = (P}_; 0 6")(3/3yp),
with |8] < r — 1. However, it is easily checked, by using (3.13) and the defini-
tion of P,_, that both sides of the preceding equation give the same result
when applied to (3/9x)° ® dy; for |o| < r.

4. Higher order variational problems

A vector field D in J” is an infinitestimal contact transformation of order r
if for any derivation law V in V(J" ') there exists an endomorphism ¢ of the
vector bundle V(J" '), such that L,6" = ¢ 06’, where the Lie derivative is
taken with respect to the derivation law induced by V. Indeed, if the previous
condition is fulfilled for a derivation law V, it is automatically verified for
any other derivation law. We now recall some basic facts concerning higher
order infinitesimal contact transformaticns. For the proof of these results and
further information one may consult [13].
(4.1) For any vector field D in Y (not necessarily p-projectable) there exists
a unique infinitesimal contact transformation D, of order r projectable
onto D.

(4.2) Moreover if k>0 and D is an arbitrary infinitesimal contact
transformation of order k, for every r > k there exists a unique infinitesimal
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contact transformation D, of order r projectable onto D. In particular, if D
is a vector field in Y, it follows that D, is projectable onto D, for every
r>k.

For any open set U C X we denote by T'(U) the space of all the in-
finitesimal contact transformations of order r corresponding to the induced
fibred manifold Y; we denote by T.(U) the set of vector fields in 7"(U)
whose support has compact image in U. Then

(4.3) T'(U)is aLie algebra with respect to the Lie bracket of vector fields,
and T¢(U) is an ideal of 7"(U). Furthermore, the map D — D, is an injection
of Lie algebras.

(4.4) Let 7, be the local 1-parameter group of local transformations
generated by a vector field D in Y. If D is p-projectable, each transformation
7, defines an automorphism of the fibred manifold Y and J'(7,) is the local
1-parameter group generated by the vector field D).

Proposition 4.1. A vector field D in J' is an infinitesimal contact transforma-
tion if an only if there exist homomorphisms

o128 I THX) ® 5 V(Y) = SK7IT*(X) @5 V(Y), 1<k, I<r,
such that

Lpf® =¢%00® 4+ ... 4+ 900 for k=1,...,r.

Proor. This is immediate from Corollary 3.3.

From now on we shall assume that the base manifold is orientable. Once
a volume element v on X has been fixed, we can associate a functional
L: S(U) — R to each function £ € C*(J") by the formula

L) = [, ev=[ (")* (&),

where U C X is an open set and S(U) C I'(Y/U) is the space of those sections
for which the above integral exists. For any section s € I'(Y/U) we also define
a linear form §,L: T.(U) — R by the formula

G,(D) = [ Lp(L).

According to the definition of infinitesimal contact transformations given
above, the linear functional 8L represents the infinitesimal variation of the
functional IL on the space of generalized infinitesimal transformations of J”
induced by the infinitesimal automorphisms of the fibred structure p: Y — X.
We shall say that a section s is critical for the Lagrangian density £Lv when
the linear functional 4l has no variation at s; or in other words, when L = 0.
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A basic problem in the Calculus in Variations is to characterize critical sections
as solutions of a differential system defined on an appropiate jet bundle. In the
following three sections we shall construct the Poincaré-Cartan forms associated
to a higher order variational problem and examine their main properties. As
will be shown below, these forms are the fundamental tools which will allow
us to obtain not only the characterization of the critical sections but also the
geometric properties of the manifold of solutions of a variational problem.

5. Poincaré-Cartan forms

Let £ be a differentiable function on J”. We denote by d£ the restriction of
d&£ to V(J7). According to Corollary 3.2 there exist unique sections f; of
S*T(X)®,- V*(Y), 0< k <r, such that: P,(fo,...,f)=d£; or in other
words, 0(D)ofy + -+ + 0T (D) o f, = (dL)(D) for every vertical vector
field D in J'. Let v be a volume element on X. We define

(5.1) we=ck cv®f) for k=1,...,r.

In what follows we shall consider w, as a S¥~!T(X) ®,. V*(Y)-valued
(n — 1)-form on J".

Remark. The forms w; only depend on the Lagrangian density £v. In fact,
in v’ is another volume element on X and L£Lv = £'v’, we have v’ = pv’,
£’ = p' L for an invertible function p € C*(X). Then d€’ = p' dL and £ = p'fr,
0 < k < r. Hence wj = cf ;c(v' ® fi) = cf,1¢(v ® fi) = wy.

Locally, we set f = 2 Dol =& f(3/3x)* ® dy;. From the definition of fj
and formula (3.13) we obtain

5.2) B+ 3 b= for g <,
T lal <181+ 1 s
AL
(5.3) r!f’é:ay,é, for |B| =r.

Such equations determine the sections f by descending recurrence on k. By
choosing the coordinates (x;) so that v = dx; A - - -Adx,, we have

(54) o= Z| le 1(—1)"’1(1 +a)fh. W ® O/ ®dy, 1<k<r,
i,j la|l=k-
as follows from (5.1), where v; = dx; A - -/\ﬁ)}j/\ <o ANdx,.
We shall now deal with the exterior product of a S¥7T* (X) ® V(Y)-valued
form 5 and a S¥T(X) ® V*(Y)-valued form 5’ with respect to the bilinear map
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induced by duality. This product may be factorized as follows. With the same
notations as in §1, let

B:S¥T*(X) ® V(Y) X yS*T(X) ® V*(Y) - Yx,SK(X))

be the bilinear map canonically induced by duality on the vertical bundle.
Then, we have

AN = Cﬁ,k(n/\n’)
(B)
Proposition 5.1. Let 6, = 0P Aw, + -+ + 0 Aw, + Lo.

We have
dOy = —[0VA(dw, —v®fp) + 0P ANdw, + -+ - + 0P ANdw,] +

(5.5) + 3 e (0RO ® ),
k=1 B

where the exterior differentials on the right hand-side are taken with respect
to the derivation laws induced by V,, V.

Proor. Since 0P ofy+ --- +07 Vo f, — dL€)D)=0 for every vertical
vector field D, it is clear that Xk -0 0% ™ o f, — d£ is a section of the vector
sub-bundle T*(X),.. Hence,

<k200("“) ofi — d£> Av=0.
That is,
de Ay = kZ;}() ©“*Pofyrv= (6P of)ov+ :él L8P o fi)Av.
Then

deo = —1:0(1)/\(610)1 - U®f0) + Z o(k)/\dwk:| +
k=2

+ D ILOP o f) Av + dB® Aw,].
k=1

Since the total contraction ¢ vanishes on the structure forms %, we have

LIPofIAv = (cdd®of)nv = c’,ﬁ,k[ cdd® A ® fk)].
: (B)
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Moreover, from (b) of (1.8) and (5.1) we obtain:

di® Aoy = c’z:%,k_l[do""(g)c’f,lc(v R0

= c’k‘,k[do‘”A c(v ®fk>]
B) .

The result follows from these three formulas.

Now, the central point of the theory is to reduce all the forms 6% in for-
mula (5.5) to the first, 8%, using the fundamental recurrence relationship
(3.1). In this formalism the procedure constitutes the intrinsic version of the
well-known classical method of reiterated integration by parts which is used
in deducing higher order Euler-Lagrange equations. Furthermore, this pro-
cedure will lead to the definition of the Poincaré-Cartan form for Lagrangian
densities of arbitrary order, starting from the form 6, defined in the previous
proposition.

