REVISTA MATEMATICA IBEROAMERICANA
Vor. 1, N.° 4, 1985

Oscillations of
Anharmonic Fourier
Series and the Wave

Equation

" A. Haraux V. Komornik

Introduction

Let Q be a bounded domain in R, » > 1 and consider the usual wave equation
with Dirichlet boundary conditions on I" = 9Q

M iun-—Au=0, ¢, x)eRxQ

u|1'*=0, IGR.

It is well-known that for any «initial data» (i, v,) € Ha(Q) x L*(Q), there ex-
ists one and only one solution # of (1) in the functional class
CR, HYQ)NCY R, L Q) such that u(0,x) = up(x) and u,(0,x) = vy(X).
Moreover, for any such data, the vector U(¢) = (u(t, - ), u.(t, -)) is almost
periodic as a function: R — H(Q) X L*(Q) and the «anharmonic Fourier
series» for u is given by the (generally formal) expansion formula

@) Ut, ) = 3] €08 (VN + ctn)pn ()

n=0
where (\,),= is the sequence of eigenvalues of (—A) in Hy(Q), ¢,(x) is an
orthonormal (in L?()) associated sequence of eigenfunctions, {u,} and {«a,}
are two sequences of real numbers which can be computed in terms of u,, v,
and n.
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It is well-known (cf. for example [5]) that formula (2) does not define in
general an absolutely convergent series for x € Q fixed. However, formula (2)
makes sense pointwise if the initial data (1, v,) lie in Hy™(Q) x Hf ~'(Q) with
m >3, for example. In such a case, it becomes reasonable to ask about the
behavior of the sign of u(z, x,) on a given interval J C R. Indeed, since u(Z, x;)
is then almost periodic with mean-value equal to 0, it is clear (cf. for example
[3]) that u(Z, x,) cannot keep a constant sign on an infinite interval unless
u(t,x,) =0 for teR.

Incase n=1, @=10,/[, />0, it is immediate that either u(¢, x,) =0, or
u(t, x,) takes both positive and negative values on J as soon as |J| = 2/. This
property has been generalized in [2] to a class of semi-linear wave equations.

In case n > 1, we know that u(z, x) cannot remain >0 in Q for all 7 € J with
|7l > ©/~/\, (cf. [2]). However the local behavior of u(,x) is difficult to
study already if » = 2 and Q is a rectangle, for the usual wave equation (1).

In this paper, we have collected some partial results on the sign of u(z, x)
where u is a (sufficiently regular) solution of

3) Uy + (—1y"A"y = 0 t,X)eR X Q
up=-+--=A""'uyp=0 teR.

These results rely on a study of the sign of almost periodic functions of a
special form restricted to a bounded interval J.

1. Construction of positive functions orthogonal to some
subspaces of C([0, T])

In this section, we consider a linear subspace X of the vector space AP, 0
of all (continuous) real-valued almost periodic functions on R with mean-
value 0.

We try to answer the following question: find a function peL'(0, T)
(T > 0) such that

{p(l)>0 a.e.on 10, 7]
veX,  [Tpnswdi=0

Our motivation for doing this is the following.

(1.2)

Proposition 1.1. Let T > 0 be such that there exists p e L'(0, T) satisfying
(1.1) and (1.2). Then for any fe X we have the following alternative

(a) either f(¢) =0, vtel0,T]; :

(b) or there exists ¢, t; in [0, T] with f(¢;) > 0 and f(z,) < 0.
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Proor. Assume for example that f(¢) > 0 on [0, T]. Then from (1.1) and
(1.2) we deduce p(¢)f(¢) = 0 a.e. on ]0, T'[. Since p(¢) #0 a.e. on ]0, T'[, we
conclude that f(¢) =0, vte[0,T]. O

The foliowing simple result, although it will not be used in this paper, seems
to be interesting in itself.

Proposition 1.2. Assume that diin(X') < + . Then there exists T, such that
Jor all T 2 T, there exisis p € C([0, T)) satisfying (1.1) and (1.2).

Proor. Let {f;} 1 <j < nbeabasis of X. We can assume (as a consequence
of Schmidt orthogonalization procedure) that

1 (T B
1.3) Jm L fiOfwde =6,

Let Eg be the vector subspace of L*(0, T) generated by {fjij0.71}jeq,....n-
We denote by vy the (orthogonal) projection of the constant function 1 on £
in the Hilbert space L*(0, T'). We have

vr(®) = 25 vu(Df(0),  vtel0,T]

Jj=1

and the property: 1 — vre(Ep™* yields
T T T
J fiitydt = Z_v,-(T)‘[ L@ fi@) de + uj(T)j FAGIR
0 i#j 0 0
On dividing by 7> 0:
L Hdt= Y, IJT 0fit)dt T+{1jT|ft|2dt (T
“Tjofj() —i#j T Ofi( fj() vi(T) T o () v(T)

Since

T— +

1 T
lim — L f®dt=0

and as a consequence of the orthonormality conditions (1.3) we deduce

Sup |v;(T)|—>0 as T— +oo.

