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Introduction

In the paper local entropy moduli of operators between Banach spaces are in-
troduced. They constitute a generalization of entropy numbers and moduli,
and localize these notions in an appropriate way. Many results regarding en-
tropy numbers and moduii can be carried over to local eniropy moduli.

We investigate relations between local entropy moduli and s-numbers, spec-
tral properties, eigenvalues, absolutely summing operators. As applications
local entropy moduli of identical and diagonal operators between /,-spaces
can be estimated. It is shown, that in general «local» and «global» degree of
compactness considerably differ, but under certain type assumptions on the
underlying Banach spaces they coincide. Finally, the results are applied to ob-
tain (optimal) estimates for eigenvalues of certain integral operators.

0. Preliminaries
Throughout the paper all Banach spaces, X, Y, Z, . . ., are complex. The dual
and the closed unit ball of X are denoted by X’ and By, respectively. For the

class of all (bounded linear) operators from X into Y we shall write £(X, Y),
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and for £(X, X) simply £(X). Concerning (quasi-normed) operator ideals we
refer to the monograph [19]. We shall use mainly the ideals (I1,, 7,) and
(I1, 5, m, ) of p- and (p, 2)-absolutely summing operators.

An important role will play the notion of type, see [18] for more informa-
tions. A Banach space X is of (Rademacher) type p, 1 < p <2, if there is a
constant ¢ > 0 such that for all ne N and x;, ..., X, € X the inequality

n 1/p
< c@ lx] )

holds, where (¢;) is a sequence of independent random variables, each taking
the values +1 and —1 with probability % The type p constant of X is then
defined as T,(X) = infc. Replacing the sequence (¢;) by a sequence of in-
dependent standard Gaussian variables one can define Banach spaces of
Gaussian type p, the Gaussian type p constant of X will be denoted by T,,(X ).
A Banach space is of Gaussian type p iff it is of Rademacher type p, therefore
we will not distinginsh between these two notions in the sequel, but only bet-
ween the constants 7,(X) and T, »(X). As examples let us mention that the
function spaces L, (over arbitrary o-finite measure spaces) are of type
min(p, 2) if 1 < p < .

Moreover, we shall use the concept of s-numbers of operators, which also
may be found in [19]. Here we only state the definitions of some s-numbers,
for their properties see [19] and [20].

Given an operator S € £(X, Y), the n'™ approximation number is defined by

E

n
;xiei

a,(S)=inf {|S-L|:Le £(X, Y), rank L < n},
the n'™ Gelfand number by
c,(S) = inf {|SJ%|: M S X, codimM < n},
where JX ‘is the embedding from M into X,
the n™ Kolmogorov number by
d,(S) = inf { |QYS|: NS Y,dim N < n},
where Q% is the quotient map from Y onto Y/N, the n™ Hilbert number by
ha(S) = sup (a,(BSA): |A: L, ~> X| <1, [B: Y= L] <1},
the n'® Weyl number by

X(S) = sup {a,(SA): |[A:, > X[ <1}
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and the n'" dual Weyl number by
Ya(S) = sup {a,(BS): |B: Y—L| <1}.

Given two sequences of positive real numbers (a,) and (b,) we shall write
a, = 0(b,) if a, < cb, for some constant ¢ >0 and all ne€ N. The symbol
a, ~ b, means a, = 0(b,) and b, = 0(a,,).

1. Entropy quantities

Let us start by defining the entropy quantities we are going to use in the se-

quel. For entropy numbers see e.g. [19], entropy moduli were introduced in

[5], while local entropy moduli are considered here for the first time.
Given an operator S € £(X, Y), the n' entropy number is

€,(S) = inf {e >0:3y,...,y,€Y suchthat S(By)sU;+ eBY)} ’
1

the n™ dyadic entropy number is
€,(S) = &n-1(S),
the n™ entropy modulus is
2,(S) = inf {k*"¢,(S): ke N}
and the n'™ local entropy modulus is
G,(S) = sup {g,(QXS): NS Y,codimN < n}.

By the definition of compactness of operators, Se€ £(X, Y) is compact, iff
€,(S) — 0 (or, equivalently, e,(S) — 0) as n— co.

Thus entropy numbers quantify in a certain sense the notion of compact-
ness. The «degree of compactness» of an operator can be characterized by the
asymptotic behaviour of its (dyadic) entropy numbers. Another important
point is the eigenvalue inequality [9]

n 1/n
< 11 l)\,-(S)|> < inf k%", (S), Se&£X), neN,
i=1 keN

which motivated the introduction of entropy moduli. Finally, local entropy
moduli are a local version of the concept of entropy moduli. The remarkable
difference is that G,(S) — 0 as n — o« not necessarily implies the compactness
of S. But, on the other hand, the eigenvalue inequality for entropy moduli
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n 1/n
< II |>‘i(S)|> < g,(5), Se LX), neN
i1

remains true for local entropy moduli, too. More detailed results will be stated
later on in section 3.

Algebraic (and other) properties of entropy numbers and moduli can be
found in [19] and [5], respectively. Therefore we want to list here only proper-
ties of local entropy moduli. Let Se £(X,Y), Te £(Y,Z) and ne N

@ IS = G.(S) = G,(S).
(i) G,(TS) £ G,(T)G,(S) (multiplicativity).
(ili) G,(S) = 0 whenever rank S < n and G,(Iy) = 1 whenever dim X > n,
where Iy is the identity on X.