Theorem 5.2 (fundamental). With the above hypotheses and notations we
have:

(5.6) do =0WANE + &,

where we have set:

r—1 r—k i-1
(5.7) 0=06,+ 9""A<Z (—1ck e TI (¢ 3L) dwk+,->
k=1 i=1 j=1
r—1 h-1 .
(5.8) E=v®f, - hzo(—-l)" ~Uo (iH'L)dwy

r—1 r—k h-1
(5.9 ®= 3] C’i,kcd<9""/\ ( 2 (=)" T (43D dwk+h>> +
k=1 B \h=1 i=1
+ >, c,’g,kc<do(">/\(u ® fk)>.
k=1 (B)

We shall call the ordinary n-form © the Poincaré-Cartan form associated
to the Lagrangian density Lv relative to the derivation laws V,, V, and we
shall call the V*(Y)-valued n-form E the Euler-Lagrange form.

Remark. In §7 we shall see that the (n + 1)-form ® is a 2-contact form. We
also note that the forms 6, E and & are defined on J* ~!, because operators
c and L are applied r — 1 times, at most, in the preceding formulas.
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Proor. First we shall prove by recurrence on k =0, ...,r — 1 the following
formula:

i-1
* d[eo+ Z 0¢" "’A(Z( e[ 7" H(c; " TIL) dw, h>] =

r—k-1

=0PANWRf)— 2 0" Adw, — 67PN

h=1

p P
A (hZ_IO(—l)" IJ(; (ci7**'L) dwr-k+h> +

B)y\i=1 Jj=1

k i-1
+ Z c::ll:,r—th[o(r_h)A<Z( l)t H (cl 1h+IL)dwr h+l):| +
h=1

+ 2 cz’,,,c(de""A(v@fh)),
h=1 B)

where we assume that the sums vanish and the products are the identity when
the lower index is greater than the upper one.
Note that (*) for £ = 0 reduces to formula (5.5). We set

h -

k 1
1= 2 (0" T D dorgon
= i=

By using part (b) of (1.8) and the fact that the exterior differential com-
mutes with contractions, we have

0P Ag® = cﬁ:fi},,_k_1(L0‘""'”(2)17‘"’>

S N 17 (L I B N
B) B

c::i:i,,_k_1cd(0""‘“”(/;)n"") +

-+ dC _1 r— k_1C<9(’ l)/\n(k)) -
B

—k-2 k-1 —k-1y (k
- c;—k—z,r—k—2<0(r )(Q)Ch L ))

Moreover, since the total contraction is an anti-derivation which vanishes
on the structure forms 6%, we have

[y k—1c(0(r k_l)/\‘fl(k)>= —cr k- k-—1<9(r _l)/\c‘fl(k)>

_ _O(r—k—l)/\c;,lk—lc‘n(k)
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Thus, finally:

0 PAg® =i k7], ke ICd(G(""' D(g)v“’) -

— d(e(r—k— D/\c;—lk' lC'Y](k)) —
_ ek~ 1)Ac;—lk—1Ln(k)
Then, sustituting this expression in (*) we find the corresponding formula
for k + 1. Thus, the proof of formula (*) is complete. In particular, for

k =r — 1 we obtain formula (5.6) of the statement.
We define valued (n — 1)-forms Qi, ..., Q, on J¥ ! by setting
r—k ; i-1 .
(5.10) Qe =wp + 2 (=K e TT (cf L) dwe,;  (A<k<r).
i=1 Jj=1

We also define a V*(J"~)-valued (n — 1)-form Q on J* ~!, which will be
called the Legendre form, by the following formula:

(5.11) Q=P _10@,...,0),

with the same notations as in Corollary 3.2. Then, Poincaré-Cartan form can
be rewritten as follows:

(5.12) O=0VAQ+ - +07AQ + Lo=0"AQ + Lo.

6. Recurrence relations for Q, ..., Q, and local expression of
Poincaré-Cartan forms

Proposition 6.1. The forms Q,, .. .,Q, satisfy the following conditions:
(6.1) O = o — ¢k 1cdQ .y for k=1,...,r—1,and Q, = v,

6.2) ck7leQ =ck{lewy =0 for k=2,...,r.

(6.3) Q= — ¥ L.y for k=1,...,r—1.

Proor. It follows form (c) of Proposition 2.1 and (5.10) that

r—k i-1
K i K K+j
Y = o —cf,1cdoy 4y + _Z‘z(—l)lcl,lc II1 (c1,7L) dosyc . ;
i= Jj=

r—k-1

i-1
" , .
W — cl,lcd<9k+1 - Z ("1)'6’1‘3 ' 11 (cllc,-'il+JL)dwk+l+i> +
i=1 j=1

r—k i-1
. .y
+ .22(—1)10,1210 il (c1YL) dwy ;=
i= Jj=
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Qk = Wi — C’f,lcdﬂk+1 +

r—k-1 i—1
+ 20 (=1eq jeck(de + cd) H1 €I L) dog 14+
= Jj=

13

—

r—k i-1
+ 2 (—l)iclf,lc 11 (leij)dwkn
i=2 j=1

k
=wp — €1,10dWY 11,

which proves (6.1).

On the other hand, by again using (c) of Proposition 2.1 and the definition
of wg, we obtain c'l‘,‘1 lew, = c’f,'l lcc’f, 1c(v ® fi) = 0, thus proving the second
part of (6.2). The first part is obtained from (6.1) by descending recurrence
on k. Finally, (6.3) is a direct consequence of (6.1) and (6.2).

The forms @4, . . ., Q, can be obtained in the same way as the forms wy, . .., w,
were derived. Namely, we have

Proposition 6.2. There exist unique sections F,, 1 < k<r, of
S*T(X) ® jor- V¥(Y)
such that
O = cf,1c(v ® Fy).
Thus, Q is a section of the vector sub-bundle

A"TITHX) ® j2r -« ST IT(X) @ y VH(Y).

Proor. The uniqueness part is easily verified. In order to prove the existence
of such sections we proceed locally by setting Fy = 35, 3}, = 4 F4(0/0x)* ®
® dy;.

Then, the proof is by descending recurrence on k. If k = r, it is sufficient
to take F, = f,, because Q, = w,. Let us assume that the formula is also true
for k,k+ 1,...,r with k> 1. That is, there exist sections F; such that

Q=c c0@F) =2, 2 (-7 +a)F, ;v ® 0/30%Qdy,
ij lal=1-1 k<i<r,

with the same notations as in (5.4). Then it follows from a simple (but rather
long) computation in local coordinates that

_r1=wp_ -5 ed =2 D (17 + a)FL ju;® (0/0%)* ® dy;,

i,j la|=k-2

where the coefficient F’, ; is given by
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. . ] ih h
Foj=tari)— Zl;(l +oy+ 6,-,)[D,F;+U,+(,, - ;aél)Fa+U)+(1)] -

o .
- ’Z A+ oy + 08— 8)A + 0t + 8y — 800 + )0 F o Gy + ) + @) - (@)
qu

Here D; stands for the vector field defined in (3.4). The above formula
shows that F f, jonly depends on « + (j), or in other words, that if o + (j) =
=a' + (j), then F{, ; = F!, .. We can therefore define F", for |o| = k — 1 by
setting F. = F, ;, where ¢ = a + (j) is an arbitrary decomposition of the
muiti-index o. This proves the existence of Fx-; and completes the proof.