1<j=n
As an immediate consequence, for all 7> T(¢) we have |vy|. < e. Hence
p =1 — vy satisfies (1.2) and p(t) e C([0, T]) with 1 —e<p(t) <1+ ¢€ on
[0, T for all T > T(e).
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Remarks 1.3. (a) It follows from the proof of Proposition 1.2 that p(¢)
can be taken in the same regularity class as the vector function F(¢) =
= (fi(®), . . ., [n(®))-

(b) For any T>T,, and any vector a€R", the real-valued function
f(t) = a- F(¢) satisfies the alternative described in Proposition 1.1. It is also
possible to show this last result directly by working in H = Vect(F(R)) # {0}.
Indeed, if a; is a sequence of vectors in H with |a;| = 1 and a; - F(¢) > 0 on
[0, k], any limiting point @ of {a,]} satisfies |e¢| =1 and a-F(f) >0 on
R* = q-F(t)=0on R and a-a = 0, which is absurd.

(c) A variant of Hahn-Banach theorem shows that the converse of Proposi-
tion 1.1 is true if dim(X) < +. However :

—If dim(X) = + o, the converse is not true in general.
—If we used point (b) above to show Proposition 1.2, we would only have
found p € L0, T).

Now let 7> 0 be arbitrary: we define
X, = [u eC(R), u(t + 7) = u(f) and jo u(t)dt = o}

We also set, by definition X, = {0}. The main result of this section is the
following.

Theorem 1.4. Let {7}, << 1+ be a non-increasing sequence of >0 numbers
such that

)
7'2>0 and ZTJ=T< + o0,
j=1

There exists a function h: R — R such that

(1.4) Y(x,))ER X R, |h(x) — h(p)| < |x — Y|
(1.5) vxel0, T[, h(x) >0

(1.6) vxeR\I0, T[, h()=0

a.7) W EN\(0}, VoeX, [ h®ex)dx=0

In addition, we have
(1.8) vxeR, AT - x)=h(x)
1.9 x<y<§= h(x)<hQ).

Proor. We define inductively a sequence of functions #4,: R — R as follows

if 0,
(1.10) h@) = {(T)z ;f i?]o Trlll[
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1 (™

—\ h,_x—tdt if nz2, 7,>0
1.11) ho(X) =< 7 L i )

h,_1(x) if n=23, 7,=0

Lemma 1.5. For any ne N, n 2 2 the function h,(x) is such that

(112) V(x,y)eR X Rs lhn(x) - hn(y)l < ix - yl
(1.13) vxe}o,i}fj[, h,(x) >0
) 1
(1.14) VxeR\Jo,i;rj[, h,(x) =0
1
(1.15) veeUX,, [ Ane(dx =0
1 J
(1.16) Vx € R, h,,<:‘] T — x> = h,(x)
1
1.17) x<y<%§]n=hn(x)<hn(y)
1
(1.18) jR h,(x) dx = 7,7,
n-1 € €~ 1Tn
(1.19) 0< egi = j h,,(x)dx;j h, _ () dx
2 1 0 0

Proor oF LEMMA 1.5. The proofs of (1.12)-(1.18) are by induction on n. The
properties (1.13) — (1.18) are obviously satisfied for » = 1. Property (1.12) is
true for n = 2, since

T2

1 1 (-
hy(x) = — ‘[ hyx—t)dt = — j hi(y) dy,
T2 JO Ty Jx-1,

hence
0 if x<0
X if 0<x<n,
hz(x) = P if T S X S 71

n+n—x if n<x<n+n,
0 1f X>TI+T2
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The inductive argument from n — 1 to # is trivial if 7, = 0. If 7,, > 0, we pro-
ceed as follows:

1 (™ ,
(1.12) |7, () — h,(D)| < . L |y 1 = 8) = (¥ — D) dE <
1 (™
< [T star= )
Tn JO
(1.13) and (1.14): obvious from (1.11).
1 (™
(1.15) j hn(x)qp(x)dx:j —j h,_(x—dte(x)dx =
R R Tyn JoO

