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A Convolution
Inequality Concerning
Cantor-Lebesgue
Measures

Michael Christ

It is known that there exist positive measures p on the circle group
T = R/27Z, totally singular with respect to Lebesgue measure, for which
there exist exponents 1 < p < g < oo such that |f*u|, < C|f], for all f.
Thus convolution with u is smoothing in a weak sense. For instance, Stein [4]
has pointed out that any measure satisfying |i(n)| = 0(|n| ), € > 0, has this
property, and Bonami [2] has shown that certain Riesz products, whose
Fourier coefficients do not tend to zero, do also. Let p, denote the Cantor-
Lebesgue measure associated with the Cantor set of constant ratio of dissec-
tion A > 2. Then Oberlin [3] proved that p,; has the property in question, and
by building in part on his work Beckner, Janson and Jerison [1] proved the
same for all rational A > 2. In the present note a simple technique for the
treatment of questions of this type will be introduced and applied to the g,,
for irrational \ as well. The technique is rather imprecise but flexible, and ap-
plies to Riesz products as well as to a certain class of multiplier operators. It
rests on Littlewood-Paley theory and iteration, together with knowledge of
the Fourier coefficients of the p,.

To fix the notation let dx denote Lebesgue measure on 7, normalized to be
a probability measure. |f|,=([|f0)|Pdx)"?. If m:Z—>C and
1 < p € g < o, its multiplier norm is defined to be

Imip,q= sup 1) /1S 1 -
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Both the function and the associated operator will be denoted by m. Thus mf
denotes (mf)¥ and m,m, denotes both the product of two functions and the
composition of two operators. Let 2 < A\ € R. The Cantor set E, of constant
ratio of dissection X\ is the subset of 7= [—m, w) defined as follows: Delete
from T the interval of length 27(1 — 2\~ ') centered at 0. From each of the
two intervals remaining delete a centered interval whose length is (1 — 2\~ 1)
times the length of the interval. Continue indefinitely and let E, be the set of
all points not eventually deleted. Associated to E, in a natural way is a totally
singular probability measure u,. We refer to Zygmund [S5] for the precise
definition and for the formula

o

i(n) = (=1)" I cos (x(\ — D\ 7).

Jj=1

Theorem. For any real A > 2 and any p € (1, ) there exists q(p,\) > p such
that | f*usly < | f 1, for all fe L?.

It suffices to demonstrate the existence of ¢ > 2 and B < o such that
| f*prll4 < B| f]|, for all f. For the general result of Beckner, Janson and
Jerison then implies the existence of r(B, g) > 2 for which convolution with
p, is actually a contraction from L2 to L'. Alternatively, our argument could
be refined slightly to yield B =1 directly. Since convolution with any pro-
bability measure of mass one is a contraction on L' and L=, the Riesz-Thérin
interpolation theorem then establishes our therorem for all p. One advantage
of the case p = 2 is the next remark, taken from [1]: If m,, m,: Z— C are
multipliers, g > 2 and |m,(n)| < |[my(n)| for all n € Z, then |m, |, , < [m,]4, 4
For m; may be expressed as mym, where |m,|;» <1, and hence |m,|, , <
< [molz,2 M), < (M2,

We say that a strictly increasing sequence {n;:j >0} C Z is o-lacunary if
c>1 and (n;,, —n) = o(n;— n;_,) for all j>1. Given such a sequence
define multiplier operators A; by

fm) if ny<n<n;,
0 otherwise.

AN ) = [

Lemmal. Ifl1<p<2<qg<®ando>1,thereexists A\(p,q, o) < o such
that for any o-lacunary sequence {n;} and any m: Z — C satisfying m(n) = 0
Sor all n < ny,

|m|, <A sup |Am| 5, q-
Jj

If o is fixed then A, — 1 as p,q— 2.
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Proor. By Littlewood-Paley theory [(Z|A;f|)Y?|,<C,|f], for all
pe(l, o), where C; = Cy(p,0) > 1 as p—2. Moreover if f(n) =0 for all
n < ny then | f|, < G| (Z|A;f)"?],, where again C,— 1 as p — 2. Hence

Imf | < CIE]amf1)2],

< GEZ|amf 19

< Gysup [Am|, - (E]A 1)
< Gysup [Am], o (214,719,
<

CiGysup |am| | f -

Minkowski’s inequality plus the hypotheses p < 2 < ¢ imply the second and
fourth inequalities.

This clarification of the author’s original proof is due to E. M. Stein. The
lemma fails for all other pairs of exponents p, g. An elementary variant will
also be useful below. Suppose {[;:1<j< N} are disjoint intervals. Let
m;=m: X, and suppose that m = Zm;,.

Lemma 2. For any 1 < p < g < « there exists A,(p,q, N) < o such that
|m|, , < Aymax |my|, ,. If N is fixed then A,— 1 as p,q— 2.

The proof involves only the boundedness of the Hilbert transform and the
Riesz-Thoérin theorem.