The previous formula can be rewritten as follows:

6.4 Fo=fo~ ;(1 + ) [ DiF o+ i) = ;“i’})Fﬁ+(j)] -

= 33 1+ 00 = 81+ 0+ by - 5,,)1‘*5.,‘Ff,+(j)+(k)_(,)‘ (ol =1,...,r=1).
Furthermore, since F, = f,, from (5.3) we obtain

6.5) Fi=fi="c@8/o}), ol =r.
Formulas (6.4) and (6.5) together with (5.2) determine the sections F), . .., F,

by descending recurrence. They can also be used to obtain the local expression
of Poincaré-Cartan forms. In fact, by (5.12) we have

r-—1
(6.6) O0=2 > (-1 NybhAv;+ Lo

h,j |Bl=0

and
r—1 . .
6.7) X’éj = ; Ialz=]ll3l (o + (J'))!A’é; o+ () Bl =0,...,r—1.

In particular

1+6

(6.8) NE = r

@OL/yg. ),  1Bl=r-1,
as follows from (6.7), (3.16) and (6.5). Note also that
(6.9) Nec=J> 1=y, 18 =0,...,r— 1.

Proposition 6.3. With the above notations there exist functions ,ng such
that:
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r—1-|g
(6.10) Ngj = | lz_}o CHD'OL/3Y5 1 (jy+ o) + Moy
where the coefficient is given by Cg = (—-1)I(1 + 8))|8]!|o]!(°** )/
/|18 + (J) + a|! and D° = D{* = Di*, D; being the vector field introduced in
(3.4). (Note that [D;, D;] = 0, which justifies the notation employed.)

(6.11) ﬂgjeC“(JZr—Z—IBI)

and u’éj vanishes when Vo and V are the flat derivation laws associated to the
coordinate system (x;, y,).

Proor. First note that all the functions A%, for || < || vanish when V
and V are the flat derivation laws. Next, by descending recurrence on |g| and
using (5.2), (5.3), (6.4), (6.5) it is not difficult to prove that there exist func-
tions Gf, eC>(J¥" lol - 1), which vanish when V, and V are the flat derivation
laws, such that:

r—|o| o+
(6.12) Fi= 3 (—1)'°‘|[( o N"‘“]D“( 0L >+Gf,.

la|=0 [0+a|! Vora

The result now follows from (6.7).

7. A more explicit formula for d©

Proposition 7.1. Let E be the Euler-Lagrange form associated to an r-order
Lagrangian density relative to the derivation laws Vo, V. If D, D' are vector
fields in J¥ = vertical over X, then ipip E = 0.

Proor. For h=0,...,r— 1, let M be the module of S*T(X) ® V*(Y)-
-valued n-forms 5 on J* such that ipipn = 0 for all vertical vector fields D,
D'. Locally, M% is spanned by the valued forms v ® (8/3x)* ® dyi, dysAv; ®
® (0/0x)* ® dy, (Ja| = A, |B] < k). On the other hand, we note that, with the
same notations as in (3.2) and (3.4), for any ordinary one-form w on J* the
following formula holds true:

.1 Low) =3, <L[D,w - 3w, dxj> ® dx;.
Jsv

Taking in particular w = dyf9 and w = dx, it is easily seen that

(7.2) DM C M.
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Moreover, since
h
I €D = H (DI D),

by induction on 4 we have that 5 € M} implies

h-1

IT (i L)) e My 1.

i=0

The result now follows from (5.8) and (5.4), by setting k = r, 7 = dw, , ;.

Theorem 7.2. Let E, © be the Euler-Lagrange and Poincaré-Cartan forms,
respectively, associated to an r-order Lagrangian density £v with respect to
the pair Vo, V. There exist unique bilinear mappings

(e, S* 71T @ V(X)) X y2r-1 (81 TX) ® V(X)) = T(X)2r -
(k,Del,={(k,D)eNXN; 1<k<I<2r-1,k<rk+1<2r+1})
which are alternating when k = I, such that:

(7.3) do =0PAE+ 3 (6% A 69 v,
*k,Del, *k, 0

where the form (0% Ny ;,0©). v is defined by the formula

((000 . 00)) ‘ v)(Do,--- D) = 3 (1) 1y ((0(@ A 0(t)>(D,,

(k,D i<j
D,,...,D,. D)

Furthermore, the bilinear mappings (, ), for k + [ = 2r + 1 do not depend
on the derivation laws chosen Vo and V.

Proor. First we shall prove that the form & of formula (5.6) locally belongs
to the submodule M spanned by the forms: 8% A05Av; (| <, |B| < 2r —
-1, |a| + |B] < 2r).

According to (5.9) it will be sufficient to prove that the forms

cf,kc<d0(") AU ® fk)> k=1,...,7
B)

and

cf’kcd<0(’°’(g)nk> k=1,...,r=1)
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belong to M, where

r—k

77k=h21("1)h H(le“L)dwkm k=1,...,r=1).

For the first group of these forms we proceed directly. Since dx;, 051(|oz| <k)
is a local basis of T* (J¥ = 1), it follows from (3.13) and (3.14) that there ex-
ist sections S"ﬁ of S¥_,(X),« such that

dB""/\(v@fk) =, E}k lBl‘fékeg/\ogAu@S’;‘;,

h,i |

This equation, when ¢ and cf,k are applied, yields

ck c(dﬁ“"/\(v@fk)) ZZ > > (=YK (dx; - SENeEAOEA ;.

hi j laf <k Bl <k

thus proving our assertion in this case.
Next, we shall consider the second group of forms. We have

* ek cd(0® N = ck (L0 Aqp) = ck ode(0% Aqp).
™ k,k ( (B)ﬂk> k, k ( (B)ﬂk) k,k ( (B)ﬂk>
But from (5.10), (5.1) and Proposition 6.2, we conclude that

et ome =@ — oy = cf 1 ® (Fy — f).

Thus, by using (b) of (1.8) and the fact that d commutes with contractions,
the last term in (*) can be transformed as follows:

—ck  de(6% A =dck (6% Aen Y =dck-t (8P Ak [ c =
Kk ( (B)"?k> k,k( A 77k> k—1,k 1( (B)( 1,1 "Ik))
= dc’k‘:%,k_l(o""Acf,lc(vca (Fy —fk))) =
(B)
= dC’i,k(ﬂ"‘) Ac(v® (Fy —fk))) = —ci,de(B"" AV ® (Fy —fk)) =
(B) (B)
~c£,kL(0‘k’ A Q@ (Fy — fk)) + c’k‘,kcd(e"" AV (Fy — fk)) =
(B) (B)
= —c,’g,kL(()(")/\ vQ® (F, — fk)> + c,'g,kc(de"‘)/\ vE (F — fk)> -
(B) (B)
- (—1)"c,’§,,,c(9<">/\ vAd(F, — fk)).
B)

Upon substituting this expression into Eq. (*), we obtain
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Chkcd(0© Ane) = L L (09 A e = v ® Fie = fi) +
(¢:)) [¢:))
+ cz,kc(de""(/;)v ® Fe 1) = (- 1)"c’,$,kc(0"‘>(g)vAd(Fk —J0)-

We shall now show that 5, belongs to the submodule M¥%,_, _, introduced
in the proof of Proposition 7.1. In fact, this in an immediate consequence of
(7.2) and the following recurrence relations

N-1= —dw, Nk = _dwk+l_cllc,-'iank+l k=1,...,r=2),

which follow directly from the definition of »,. Therefore, 7, can be expressed
as e =V Q@ S¥ + 3, ;3 5 < 20—k V5 A v; ® SEL, for certain local sections S¥,
Sk of S*T(X) ® jor-x-1 V*(Y). Or equivalently,

w=v® (543 % U oS+ 3 thru®sy

i,j |18l <2r—k i,j 18l <2r—k

Hence, the relation c’f, 1€ — v ® (Fy — fi)) = 0 obtained before, implies:

@ Fe—fe=8+3% X (=Y %Sk
i,j |Bl<2r-k

and
(i) (=117 ef 1(dx; ® Sgj) + cf, 1(dx ® S = 0.