1 (™

= j h,_(x — e(x)dxdt =
R

Tn JO

1 Tn

=— j h, _(W)o(u + t)dudt =
R

1 [ ™ A
=—1\ h,_ l(u){j o(u + 1) a’t} du.
R 0

If gan;"lX,j, then [ h,_(W)e(u + 1)du = 0 for te R, and we deduce

fR h,(X)e(x)dx = 0.
If ¢ eX,”, then j;" ¢(u + t)dt = 0 for u e R, and the result follows by in-

tegrating in u.
From now on, we use the notation:

Tn= ZTJ', vn > 1.
j=1

(1.16) h,,(T,,—x):ij"h,,_I(T,,—x-t)dt=
0

Tn

1 (™
=—j hy_x+t—1)dt =
Tn JO

= if B 1(X — ) dt = (%)
Tn 0

for all n > 2.

(1.17) This property is obviously true for n = 2. If > 2, we remark that

Tt = [* By ,0)dy,  VxeR = h,eC'(R)



OSCILLATIONS OF ANHAKMONIC FOURIER SERIES AND THE WAVE EQUATION 63

and
Tnh:l(x) = hn— l(x) - hn—l(x - Tn)

Hence %, >0 on |-,57,_,]|. Moreover, if xe[;T,_,,37,], we have
T,_1— xg%T,,_land T,_1—x2=2x— 1, hence r,it,(x) = h,,_(T,,_{ — Xx) —
— hy_(x — 7,) > 0. Finally, h, is non-decreasing on | -0, 3 T,].

(1.18) j h,,(x)dx=J‘ i‘r h,_(w)dudx =
R

R Tn X—Tn

= J h,,_l(u){fu T"idx} du = j h,_(u)du
R u Tn R

(1.19) As a consequence of (1.14 ) and (1.17) we have
€ € 1 Tn . € 1 Tn .
‘f h,,(x)dx=j -—J h,,_l(x—t)dta’x>j »—J h,_x—T1y)dtdx =
0 0Ty Jo 07, JoO

=J‘hn_1(x—rn)dx=j hn_l(u)du=j (@ du. O
0 0

-7,

END oF PROOF OF THEOREM 1.4. If Tny = 0 for some n, > 2, there is nothing
left to prove. If 7, > 0 for all n > 1, we remark that

vnz=2, VXER,

1 (™
,hn(x) - hn—l(x)l < T— Jl) Ihn—l(x - t) - hn—l(x)l dt <

Ty 1

1
< — tdt =—r,.
U Jo 2T,,

Since 2517, < +, {h,(x)} is a Cauchy sequence in Cg(R).
Let

h(x) = lim h,(%), vxeR.

n— +wo

We claim that & satisfies (1.4) — (1.9). Since the sequence #4,, satisfies (1.12),
from (1.13) — (1.18) we deduce easily all the properties required on % except
(1.5). Now if (1.5) is not satisfied, then for some ¢ > 0 we have A(x) = 0 on
[0, €]. We pick m € N large enough so that

m+1

1 m o
ESEZT,( and D, 1, <e.
1
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For all ne N, n > m we find as a consequence of (1.19):

n
2
m+1

7
h,,(x) dx.
0 .

j h,,(x)dx;j b (9dx> - >j
0 0

Hence:

o

€ E—m§ 7j
J By (o) dx > f " h, () dx > 0.
0

0

By letting n = +o we find jgh(x) dx > 0.
This contradiction with # = 0 on [0, €] shows that in fact # > 0 on ]0, 77.

Corollary 1.6. Let {7;},<;< + be as in the statement of Theorem 1.4 and
let fe X7;, Vje (1,2,...,} be such that 3,/ | fi|o < +. We set

S = Z‘,lfj(t), vieR.
i=

Then for any interval J C R such that |J| > T, we have either f(t) = 0 on
J, or A(t,, t,) in J with f(t;) > 0 and f(t,) < 0.

Proor. Let X be the closure in Cz(R) of the algebraic sum 2.7, X7;. Clear-
ly, X C AP, 0 and X is translation-invariant, i.e. f(f + o) € X for all fe X,
o € R. Assume that fe X and f> 0 on J with |J| > T. Let a € R be such that
[a,a + T]1 CJ. Then g(t) = f(t + a) e X.

As a consequence of Proposition 1.1 and Theorem 1.4, we obtain g = 0 on
[0, T'], hence f= 0 on [a,a + T]. Since a is arbitrary in [InfJ, SupJ — 7] we
conclude that f=0 on J.

2. Oscillation length and pseudo-analyticity measure

Let X be as in section 1. We define three nonnegative numbers, possibly in-
finite, which play an important role in the study of oscillation properties.