Fix X\ and let 6 > 0 be a small number, depending on A, to be specified
momentarily. By an interval we henceforth mean a subinterval I of R, neither
of whose endpoints lie in Z. Though only the intersection of I with Z will ac-
tually be relevant, it is convenient to work in R.

Lemma 3. For any \ > 1 there exists 6 > 0 such that for any k > 1 and any
interval I of length |I| < N¥/2(\ — 1), there exists a subinterval J C I so that

)\k—l
<—
()\k_)\k—l) )\k—l
< =
TAVARS 0= 1) 3

lcos (r(\ — DA"*E)| <1 -8 for £el\J

and so that each endpoint of J either coincides with an endpoint of I or lies
at distance greater than 5\ from the boundary of I.

This holds by homogeneity and the fact that cos(7£) has at most one
quarter of a full period on any interval of length 1/2, hence has absolute value
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equal to one at most once. This final conclusion is purely technical in sig-
nificance.

Finally we turn to the Cantor-Lebesgue measures. Let g = g(\) be slightly
larger than two. Set m,(£) = IJ ¥—;cos(x(A — DA ™*%).

We show by induction that |m,x,[, , < B for any interval I of length at
most \*/2(\ — 1), with g and B indpendent of 7 and k. Since |y, (8)| < |m4(9)],
the theorem then follows via the remark preceding Lemma 1 and an easy
passage to the limit.

Given such an /, fix a subinterval J, C I satisfying the conclusions of Lemma
3. Partition 7\J into at most \ + 3 subintervals of lengths at most N ~*/2(\ — 1).
By induction on k the multiplier norm of the restriction of m, _; to each
subinterval is at most B, and hence [mXpy, |2, < (1 — 8)|my X1, l2.q <
< (1 - 6)A,B by Lemma 2 and the remark preceding Lemma 1.

Since |J;| < N ~!/2(\ — 1), Lemma 3 may be applied repeatedly to construct
J, CJ, C -+ CJ, where |J}| <N 71/2(\ — 1), so that all conclusions of that
lemma hold at each step. By induction and the reasoning of the last paragraph
(X, \al2,q S (1 — 6)A,B. Let {n;} denote the finite sequence of distinct
right endpoints of the intervals J;, in ascending order, and let R and L be those
portions of 7 lying to the right and left of J;, respectively. If it were true that
{n;} must be o-lacunary, then we could conclude by Lemma 1 that
|mexg|s,, < (A - 8)A;A,B. Since J, contains at most one integer and
|my |~ < 1, certainly |m, X, |, 4 < 1. Treating L in the same fashion as R and
applying Lemma 2 yields |m;x,[,,, < Aymax(1,(1 — §)A,A,B). Fix any B
strictly larger than one. Then A, max (1, (1 — 6)A,A4,B) < Bprovided q is suf-
ficiently close to two. Thus the inductive step would be complete.

Unfortunately {7;} need not quite be lacunary. But let N'be the least integer
such that 8\ < 1. Then {n ;:j = 0mod N} is o-lacunary, with ¢ = 2(\ — 1) > 1,
provided 6 is small. Indeed the worst case occurs when a large number of the
J; share one right endpoint, so that ny; — ny¢ -1y = N¥/2(\ — 1) for some large
k. But if ny;, 1y > ny; then by the final clause of Lemma 3 npg; 4 ) — iy =
>\ TN >\ so o = N /(N /20N — 1)) = 2(\ — 1). By first Lemma 2 and
then Lemma 1, |mXg|,,, < (1 — 8)A,A3B, and the proof is concluded as
above.

Remarks

1. The Theorem holds for Cantor-Lebesgue measures with variable ratios
of dissection as well. Suppose 2 < A < o and let 2 < \; < A4 for each j > 1.
Then

i) = (—1" T1 cos<7r(xj - IIN ‘n>
Jj=1

i<j
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is the sequence of Fourier coefficients of a probability measure p [5], and the
above arguments apply equally well to pu.

2. If A < 2 then the construction of the Cantor-Lebesgue measure p, breaks
down. But the formula for g, still makes sense, and by the same reasoning
defines a bounded multiplier from L? to L? for some g > 2, provided A > 1.

3. Our techniques produce examples of weighted norm inequalities for Fou-
rier series which fall outside the scope of the general theory presently known. If
convolution with p is bounded from L? to L then (Z| f(n)|*w(n))"*> < C| |,
where w(n) = | ﬁ(n)|2. More general sequences w may be constructed by iterating
Littlewood-Paley decompositions of Z as in our proof.

4. The simplest examples [4] of singular measures p with the property in
question are those for which fi(r) > 0 at a geometric rate as |n| — c. Riesz
products and Cantor-Lebesgue measures are interesting in part because their
Fourier coefficients do not tend to zero. However the main point in our argu-
ment is that their Fourier coefficients actually do tend to zero, as n «tends to
infinity» in a rather nonstandard sense reminiscent of p-adic analysis.

5. Our argument is closely related to the theory of A(p) sets.

That p, has the LP-improving property for all rational A > 2 was established
independently and almost simultaneously by Ritter [6] and Beckner, Janson
and Jerison; Ritter’s proof appears to have been the first.
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