From (i) we deduce:

n-v®@E~f)=2 3 65Ay®Sh.
i,j 18l <2r—k

Hence,

c’k‘,kL(o""(g)(nk -0 ® (Fy —f,,») => > 0*¥*DAGEAY,® SE) +

i,j |18l <2r—k

+2Y 3 PG pAy®@a®SEN+ Y 2 69A

i j,1|8l<2r-k i,j 1Bl <2r-k
. ki

where we have used the equality L(Gi,g) =2 0f9+( i ® dx;.

Using (7.1) with w = dx,, it is easily checked that c’,§, «LO® Agy(nx —v®
® (Fx — f3)) belong to M when k > 1 (i.e. when k =2,...,r —1). In addi-
tion, vAd(F, — f;) can be written as a linear combination of the forms
OAV® (0/0x)*®dy, (lo|<2r—k,|a|=k). Thus, the term
c,’ﬁ,kc(ﬁ(") A@y VA
Nd(F, — fi)) also belongs to M when k > 1. On the other hand, by means of
the same argument considered in the first part of the proof, it is easily seen
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that the term cf ,c(dd® A g v ® (Fy — f3)) belongs to M even for k= 1.
Therefore, it only remains to prove that

c},lL(o“’A(nl -0 ® (F —fl))) - (—1)"ci,1c(0“’A vAd(F, —fl))
(B) (B)

also belongs to M. To this end, we first separate the highest order terms in
the above form, obtaining

ci,1L<0(l)/\(’71 - v & (F] _fl))> - (—1)"01,16'(9(1)/\0/\41(}71 "f1)> =
(B) B)

=22 2 [(=1)"""'B@/3y, ® ci,1(dx; @ Sk) +

kil |8l =2r-2

+ B(3/3y, ® c},,(dx; @ SENOGA 05 . ¢y Avj +

+2, 2 OPAOEAY;QSH) +

i,j|Bl<2r-2

+ ZI) 0PONWOs, iy A, ® dx, ® SE)) +

+2 2 OPANGEALY;® SE)) + (—1)"0P Ac(vndS?) +

i,j|Bl=2r-2

HCON(D S ()AL, @ SE) +

i,j|Bl<2r-2

H00R(D B (-1 e gondsh).

i,j|Bls2r-2

The first term on the right-hand side vanishes by virtue of (ii), while all the
other terms lie in the submodule M. We have thus completed the proof of our
first statement.

We shall now consider the uniqueness of the bilinear maps (, ), 5. Locally,

each one of these mappings determines » bilinear forms (, ){k,,) given by
Glwe,n = Z G ){k,l)a/axj-
J

Then, as (, ), is alternating, applying both sides of formula (7.3) to
8/8y2,8/3y6, Dy, ..., Dy ..., D) (o <1, B < 2r = 1, [a| < [B], || + 18] <
< 2r), we obtain:

~

(7.4) ®©/9y%,3/0y5, Dy, ..., D;...,D,) =

= (= 1) " leug((@)* ® /04> (dX)° ® 8/0Y¥ja) + 1,181+ 1) +

+ 3 ((0"" A 0"’)-u>(a/ay{;,a/ayg, Dy,...,DB,...,Dp,
(k, el )
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where we have set,
€ag = 1/a!B! for |a| <|B] and e =2/a!B! for |af = 8],
and
Lg = (G, Dels o] < &, [8] < 1, (k, 1) # (o] + 1, 8] + D}
In particular,

(7.5) ®3/3y%,0/3y5, Dy, ..., D ...,D,) =
= (_l)j—leaﬁ«dx)a®a/aJ’h,(dx)ﬁ®a/£’)’i){|a|+1,|3[+1) (Jaf + (8l =2r - 1).

It is now clear that formulas (7.4) and (7.5) completely determine, by
descending recurrence on |a| + |8], the bilinear mapping in question.

Because of the uniqueness of such mappings, in order to prove their ex-
istence it will be sufficient to give a local definition of them so that Eq. (7.3)
will be fulfilled locally. First we use the above formulas to define (, ), ;) by
descending recurrence on k + . Next, we note that (0® A ;,0%) - v belongs
to the submodule M when (k, /)el,. Thus, we only need to check that forms
@ and X, per 09 A,y 0®) - v coincide when applied to

3/0y",8/0y5, Dy, ..., D; ..., Dy,
(ol <r Bl <2r—1,|a| < |8, || + |8] < 20.

However, this condition leads us to Eq. (7.4), which is fulfilled by the very
definition of the bilinear mapping (, ), ;-

Finally, we shall prove the independence of the products ().,
k + [ =2r+ 1, by a method which will provide further information.

Let : (J" ™) ®jor-1 TJ* =1 /J7 1) = T(X) 5, - be the bilinear mapping
given by the formula

WD, D") = 6~ Yip, ipdo),

where 7: T(X) — A"~ !T*(X) is the isomorphism induced by the volume ele-
ment: §(D) = ipv. Note that the definition makes sense, because formulas
(6.6) and (6.7) imply that i, do = Sinj 2004 Lo(=1)~ 1D'()\gj)gg/\ v; for
every vector field D’ in J* ~ ! vertical over J'~'. Hence, iy dO is a section of
the vector sub-bundle A"T* (J”~!)2-—1. Moreover, from this we also obtain
the local expression of y:

r—1
WD, D) = =Y, 3 (D'N)Dyp)d/ox).
h,j|Bl=0
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Then, since N} is a function on J% =~ '8 (formula (6.9)), we have:

(a) The bilinear mapping ¥ vanishes on the vector sub-bundle

TU T2 @ o TUY 7T of VT ® pora TUY 71T
for r—1<k<2r-2.

Let us fix an index & such that r — 1 < k < 2r — 2, and let Y, be the restric-
tion of Y to V(J"™ Y ® a1 TJI¥ ~1/J%). According to (a), ¥ induces a bilinear
mapping on the quotient ¥y: V(J*” "2~ %)® ;o TU¥ ~1/J¥) - T(X) 2r— 1.
Let ¥, be the restriction of ¥, to the vector sub-bundle S 2~ *T*(X) ®
Q@ V(Y)Y ® y2r—1T(J* ~1/J%). (Recall that T(J*/J*¥~1) is canonically isomor-
phic to S¥T*(X) ® ,«V(Y).) Then, as above, we have:

(b) The mapping ¥/, vanishes on the vector sub-bundle
S2r—2—kT* (X) ® V(Y) ® Jar— 1T(.]2’_ I/Jk+ l).
Thus, ¥ finally induces a bilinear map

B (S 2T T (X) ® o (Y) ® (8 7' T*(X) ® yor- 1 V(Y )) = T(X ) g2r -1
r—-1<k<2r-2)

given locally by
(7.6)  Bi((dx)* ® (8/3y3), (dx)° ® (8/8y)) = —alB! ] (BN:;/8yp)(0/0x) =
J
= a!f!lo” l(i(a/ayé)i(a/ayg) d9) (la|=2r-2-k,|8l=k+1)

We shall now compare (7.6) with (7.5). Let us fix two multi-indices o, 8 such
that o] < r, |B] <2r-1, |a| <|B], |a| + |B] =2r— 1. Wesetk = |8] — 1, so
that || =2r—2 —k and r — 1 < k< 2r — 3. Since |a| >0, |8] > 0 in this
case, from Proposition 7.1 and formula (5.6) we obtain i(a/ayé)i(a/ayg)‘b =
=g /aylg)i(a /ayh) (d©), and (7.5) becomes

((@)* ® (3/3yn), (dX)° @ B/0Y)ior—1 -k k+2) = —c!BUINY/BYE).
Hence,

(7.7) Bie=()er-1-k,k+2y  (r—1<k<2r-3)

Lemma 7.3. The bilinear mappings B, r — 1 < k < 2r — 2, do not depend
on the derivation laws chosen. Actually, they only depend on the Hessian
metric of the Lagrangian £.