Definition 2.1. The oscillation legth of X is the number 1,(X) = inf{/ > 0,
vaeR,¥feX,f=20on [a,a+ 1= f=0onla,a+1]}.

The pseudo-analyticity measure of X is L,(X) =inf{/>0,vaeR,Vfe X,
f=0onla,a+1]= f=0o0nR}.

We also define I;(X) =inf{/>0,vaeR,VfeX,f=20 on [a,a+1] =
= f=0o0n R}.
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Proposition 2.2. We have
LX) = Sup{/,(X), L(X)}

Proor. This is an obvious consequence of the definitions of the numbers
L;(X).

Remark 2.3. If X = AP, 0 we have [;(X) = [,(X) = +¢.

We have /;(X) >0 as soon as X # {0]}.

In contrast with this property of /;, it is clear that if X C {real analytic
functions}, then /,(X) = 0.

It is impossible to compare in general the values of /,(X) and /,(X). Indeed,
if {0} # X C {real analytic functions}, we have 0 = ,(X) < /;(X). On the
other hand, it is not difficult to find fe AP, o such that fis 1-periodic, with
f=0o0n[0,1-¢], f#0 (hence L(Rf) =1 — ¢) and f(¢) takes positive and
negative values in any neighbourhood of 1 — e and 1. Hence if f(¢) has a cons-
tant sign on some interval J, we must have either JC[m —1,m — €] or
J C [m — ¢, m] for some m € Z. In particular, if |J| > ¢ we deduce f=0 on
J. This obviously implies that /,(RF) < e.

A major result of this section is the following.

Theorem 2.4. Let {7;}, . j <, be a finite sequence of positive numbers. Then
n n
13 Z XTJ> s Z Tj.
j=1 Jj=1

Proor. Let X = 2.7_, X7;. It follows from Corollary 1.6 that /i\(X) < 2.} 7;.
Hence Theorem 2.4 will be proved as soon as we establish the following lemma.

Lemma 2.5. Let ae R be arbitrary and fe X be such that f=0on J=
= [a,a + 2}_7;]. Then f=0 on R.

Proor. By induction on n. The result is obviously true if » = 1. Assume that
we have the result for n — 1 withn > 2. Let f = 2.7_ | f; with f;e X7;and f= 0
on J. Then

n—1

n-1
g =ft+ 1) = f(O) = 25 (St + 1) — £;(D)} eg;l X,

Jj=1

andg=0onJ*=[a,a+ gy 7;]. By the induction hypothesis, g =0 = f
is 7,-periodic. The result follows immediately. [J
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Remark 2.6. In our applications to hyperbolic equations of the second
order in ¢, Lemma 2.5 will not be very useful since the results that we shall
obtain will follow by taking each «harmonic oscillation» in a different X7;,
so that for an infinite number of harmonics we get nothing, while when the
harmonics are in finite number we have analycity in ¢!. Therefore, the follow-
ing extension of Theorem 2.4 will in fact reveal essential for our purpose.
Theorem 2.7. Let {7;}, < ;< 1« be an infinite sequence of positive nimbers. We
set Y= {feAP, 0, 3(f};s suchthat 2.7, | fi]lw < + and f(t) = 25150
on R}. Then:

L)< Y 7=T.
Jj=1

Proor. If T = + oo, there is nothing to prove. If T'< + o0, we know already
that /;(Y) < T as a consequence of Corollary 1.6. Therefore to have the result
it is sufficient to prove the following lemma.

Lemma 2.8. Let aeR be arbitrary and fe€Y be such that f=0 on
l[a,a+ T)=J. Then f=0 on R.

Proor. Since Yis translation-invariant, it suffices to consider the case a = 0.
let f(¢) = 227-, f;(t), fje X1, 27| f;| < +oo. We assume T'< +o and we
set e, = 2x 7;. Let p, = R~ R be a continuous function such that

Supp(px) C [0, &]
Di>0 on 10, el

Di(ex — 1) = pe(2)
j Pr(s)p(s)ds = 0, VpeE LkJXTj.