Proor oF THE LEMMA. According to (6.10) and (6.11) we have
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r—1-{af

ONL;/ 0yl = HE_]O Ci(0/3yp)D° (0L /0yt 1 (jy+ o)
(ol =2r—2—k, |8l =k+1,r—1<k<2r—2).

On the other hand, we note that for every fe C*(J¥) the following formulas
hold true:

/dys(Df) =0, if [o] + k<8
3/0ys(D°f) = 3f/8y5—qr if o] + k=8|

(This is proved by induction on |s| using the identity [3/dy5, D =
= d/dys_(;)-) Hence,

(7.8) INL;/3yh = ol 21 l lcgj(azoe/a)’fs—oa}’ﬁ+(j)+a)-
As |8 = o] = |a + (j) + 0| = r, the lemma follows and the proof of the
theorem is complete.

Corollary 7.4. For every vector field D in J* = vertical over J* =2 the
valued (n — 1)-form i E does not depend on the derivation laws chosen.

PrROOF. Since D lies in T(J¥~1/J* %, from (7.3) we obtain ipdO =
= —0WY A (ipE). Locally, there exist ordinary n-forms such that £ = 3, w, ®
® dyy, and by applying i, /ay,) O the first equation, by virtue of Proposition
7.1, we have ipW, = —i(3/a,yip dO. Thus, ipw, is a section of A"~ 'T* (X)or- 1.
Therefore, it is completely determined by 7~ '(ipw,) = B,,_»(0/8y;, D). The
result now follows from the previous lemma.

Corollary 7.5. Let E, E’ be the Euler-Lagrange forms associated to an r-order
Lagrangian density with respect to the derivation laws (V,, V), (Y5, V),
respectively. Then, there exists a unique Hom . (V(J* ~?), V*(Y))-valued
(n — 1)-form n on J* ! horizontal over X such that

E'—E=6"""Aq.

In particular, for every local section s of Y, the valued form E| ;2 - s does
not depend on the derivation laws chosen.

Proor. WesetE=2,;w;®@dy, E' = 2;w;®dy;and G; = wi(Dy,...,D,) —
- w;(Dy4, ..., D,). From (7.3) we obtain
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ip -+ ip (dO©) = 2 (-1)*"Lp <2 0% 0 Q(Dy, ..., D, .. .,1D,,)> +
+ip -+ ip (@@L AV) = (=1)"0P o (ip - - -ip E).

Writing down the corresponding equation for E’ and subtracting, we have

ZGeo—ZLD<Z o gc{jo =2 Z gaj)el +2 2 g;xjeiu(j)’

ijlal<r i,jlal<r

for certain differentiable functions gi,; on J> ~!. Therefore,

@ Gi= Z( 180)-

() Z([D,-gi;,-)+ Z gy=0 O<|af<r).
J

B+()=a

© > gy=0 (af=n.
B+()=o
From (b) it is verified that the function G¥= (- 1)" 2. 218l =k DA+ (’)g 8j
does not depend on the index k =0,...,r — 1. But G = G and G/~' =0,
as follows from (a) and (c), respectively. Hence, G; = 0. Therefore, by Pro-
position 7.1, we can write

—E=321 3 ulfiAvy®dy;  (a;eCU¥TY)
hiJ lal=2r-1

and, by virtue of the preceding corollary, the coefficients %, for |a| = 2r — 1

must vanish. Thus, 7 =2, ;3,2 4| <2r— 1105 ®dya®dy, is the unique

form fulfilling the conditions of the statement.

Corollary 7.6. Let ©, ©' be the Poincaré-Cartan forms associated to an r-
order Lagrangian density with respect to the derivation laws (Vo, V), (Vg, V'),
respectively. There exists a Hom,z, —«(V(J¥ =), V*(J" ™ '))-valued (n — 1)-
form 7 on J¥ = (not necessarily unique) such that

—de =0"AO* 1 AY).

Proor. This is an immediate consequence of formula (7.3) and the previous
corollary.

Corollary 7.7. The Poincaré-Cartan form © is projectable to J* =" for
h=2,...,rifand only if B, vanishes for k = 2r — h, . ..,2r — 2. Thus, since
the bilinear mapping By do not depend on the derivation laws chosen, if the
form © corresponding to the pair Vo, V is projectable to J* ~*, then it is also
‘true for the form ©' corresponding to any other pair of derivation laws.
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Proor. This follows from the first equality in formula (7.6).

Remark. According to formula (7.8) a sufficient condition for the form ©
to be projectable to J” is that £: J”— R must be an affine function over J" 1.
This condition is also necessary if dim X = n = 1. Note that in this case for-
mula (7.8) reads AN} /ay} = (—1)" "1~ %(32L/ay"yl).

8. Analysis of how Poincaré-Cartan forms depend on the
derivation laws chosen

Theorem 8.1. The Poincaré-Cartan form © associated to an r-order
Lagrangian density £v with respect to a pair of derivation laws Vo, V does
not depend on the vertical derivation law V. In fact, the value taken by © at
a point j2"~Y(s) only depends on j.,” *(sym Vo), where sym Vo means the sym-

metric connection associated to V.

Proor. Let O’ be the Poincaré-Cartan form constructed with the same linear
connection Vg of the manifold X and another derivation law V' in the vertical
bundle. According to formula (6.6), locally we have

0=>, 2 (—1)/ " N0kAv;+ L0 and © = Z 2( 1)/~ ]\ROR A v, + L.
h,jlBl=0 h,j 181=0
We set:

sz=z ZI (0+(.]))'<| |> i!+(j) (OSIO('S/‘—]),

i aso,|o]= | ‘

and similarly for the form ©’. Hence, from formulas (6.7) and (3.12) we ob-
tain

Ng = P b, Gl (O<|Bl<r—1).
lef =18l
Functions G" satisfy the following property: If o + (j) = &’ + (j'), then

Gh = Gaj Actua.lly, ifa+ ()=« + (j), wehave a = 7+ (j), o = 7+ ()
for a certain multi-index 7, and, thus, from the definition of G”; ; we obtain

|o] ;
7| + 1 0 Un- Forin =

(by setting o’ = 0 — (j))

Gaj=Grleni=2 (a+(j»!<

i |loj=r-1
70— (J")
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, . ., ol + 1) 4 i
Ghi=2 2 2(0 + NN+ ))!<I|T|!+ 1>aﬁr_7 dHN+UY T

(by setting ¢” = o’ + (J))

la”] hi i h
- 2 o"[=r-1 "+ UIW(ITI + 1>a”"‘(i)—rFa"+(j') =Gri(nJ =
7<0" - (J)
h
= Ga'j"

We can therefore define functions G% (1 < |«| < 7) such that G%; = G% _ (;,,
for |} =0,...,r—1.
On the other hand, from formula of Corollary 7.6 we deduce that

l'|D1 AR i[Dnd(G' - e) =
Hence,

(a) Z [D,()\g,' - )\g, =0

J
) 2D;0Ng =N + 2Ny = Ne—p ) =0 O<[Bl <)
© 208-Gri=MN-p) =0 (Bl =0.

J

We shall now prove by descending recurrence on k=0,...,r — 1 that
*) N =Ny and Goy= Gy (la] = 16| =

For k = r — 1, it follows from (6.8) that Nj; = Ny (|8 = r — 1), and from
the definition of G¥; we obtain G%; = (a!/|a|!)\"; when |a| = r — 1. Hence,
in this case G!;,= G Let us assume that conditions (*) are fulfilled for
r—1,r— k> 0 Thus, equation (b) for |8| = k becomes,

th h ~rh ~h
0= ;()‘6—(1'),1' ~No—(h ) = 2 20 Z aB—(J‘),a(GaHj) - Gori) =

( ——(J—))—,>(G Gh) = (k!/B)(Gy — G).
Therefore, G = G%; or in other words, G*, = G for |a| = k — 1. Further-
B o o
more, for || = k — 1 we have

r—1
o (k- 1)
= 85, Gl = ———— G + a5, G
|a§|.ﬁ| B B! lalz é

(k'—l)! r—1 o r—1
=Tng+||Z-=kaﬁ“G{"‘j= s |aﬁ°‘Gh'_)\ "
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Thus, (*) is proved for |a| = |8| = k — 1. In particular, we conclude that
the corresponding coefficients of forms © and ©’ coincide. Hence, © = ©'.

Since © does not depend on V, this form can be calculated using the flat
vertical derivation law associated to the local basis d/dx;, 3/dy; (i.e., by taking
I'% = T4; = 0). In this. case, we have a2 =0 when a >0 and A%, = 6,45,
Consequently, equations (5.2), (6.4) and (6.7) can now be written respectively
as follows:

®.1) |ﬁ|!f{,;+I |zma'aﬁa Z% &g, S _a,e/ay5
| <lBl<r-1.

(82 Fi=fl- Z(l + o) (D;F ;4 (jy) —
J

—jgl(l + 0 — O)(1 + 0; + 6 — 5jI)F_£'kay+(j)+(k)—(l)s
(lo|=1,...,r=1).

r—1 r
8.3 Ny= |a|§|m (@ + (g Ft, = o % . o'ag, o (jHFh

<|Bl<r-1.

Moreover, a direct computatlon shows that formulas (8.2) and (3. 9) remam
true when the components I jk are substituted by the functions 1"*’ (

+ FkJ), which obviously proves tht © only depends on sym (V) (see [10; Pro—
position 7.9 of Chapter III]).

Finally, we shall prove our last assertion of the statement. First we note
that &g, (x) for |8| < || only depends on ji*!~!#1=1(V,), as is easily checked
by induction on |«| using the recurrence relations for the functions &g, (for-
mula (3.9)). Formula (8.1) thus implies that fﬁ only depends on j" !~ 1Bl(v)
for |8 =0,...,r— 1. Similarly, from (8.2) we derive that F! only depends
on j ~17ll(vy) for |o| =1,...,r — 1. Thus, from (8.3) we conclude that
)\,3, only depends on j =2~ '#l(yy) for |8| =0,...,r —2. As the coeffi-
cients \j; (18] = r — 1) do not depend on V,, the proof of the theorem is com-
plete.

Corollary 8.2. The Legrende form Q associated to an r-order Lagrangian den-
Sity with respect to a pair of derivation laws Vo, V does not depend on the vertical
derivation law V.

Remark. The forms Q,,...,Q,_,, defined in (5.10) do depend on V.

As an example we shall now compute the first group of coefficients of
Poincaré-Cartan form © depending on the linear connection V, for an arbitrary
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r-order variational problem; that is, Nj; ; (18] = r — 2). According to the above
three formulas, we have

1+ Bu 1+ 1+8,
M=~ P @8 oy ) —

oD 2(1 + B + 8:)D;0L/3Vh 4 (jy+ ) —

1 + Bll

-1 l; ol wy, o (0L/3Y%) + azzr(a'/rv)aﬁ,a w@L/0y") +
1+ 8,

_ 7(,—_-—ILZ (1 + B + b1 — )1 + B; + 8 +

,1) k(a£/ay3+ @+ G+ R + @)

Moreover, using the recurrence formulas for the functions @4, we find

Q o
g+ (w),a = ;”m(u)—u).a—(j) -

OI o
- jZkII(l + oy = 05— 6kl jnlg + ), 0+ @) - (i) — o)

and finally,
Bu

(8-4) Ny = @L/0¥ 4 wy) —

1 u
B r(r+—61) 21+ B+ 8)D;0L/95 4.y + ) =

—[az"]r (a!/r '){ +B“Z ag s w) - (), a— () _aﬂa (u)](aoe/aya)
(8] =r—-2).

Proposition 8.3. For variational problems of order r < 2 on an arbitrary
fibred manifold and for variational problems of arbitrary order on a fibred
manifold with a 1-dimensional base manifold the Poincaré-Cartan form does
not depend on the linear connection V.

Proor. For first order variational problems the result is well-known and,
in fact, follows from formula (6.8). For second order variational problems
the result follows from the above formula, since in this case the last sum-
mand on the right hand-side vanishes. Let us now consider the case dim X =
= n = 1. Dropping the corresponding index to the base manifold in the lo-
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cal expressions, formulas (3.9), (8.1), (8.2) and (8.3) read, respectively, as
follows:

o [ g v
Gpo = 0dg,q-1/9X + 8g_1,o-1 — (@ — Dlag oy,

B+ 2 la!f%au h=88/ayh

a=08+

Fi=f —(0+1)DF.,,) - oo + l)le'Fin,

r

h Q h
)\B= Z O'!aﬁ,a_lFo
o=06+1

It is then easily checked that the following recurrence relation holds true,
Ng_1 = 0L/dyh — DNj,
thus proving the independence of form O in this case.

Remark. The above proposition can also be proved without calculation us-
ing corollary 7.6 and the system (@) — (b) — (¢) in the proof of the previous
theorem (see [4], [16]).

We shall now calculate the coefficients of the Poincaré-Cartan form for
a third order variational problem. From formula (6.8) we derive in parti-
cular,

1 L
M= =1+ 8 + )| =—— )
(kl)j 3 ( jk Jl)< 3}’?,‘1:1) >

The values of the intermediate coefficients are directly deduced from the
general formula (8.4). In fact, we have

1 .
Noow = 9L /8y = -5 20 () D;0.L/8Y )
J
1 1 .
Now = 7 02/8Y () = 25 Gu)!D;0L/3y i) +

1 . Qu 1 . Ao
+ T Z,; (.Ikv)!ij(a"B/ay?jkv)) "1 Zk (Jku)!ij(a"e/ay?jku))
7 7 (u # v).

In all these formulas we have used the following notations: (jk) = (j) + (k),
(ki) = (j) + (k) + (I), etc. Finally, the first group of coefficients may be
calculated by reiterating the above method. We obtain
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1 .
N = 9£/8¥(y = 5 2 U)!D,0L/y(iy) +
1
+ 37_,: (1 + 8;)(1 + 8 + 84,)D; D (BL/8Y i) +
Js

+HJZ UkD!D, (T k(a"e/ay?jkl))} -

- Tz— Z (jku)'[DI( % BL/3Y iy} -
ik

9. Variation formula of Lagrangian density: characterization
of critical sections

Propositior 9.1 (Variation formula of Lagrangian density.) Let © be a
Poincaré-Cartan form associated to an r-orden Lagrangian density £v. For
every infinitesimal contact transformation D in J¥ ' there exists a
V*(J* ~%)-valued (n — 1)-form & on J* ! such that,

©.1) Lp(Lv) =9P(D)oE + d(ip®©) + 0¥ ' AL.