(1]

We introduce

gt = jskf(t + S)pi(s)ds for all teR.
0

We have

€k © €

&)= | J_Zlf,-(t + S)pi(s) ds = _Zl , S+ D) ds =
- 7~

k-

2

1 ek
Jji=14J0

Ji(t + )p(s)ds,
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therefore g, € X4 7! X7, for all ke N, k > 2. From f= 0 on [0, T] we deduce
g =0 on [0, T — ¢], hence as a consequence of Lemma 2.5 (note that
T— ¢ = Z'f'lrj) we have g, =0 on R. Now let

€k 1
Me = j Pi(8)ds>0 and p(r)= )\—pk(t), teR.
0 k
Because of the properties of p,, it is immediate to check that u, — 8,, the
Dirac mass at 0 for the weak-star topology of Mp(—1,1) (say) as £k > +.
We deduce immediatly:

VieR, lim Lgk(l) = f(?).
A

k— +

Since g, = 0, this convergence clearly implies that in fact f= 0 on R. Hence
the proof of Lemma 2.8 is completed. [

3. Optimality of the results in sections 1 and 2

In this section, X, is defined as previously. We also use the following
subspaces of X :

~

k t
XT,k={ueXT, 3{u;} eR¥, 3oy} eRY, u(®) = ujcos<2jl—+aj
=1 T

J

a) On the optimality of Theorem 1.4
It will appear as an easy consequence of the following density result.

Theorem 3.1. Let n>1 be an integer, 7, ...,1, Some positive numbers
such that 7;/7; ¢ Q if i # j, and T such that 0 < T < 2.7_, 7;. Then the restric-
tions to [0, Tl of functions in Z};I)?,j are dense in C([0, T']).

Proor. It has been pointed out to us by Y. Meyer that Theorem 3.1 can be
derived as an easy consequence of general results from the theory of
meanperiodic functions (cf. [6]). For completeness we will give below a more
direct proof based on a density result for the «limiting case» T = Z}L 1 Tje
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Theorem 3.2. Let nand {71;}, < j <, be as in the statement of Theorem 3.1. We
denote by ®, the set of polynomial functions of degree <n. The restrictions
to [0, 227_, 7;] of functions in Z}'=1XTJ. + ®, are dense in C([0, X}_ 7}]).

Proor. We rely on the following two simple lemmas concerning the map
C: C(R) = C(R) defined by (Cf)(¢) = f(t + 7) — f(¢). [* > 0 is given].

Lemma 3.3. VA1, C(®) = ®,_,.

Lemma 3.4. Vo >0 with 7/0 ¢ Q, we have ©(X,) = X,.

The proof of lemma 3.3 is obvious. To prove lemma 3.4, it is sufficient to
check that Vke N, k > 1, C(X, ;) = X, ;. But obviously C(X, ;) C X, , and
if we denote by ©, the restriction of € to X, ;, we have C,1(0) = {0} because
/0 ¢ Q. Since X, ; is finite dimensional, the result of lemma 3.4 is now
obvious.

ProoF oF THEOREM 3.2 CONTINUED. We proceed by induction on n.

—For n =1 the result is obviously true since
C0, 1)) = X, + @,

and Xf; is dense in X,l for the topology of C([0, 7,]).
—For n > 1, we consider an arbitrary function fe C([0, T']) with

n
T= Z Tj.
j=1

We define
fO)=ft+1)—-f@), vtel0,T—-1,]. (3.1)

By the induction hypothesis, for any &>0 there exists f eX’,j for

1<j<n-1and pe®,_, such that

-1

f—ﬁ—”Z

Jj=1

<. (3.2)
co, T-1,)

i

As a consequence of lemmas 3.3 and 3.4, we may assume for all j as above

i =ft+1) -0, VteR fieX, (3.3)
pit)=pt + 1) —plt),  VIER; pel, 3.4)
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Also by the case n = 1 we can find f, e)?," and g € ®; such that

Clearly, ¢ is a constant and we have

<é. (3.5
(0, 7,1

f-+d-2f

=1

14(0)| <26 +

n—1
<f—ﬁ— zlfj>(0)} < 36.
=
Finally, let
h: =f—(p+4q) — Elfj on [0, T].
f=

Then we have

|2lcqo,~p <O (3.6)
\h(t + 7,) — h(t)] <46,  vtel0,T—7,]. 3.7)

From (3.6) and (3.7) it is immediate to deduce

< <l + 4T>6. (3.8
c([0, T Tn

Since 6 can be taken arbitrarily small and f € X,J_, p + g € ®@,, the induction
step is achieved, and the proof of Theorem 3.2 is completed. [

\f—jglf}—.(p+q)

Proor oF THEOREM 3.1. Let I be the space of bounded measures on R
which are supported by [O, Z}L 1 Tj] and consider

Z={u€fm, eri)?f., ;t(f)=0}-
j=1 7

As a consequence of Theorem 3.2, we have
dim(Z)<n+1< +oo,

Let now 0< T < Z}; 1 7; and consider a bounded measure » on R with
supp (») C [0, T'], such that v Z.

For a€ [0, 27_, 7; — T}, the translated measure »(- + @) = », is also in Z.
On the other hand, if » # 0, it is obvious to show, by looking at the supports,
that all the measures v, are linearly independent. Since Z is finite-dimensional,
we must have v = 0. Hence for 0 < T < Z}LIX',J_, we obtain that Z}LIX',J_ is
dense in C([0, T']).

This density result immediately implies the following. [J
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Corollary 3.3. If all the 7; such that 7; # 0 are pairwise incommensurable,
the result of Theorem 1.4 and Corollary 1.6 are optimal in the sense that the
number T = Z}’-‘;l 7; cannot be replaced by any number T' < T.

b) On the optimal character of Theorem 2.4 when n =2

The result of Theorem 2.4 (just like Theorem 1.4) is not optimal in general
for n = 2. Indeed, if 7; € N7,, the conclusions of both Theorem 1.4 and 2.4
are still valid with T = 7, + 7, replaced by 7’ = 7; < T. On the other hand,
the following result shows that Theorem 2.4 is optimal when n =2 and

71/7, € Q.

Theorem 3.4. Let 0< 7, <7, With 1,/7, ¢Q, and 0< T< 7, + 7,. Then
there exists u, €X, and u, € X, such that u, # 0 and u, + u, =0 on [0, T].

The proof of Theorem 3.4 relies on the following.

Lemma 3.5. Let J be a closed interval such that |J| < 7,. For any p € N,
there exists a finite set F C Z, such that [—p,plNZ C F and having the
Sollowing property: setting X = Fry + Zr,, for all t € J we have

teXet+neX. 3.9

Proor. Since 7,/7; ¢ Q, N1y — N7, and N1, — N7, are everywhere dense in
R. We set J = [a, b].
1. There exists /, s in N with / > p and such that b — 7, < I7; — s7, < a. As
a consequence, for any m € Z we have either m > —sand I7; + mr, > b,
ormg —sand I + mr, < a.
This implies in particular (/r; + Z7,) NJ = (.
2. There exists k, r in N with £k > p and such that

b-—n+n< —-kr+rn<a+r7.

This implies (—k7; + Zr))N(J + 7)) = .
3. We consider F= {—k, -k +1,...,[}.
—If teJ and ¢ = nr; + mr, with —k < n </, then we have in fact
n<!/-1, hence t + 1, € X.
—If teJ and t+ 7, =nr + mr, with —k<<n</, then in fact
n> —k+1,henceteX. O
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ProOOF oF THEOREM 3.4. The result is obvious if T< 7. If T> 7, we fix
8 > 0 small enough so that |J| < 7, with J =[-8, T — 7, + §].
Let X be as in Lemma 3.6: then

a=Inf{|x - y,xeX,yeX,x#y} >0

We choose p such that 0 < p < %inf{a, 6} and a function ¢ # 0, ¢ € D (10, +o[)
such that Supp (¢ ) C [0, p].

Let w(t) = o(dist (¢, X)), vt € R. Clearly, we C*(R)N Y., and w # 0, since
the function dist (¢, X) takes at least all values of [0, p] as ¢ ranges over R. We
now show that w(¢ + 7;) = w(f) for all 1€ [0, T — 7,]. Indeed:

(a) If dist (¢, X') > p, we cannot have dist ( + 7, X) < p: assuming this ine-
quality, since p < _21_a there would exist a unique point xe€ X such that
|x — (t + 71)| < p. Because p < §, wededucex — ;e JN(X — 1)) = x— 1, € X,
a contradiction since |t — (t — 7{)| < p. Hence we must have dist (¢ + 7;, X) > p.
In this case we have w(t) = w(t + 1) = 0.

(b) If dist (¢, X) < p, let x€ X be such that |x — #| = dist (¢, X). Because
te[0,T — 7,] we have xe J, hence xe JNX = x + 7, € X. Now dist (# + 7y,
X)=|x—t|, because there is at most one point yeX such that
|t+ 7, —y|<p, and y=x+ 7, precisely fulfills this condition with
lt+ 7 -yl =|x—1.

We conclude that dist(z + 7, X) = dist (#, X) = w(t + 71, X) = w(t, X).
Finally, let u(¢) = w'(t): we have u € X72 and u # 0 since wis not constant. We
finally have u + v = 0 on [0, T] where v(¢) is the unique 7,-periodic function
such that v(¢) = —w'(f) on [0,7]. Clearly v eX,l, hence the proof of
Theorem 3.4 is completed. [

4. Applications to some hyperbolic problems of the second
order with respect to t

a) An abstract oscillation theorem

Let H be a real Hilbert space and A: D(A) C H— H be a (possibly unbound-
ed) linear operator such that A = A* > 0 and A is strongly positive with 4~ 1
compact.