The linear functional 6\ defined in §4 is thus given by the following formula:
02 GLO =[ Lp@y)=[ _ 07De-y)oE @eTV).
Proor. According to formula (5.12) and the definition of infinitesimal con-

tact transformations, there exists an endomorphism ¢ of the vertical vector
bundle so that,

Lp(Lv) = Lp® — (Lpf")AQ — 0" A(LpQ) =
= ipdO + d(ip0) — 0" A(¢* 0 Q + LpQ).

On the other hand, decomposition (7.3) implies in particular that there exists
Hom 2, - (V(J* ™2, V*(J"~))-valued (n — 1)-form 7 on J* ~! such that

do = 0DNE + 0"AO¥1AT).
Hence,

ipd® = 0V(D)oE — 0V A(ipE) + 0"(D)o (07 "' A7) —
—0"A@O¥ (D) o) + 6" A B> Alip)).

Thus, in order to obtain formula (9.1) it is sufficient to take

f= —¢*0Q — LpQ — ipE+ 0"(D)o7 — 0¥~ (D)o — 0" A(iph).
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Since the support of D has compact image in U, formula (9.2) follows
directly from Stokes’ theorem.

Theorem 9.2. (First Characterization.) Let E be the Euler-Lagrange form
associated to an r-order Lagragiarn density £v on the fibred manifold Y with
respect to a pair of derivation laws Vo, V. A section s of Y is critical for the
variational problem defined by L£v if and only if:

E|j2r—ls = 0

Furthermore, this condition does not depend on the pair of derivation laws
chosen. Thus, the valued differential system on J* ~! given by

O®,EFy (k=1,...,2r=1

constitutes a global and intrinsic version of the Euler-Lagrange equations for
higher order variational problems.

PROOF. A section sis critical if and only if (6,L)(D) = 0 for every D € T%.(D),
where U is the domain of s. By virtue of formula (9.2), this is equivalent to
the following condition

[0, 6CDer-)0E=0  (DeTUV)).

Since this equation must hold for all vector fields of T,(U), we conclude that
E|j2r-1;= 0, and conversely. The independence of the derivation laws Vo, V
follows immediately from Corollary 7.5. Moreover, according to the same cor-
ollary, in order to compute E|2r- 1, we can locally use the flat derivation laws.
Then, with the notations of (5.2) and (5.4), we have fo = 2.:(0L/3y) dy;, and

1 ; 0L a \”
— -1/ + <————> <—> dy;(1<k<r).
k! i,j[a[g;c—l( ) ( aj) y;.x.(j) vj® 3x ® y( r)

wp =

Thus, from formula (5.8) we obtain

9.3)E = Z{_7v+ Z( 1)h+12 Z (=1~ 11+a’d< Do ?oc )/\

Wa+ (i
N UJ} ® dyi'

Hence,

r F1G L
E\jor-1 = 2 { 2 2 (—1)k<79;3—><‘@- oj S>}U &® dy;.

i (k=0 |Al=k
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Theorem 9.3. (Second characterization.) Let © be a Poincaré-Cartan form
associated to an r-order Lagrangian density £v on the fibred manifold Y.
A section s of Y is critical for the variational problem defined by Lv if an

only if:
(ipd®©)j2r-1, =0 for all vector fields D in J* 1.

Furthermore, this condition does not depend on the particular Poincareé-
Cartan form chosen.

Proor. From formula (7.3) we deduce that for every vector field D in J* 1,
we have (ipd©)jjzr—1, = (0(D) 0 E)|j2r-1,. The result now follows from
Theorem 9.2 and Corollary 7.6.

For every open set U C X, we denote by I'(U, V) the set of critical sections
of the variational problem determined by £v which are defined on the domain
U. Since I’'(U, V) is the «set of solutions» of a globally defined differential
operator, it is clear that V is a sheaf of sets over the manifold X.

A section 5 (not necesarily holonomic) of the canonical projection
Doy 12 J¥ 1 > Xis said to be a Hamilton extremal of the variational problem
defined by £v with respect to the linear connection Vy if (i, dO)|; vanishes for
all vector fields D in J* ~1, where © is the Poincaré-Cartan form associated
with V,. We shall denote by V(Vo) the sheaf of Hamiltonian extremals with
respect to the linear connection V.

According to the second characterization of the critical sections, the jet pro-
longation s — j* ~ s induces an injection of ¥ into each V(Vy).

Remark. Note that condition (i, dB)|; = 0 can also be viewed as a differen-
tial equation on the linear connection V,,.

ExaMPLE. Let us consider the third order variational problem defined on the
canonical projection p:R?*>x R—R? by the Lagrangian density £v =
= %y%3,0) dxl A de.

The Poincaré-Cartan form corresponding to V, is given by the formula

1o
6 =y3,0@0,00NdX — V@,00@Va,0)NAX, — ‘2—11%1.1’(3,0) dya,pNdx, —

o
le 1 or?
- _1? dyo nAdx, + -4 -
2 113,00 8Y0,1) 2 [}’(5,0) 2 ox, Y3, 0
1o, 1] ar2, o)
- Eru}’(s,l) dy Ndx, — DI Ya,00 + T'iYa,0 | Ay Ndx, +
1
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1, 1 o2,
+ [ Ye,0Ya,00 — Ya,0Y6,0 — 7)’(3,0) Y a—xl‘.}’(o, nYa,0 t

1alg‘%ly ¥ 1Io‘zy ¥ +1f2y ¥y, ]dx/\d

5 - Ya,0Y3,00 — 5 'Y, , 5 , , X2,

2 ox, @.0Ye,0 ~ 3t 1Yo, nVe,0 T 5 nYa,0)ae,n 1 2
and the differential system which determines Hamiltonian extremals § =
= (Sa)|«| <5 18 the following:

aSO BS(I 0) 35(3 0)
S _—— = 2 ’ = =,
a.9 ax, Se.0 ax, S@,0 ax,
65(4 0) 1 °2 aS(3 0)
S = =+ T}l s, -0
(5,0) ax, 2 rulSen ax,
o
aS(z 0) 1 =Py aS(l 0) aS(o 1) 1 31"%1 aSO
S, = 4 T — - =2 —
GO= oy, T3 M ey, | ax 2 ax, \ax, @V
95¢s, 0y _ il‘-’.z 353, 1) _ 354, 0) +_1_ ary s _ 953,0) +
ox, 2 M\ ax ax, 2 ox, \ &Y by,
[]
N 1 arY [ 856,0 .
2 0x, ax, @0

Note that even for sections which are holonomic up to third order the above
system depends on the connection chosen; only for 4-holonomic sections does
the system become independent of V.

10. Functoriality of Poincaré-Cartan forms, infinitesimal
symmetries and Noether invariants

In order to emphasize the dependence on the linear connection V,, in this sec-
tion we shall denote by ©(V,, £v) the Poincaré-Cartan form associated to the
Lagrangian density £v constructed with the connection V,. As we have seen
in Theorem 8.1, ©(V,, £v) only depends on j”~%(V,). Let us denote by K = X
the affine bundle of linear connections of the manifold X. We can thus define
an ordinary n-form ©(£v) on the manifold Z = J"~2(K) X xJ* ~1(Y) by the
formula

9(£v)u-;_ 2y,,j2r=1s) = G(Vo, £v)(j3r— 15).

We shall call the form 6(Lv) the universal Poincaré-Cartan form associated
to the Lagrangian density L.
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Remark. 1t follows from the previous definition that j"~2(Vy)* ©(Lv) =
= O(V,, £v). Note also that ©(£v) is horizontal over J* ~!(Y). The local ex-
pression of the form ©(£Lv) is also given by formulas (8.1), (8.2) and (8.3); but
functions xg ,; must now be considered as differentiable functions on J"~ 2(K).