If we set V = D(A'Y?), it is well-known that for any (u,, v,) € V X H = 3,
the abstract second-order equation

4.1) u" + Au(t) =0, teR
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has a unique solution ueC(R, V)NC'R,H) such that u(0)=u, and
u'(0) = v,.

Moreover, the equation (4.1) generates a group of isometries 7(¢) on JC en-
dowed with the norm |(u, v)| 5 = (|4 %u|% + |v|4)} 2

Therefore, for all (4, vy) € 3C, the function ¢ — (u(t), u’'(t)) € 3C is almost
periodic. (Cf. for example [4], lecture 24, Proposition 9.) On the other hand
u' is bounded: R — V' and it follows that u(f) = —A ~'u"(¢) has mean-value
Oin V.

As a consequence, for any ¢ € V’, the function 7 — <¢, u(t) > cannot re-
main nonnegative on an infinite interval except if <¢, u(f) > =0 on R. The
results of section 1 now allow us to state a more precise property.

Theorem 4.1. In addition to the above hypotheses on A, assume that the
eigenvalues of A on H, denoted by {\,},cn\qy and repeated according to
their multiplicity order, are such that

+ 2
4.2) LT —T< +oo.

n=1\/)\—n

Then, for any ¢ € [D(AY*)) and any solution u of (4.1), we have the following
alternative: either, <¢, u(t) > =0 on R, or for any interval J of R with
|J| = T, there exists 1, and 7, in J such that

<&u(r)>>0 and <&,u(t)><0.

Proor. Let {¢,},~; be an orthonormal (in H) sequence of eigenfunctions
relative to {A,},>1-
We set 7, = 2w/v\, for n > 1, and we consider first the case where

k k
Up = Zl Uje) Vo = -21 vj®;
J= J=

In this case, u(¢) is given by

k
u(t) = ,—; {ujcos N+ %sin (\/E t)} ®j

Hence for any ¢ e V', <{,u(t)> e Z}‘=1X,j.
We claim that in general, the series defining u(¢) is in fact absolutely con-
vergent in D(A'/%): as a consequence we shall have, for any ¢ € [D(44)]".
<Gu(t)y>=f(t)eY = [{fe AP, 3f,€ X, such that 27, [fule < +o
and f= 27_ ). Indeed, let uy = 2.7, u;0;, vy = 2} v;¢; be the Fourier
expansions of the initial data (u,, v,) and
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n
ug = Z Uipj, vp = ,Zl Vjpj.
j=
It is clear that

u(t) = nEijél {uj cos (\/)\_j 1)+ \});\_, sin (\/fj t)} ®j

in Cx(R, V).
Also we have

- |vjl
<2 {’uﬂ + ?J)\j |l pearrsy =

DA1/4) Jj=1

-]
2
Jj=1

{ujcos WhD + %sin (x/ijt)} @
J

@

= 21 Nl + 04 yl) <
Jj=

< © 1 >1/2 © ) 172 © 1 172 © ) 172
) o)™ (i) )
JZ'I VN (1231 i1 > 1';1 N j=1| d

© 1 172
“(Z) e tul < v

Hence the claim is proved and for any ¢ € [D(4'%)]’ we have <¢,u(f) > €Y
as explained above. The conclusion of Theorem 4.1 is now an immediate con-
sequence of Theorem 2.7.

b) Examples of application
Let us start with a one-dimensional case.

Example 4.2. Let Q =]0,/[, /> 0 and A(x) € L*(2). We consider the equation

@.3) {u,t + Uy +hx)u=0, teR,xeQ

u,0) =ult,))=u,t0) =u,t1)=0, teR
We set H = L*(Q) and

D(A) = (ue H@NHQ),  u,eHy(Q))
Au = u,,,, + hu for all ueD(A).

Let Agu = u,,,, for u e D(A). The eigenvalues of A, are given by

4
A = <"T”> . ¥neN\(0}.
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nmw

As a consequence, the eigenvalues of A are such that \, > (%5)* = |27 | z=(q)-
Hence, if we assume |A~ | =) < (7)*, we have A strongly positive with
compact inverse in H. Also in this case, D(4'*) = H}(Q). From Theorem 4.1,
we obtain that for any ¢ € H~ () and any solution u € C(R, H*NH(Q)) N
NCYR, L*Q)) of (4.3), we have the alternative

—either (¢, u(t)) =0 on R
—or for any interval J of R such that

i 27

IJI 2 Z 4 = T’
n=1 nm _
)

there exists ¢; and ¢, € J such that {{, u(¢,)> > 0 and ({, u(t,)) < 0. As a par-
ticular case, for any x,€]0,/[, we have 6, € H ~1(Q): hence the function
u(t, x,) is either =0 on R, or must take >0 and <0 values on each interval
J such that |J| > T, for any weak solution u of (4.3).

ExampiE 4.3. Let Q be any bounded domain of R", n > 1 with sufficiently
regular boundary I' = Q. We consider the equation

@.4) Uy + (—1)"A"u =0 teR, xeQ
) ASu(t,x) =0 for sef{0,1,...,m—1}, teR, xeTl

where m € N is such that m > n.

In the case where @ = (10, w[)", the eigenvalues of A = (—1)"A™u with
D) = {ue H™(Q),Au =0onT forallse {0,1,...,m — 1}} are given by
the formula

)\jl’jz ----- fnz(j12+j22+"'+j3)m

By using the variational characterisation of the eigenvalues of (—A) in Hy(Q),
it is easy to show for any Q the existence of two constants c(Q), C(Q) with
0<c(Q) < C() < +0o0, such that

(@) 2r (@)

. . = — = . .
G+ i™ AN, U+

where \; . ; are the eigenvalues of A associated with Q.
As a consequence:

Z —271'___< +o0 < Z 1
i N i, Ut +ia

)m/2<+oo=>m>n.
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Under the same condition, we have D(AY*) = C(Q).

Hence for any x, € Q, the map u € D(A"*) = u(x,) is well-defined and can
be considered as an element of [D(4'#)]". As a consequence of Theorem 4.1,
we obtain that for some 7 < +  (increasing, in fact, with the diameter of ),
the following property holds: for any u solution of (4.4) and any x, € Q, we
have either u(¢, x,) = 0, or for any interval J with length > 7, there exists ¢,
t, in J with u(t,, xp) u(t3 %) < 0.

¢) A counterexample

The example 4.3 does not include the wave equation (case m = 1) in any
dimension and even for # = 1. This clearly means that our method cannot give
always the best possible result, since for n = 1 the solutions do oscillate, for
a seemingly quite special reason (namely the periodicity of solutions in #). Ac-
cording to this remark, it becomes essential to decide whether in fact the
oscillation property is (or is not) always true for the wave equation, at least
for C* solutions, say.

The following construction shows that it is not the case, therefore one
should be careful while attempting to generalize our example 4.3 under
weaker conditions on m.

Theorem 4.4. Let a, b be positive and such that b*/a* ¢ Q. Let Q@ = 10, a[ x
% 10, b[ C R? and (x,,y,) € Q be any point such that x,/a ¢ Q, ¥o/b ¢ Q.
Then for any T > 0, there exists a solution ue€ C™(R X Q) of

Uy — Uy — Uy, =0 #x,y)ER X Q
u(t,x,y)=0 (t; x,¥) €R X 02
u(t,xy, yo) 2 1 on [0,T7]

Proor. Let u, , be a double sequence of real numbers, m > 1, n > 1 and
such that u,, , =0 for m > m, or n > n,.
We set

cos [ T [ p2 a +
a p? " Omn) <mn7rx>, <m1ry>
sin sin
) <mn7rx0>_ <m1ry0> a b
sin sin
a b

ut,x,y) = 2 U n
m,n

for (¢,x,y)e R x Q.
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It is easy to check that u € C(R x Q) and u,, — u,, — u,, = 0in R X Q, with

u(t,x,y) =0 on R x 99.
Moreover, we have

m,n

t 2
= g} {%} U, n COS <m77r ,nz + % + a’”'"ﬂ

For n e N fixed and m, ranging over N, the function

mt 2
u(t, xO,yO) = Z Up, n COS <T n2 - t Olm,n) =

e mwt a®
ont) = ) um,,,cos< n*+ — 4 Qp p
m=1 a b
can be taken equal to any element of the space XT,, with 7, = 2ab(a® +
+ n2b2)— 172
Also for n; # n,, the numbers 7, and 7, are incommensurable since
b*/a* ¢ Q.
Finally, we have

Z T, = +00.
neN

Now we pick n, such that
no
21> T.
1
As a consequence of Theorem 3.1, there exists

no
fe 3 X,
n=1
such that f>1 on [0, T].
As a consequence of the remarks above, we can choose first m, large
enough, and then the coefficients u,, , such that u(z, xo, ¥o) = f(¢).
This concludes the proof of Theorem 4.4.
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