Theorem 10.1. (Functoriality of Poincaré-Cartan forms.) Let ¢ be an
automorphism of the‘ Sfibred manifold Y; that is,

/
y —Y . ¥y
p | | »
X— X
1%
The automorphism : L(X) — L(X) of the bundle of linear frames induced
by ¥ maps V, into a connection V= (V) (see [10, pp. 79 and 226]). Then

7Y * (O(Yo, £0)) = OV, J'(¥) * (£0)).
In particuiar, if y is a vertical autdmorphism of Y,

T 1) *(B(Vo, £0)) = O(Yy, J'(¥) * (L0)).

Proor. Let (x;,y;) be a fibred coordinate system for Y. We define a new
fibred coordinate system (%, 7) by setting X; = x;0¢ ", ;= y;0y "', and
denote by (y;) the corresponding coordinate system induced on the jet
bundles. We also denote by 6, the components of the structure forms in the
coordinate system (7.). Let V be the flat derivatig)n law associated to (X}, 7).
According to (3.6), there exist unique functions @g, € C*(X) such that

L4 = _;T 313 Gl ® (@R,
Bl =u |af=u

where the total Lie derivative L is taken with respect to (V,, V). Functions ?750,
fulfil the following conditions %ﬁa 0y = Gg,, where g, stand for the functions
associated to V, and the falt derivation law V determined by (x;, ;). This is
easily verified by induction on |«| using the recurrence relations for these
functions and the fact that the components of the linear connection V, with
respect to (¥;) are ', = I'S, 0 § . On the other hand, let Nj; be the coefficients
of the Poincaré-Cartan form ©(V,, £v) in the coordinate system (X, 7). We
shall also use the obvious notations for the sections f,, F associated to this
form with respect to the derivation laws V, and V.

We can check by induction on |3| that the following formula holds true,

FEoJWy =y (Bl <A).
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Hence, dyﬁ = Jk@)* (dy), and consequently,

T xgh _ ph 9L T _ a T
J'(Y)*0h =06} and W‘ZOJ W) = 5}“;;“"3 o J'(¥)).

Let £ € C*(J") be the unique function such that J'(¥)*(Lv) = £'v; or
equivalently, £’ = p(£ o J'(y)), where p is defined by the condition ¥ * v = pv.
Let us denote by Agj the coefficients of the Poincaré-Cartan form ©(V,, £'v)
in the coordinate system (x;, ¥.). The components (in the same coordinate
system) of the sections f;, F associated to this form with respect to the deriva-
tion laws V,, V will be denoted by f#, F_, respectively. Then, from the last for-
mula above and Eq. (8.1) for f, we derive f# = f# o J'(). Now, by recurrence
on |a|, it follows from formula (8.2) that Fi = F! o J* ~ (). Thus, we obtain
Na; = Nyj0 J¥~1(y), and therefore

r—1
T 1) * (O(V, £0)) = ) l6120(—1)"' NEOEA @ * D) + T () * (Lv) =
sJ =
= O(Y,, £v),
since y * U; = v;. This completes the proof of the theorem.

Corollary 10.2. (Infinitesimal functoriality of the universal Poincaré-Cartan
form.) Let D be a p-projectable vector field in the fibred manifold Y. We
denote by D its projection on X. Let D be the vector field induced by D in
the affine bundie of linear connections of X. Then

(10.1) L@, .0, p(©OLV) = OUp,,(LV)).
In particular, if D is p-vertical,

Lpg, _ ,(0(£0)) = 6(Lp,, (£1)-

Proor. Let 7, 7, 7, be the local 1-parameter groups generated by D, D, D,
respectively. The 1-parameter group generated by (D~(,_2),D(2,\_ n) is
(J""*#), J*~X(z,), as was pointed out in (4.4). Thus, formula (10.1) is
equivalent to the following

(@) 72, I H1)) * O(Lv) = O (1) * (L£0)).

Moreover, since ©(£v) is horizontal over J ~(Y), in order to verify (b)
it will be sufficient to prove that for every linear connection V, of X, we have:

JTTAV)FUTTAE, T T a) * O(Lv) = TF T () * A E(V0) * O(LY) =
=" H Vo) * O (1) * (L0)).
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But according to the previous remark this is equivalent to
T~ U 1) * (B(F(Vo), £0)) = O(V, J'(7) * (L))

The result follows immeditely from the preceding theorem.

A p-projectable vector field D in the manifold Y is said to be an in-
finitesimal symmetry of an r-order Lagrangian density Lv if L D(r)(£v) =0.

For every open set V' C Y we denote by I'(V, D) the set of infinitesimal sym-
metries of the Lagrangian density £v. It follows directly from the above
definition that D is a sheaf of Lie algebras over Y. Moreover, we denote by
DY the ideal of D determined by the p-vertical infinitesimal symmetries. We
have thus an exact sequence of sheaves over Y,

0> D> D—p ! (Dery) — 0.

Corollary 10.3. A p-projectable vector field D in Y is an infinitesimal sym-
metry of Lv if and only if,

L@, 500 1(©L0) =0.

In particular, p-vertical infinitesimal symmetries are characterized by the
condition ‘

Lp, _,(6(£v) =0.

If D is an infinitesimal symmetry of Lv, then the ordinary (n — 1)-form
iD(Z’_ 1)6(;53 v) will be called the Noether invariant corresponding to D. Note that
ip,, _,,©(£) is a differential form on the manifold Z = JHK) X x JTNY).
The Noether invariant corresponding to D with respect to the connection V,
is, by definition, the ordinary (n — 1)-form on the manifold J* ~1(Y),

JTAV)* (i, (L) = ip, BT, £1).

Note also that the Noether invariant corresponding to D really only depends
on D,.

For a different approach to the theory of Noether invariants one may con-
sult [15].

Proposition 10.4. If D is an infinitesimal symmetry of £v, for every critical
section s we have:
d[(iD(z,_l)e(VO’ Lv))jj2r-15] = 0.

Thus, once a linear connection V has been fixed, each Noether invariant
defines a function on v with values in the space of closed (n — 1)-forms of X
by the formula fi(s) = (iD(Zr—l)e(VO’ L))y j2r- 15
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Proor. Since D is an infinitesimal symmetry of £v, we have

Lpe, O £0) = Lo, (0"AD) = (Lp 6 AR +6"A(Lp,, D)

=0"AN(*0Q + LD(Zr_DQ).

Hence,

(LD(zr— 1)6(V0, £U))|j2r— 15 = d[(iD(zr—- l)e(Vo, L)) jor-15] +
+ (iD(Zr— D de(vo, £v))|j2r— 15 = 0,

and the result follows from the second characterization of critical sections.

Proposition 10.5. The mapping v which associates to each infinitesimal sym-
metry D € D its Noether invariant is R-linear and Ker 7 is an ideal of D. Ac-
cording to this, we can translate by r the Lie algebra structure of O to the set
J of Noether invariants. J will be called the Poisson algebra associated to the
variational problem under consideration. Furthermore, J’ = 7(D") is an
ideal of the Poisson algebra.

Proor. Let D, D’ be two infinitesimal symmetries of £Lv. Assume that

DeKerr (i.e., iD(Zr— 1)9(‘531)) = 0). Then, from Corollary 10.3 we obtain,

i[D’D'](Zr— 1)9(530) = iD(Zr— 1)LD'(2r_ 1)e(£v) = _iD(zr— 1)L5'(r—2)e(°ev) *
= ~Lp, , (ip,,_ ,9(£LY) = 0.

Hence, [D, D'l eKer 7.
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