@iv) G,(S) = g,(S) if dimY = n.

) G,(SQ) = G,(S) for every metric surjection Q € £(Z, X) (surjectivity).

(vi) Let (X, X,) be an interpolation couple of Banach spaces and X be an

intermediate space of K-type 6, 0 < § < 1, and let Se £(X, + X;, Y).
Then

Gu(S: X = Y) € 2G1u/q1 - o0(S: X = ¥)' ™% Gpygy(S: X | = Y)°.

For interpolation theory see e.g. Bergh/Lofstrom [2].

Since all these properties can be easily derived from those for entropy
numbers [19], proofs are omitted.

Moreover, for each of the quantities s = «, ¢, d, A, X, y, e, g, G we introduce
the notion

s(S) =inf {s,(S):neN} for SeL

and, for 0 < p < o, the classes

£y, = {SES >, n@P -1 (S)’<°°I 0<t< o,
n=1

£Y, = {S : sup n'Ps,(S) < co} and
neN

£Y, = i : lim n/7s,(S) = o} :

2. s-Numbers

In this section we shall investigate realtions between entropy quantities,
especially local entropy moduli, and s-numbers. We start with Hilbert
numbers.
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Propesition 1. If 0 < p,t < o, then
L ce®,.
Moreover, h,(S) < G,(S) for every Se L.

Proor. Given Se £(X,Y), neN and ¢>0 one can find [19,11.4.3.]
operators A € £(/5, X), Be £(Y,13) with |A| <1, |B| <1 and BSA =
= (1 — €)h,(S)I,, where I, is the identity in /3. By the properties of local en-
tropy moduli, (1 — e)4,(S) = G,(BSA) < |B|G,(S)|A|, which implies
hn(S) < G,(S). The inclusion £ < oC,(,'f), is an immediate consequence of this
inequality. [

Next let us state without proofs two lemmata from [6], that will be fre-
quently used in what follows.

Lemma 2. Lets=cordand nelN. Then for every Se £(X, Y)

i=1

n 1/n
< 11 s,-(S)) < nsup {G,(BSA): |A: I} - X| <1, |B:Y—IL] <1}.

Lemma 3. There are absolute constants c,,c, >0 such that for every
p,1 <p<2, and ne N the inequalities

() Gu(A) S oin'P7'T(X)|A| for AeL(}, X)
and

(i) G,(B) < c,n"?"'T,(Y")|B| for Be&L(Y,I})
hold.

A simple combination of these two lemmata yields the following relation
between Gelfand, Kolmogorov and local entropy classes.

Proposition 4. Let s=cord, let 1 <p,q<2and 0<r,t< o such that

w=1+7—2—2>0.If X and Y are Banach spaces such that X is of type p

and Y' of type q, then
LAX, V)€ £5UX, Y).

Supposing that X and Y’ are even of type 2, Gordon, K6nig and Schiitt [11]
showed that

a,(T) ~ ¢,(T) ~ d,(T)

for all operators T e £(X, Y).
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Using this fact and Proposition 4 we derive

Proposition 5. Let X and Y' be of type 2, and let 0 <r,t < . Then all
classes £§f}(X, Y) with se {a,c,d, e, g, G} coincide.

Remark. In this special situation «local» and «global» degree of compact-
ness are the same. As shown in Proposition 19, in general there is a big gap
between them.

Finally let us consider Weyl and dual Weyl numbers.

Proposition 6. Let 1 <p<2and 0<r,t< o such that L=1+3 -
Let X and Y be Banach spaces. If Y' has type p, then

L9X, V) £¥(X, Y),
and if X has type p, then
LPX, Y) e £2(X, Y).

Moreover, there is a constant ¢ > 0 such that forall Se £(X,Y),all1 <p <2
and ne N,

%,(8) < enVP = WDT (Y)G,(S)
and
Ya(8) < enVP=UIT (X)G(S).
Proor. Given 4 e £(},,X), |A| <1, and Be £(Y,1,), |B| <1 we con-
clude from Lemma 2 and Lemma 3
a,(SA) = ¢,(SA) < ecnP = DT (Y)G,(S),
and
a,(BS) = d,(BS) < cnP = WIT (X)G,(S),
where we used that
a,(T)=c,(T) for TeL(H,X) and
a,(T)=d,(T) for TeL(Y,H),

H being a Hilbert space, see [19, 11.5.2. and 11.6.2.]. These inequalities imply
the desired estimates for x,(S) and y,(S), from which the inclusions, stated
in the first part of the proposition, easily follow. [
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3. Spectral properties and eigenvalues

In this section we want to describe spectral properties and the eigenvalue
behaviour of operators in £(X) in terms of their local entropy moduli.

First of all let us briefly explain the notations we are going to use. Given
an operator S € £(X) consider the coset S + X (X) as an element of the Calkin
algebra £(X)/X(X), where X(X) denotes the ideal of compact operators in
the algebra £(X). The spectral radius of this element is called the essential
spectral radius of S, r,.(S). Let 6(S) denote the usual spectrum of S, then for
every r > r,.(S) the set

{(AeC:Nea(S), |\ =>r}

consists only of finitely many points, each being an eigenvalue of S of finite
algebraic multiplicity. Thus we can order all eigenvalues A of S with
[N > 7,4(S) in such a way that

NG = S =

where each eigenvalue is counted according to its algebraic multiplicity. If
there are only n eigenvalues N with |\| > r,4(S), then put A, , {(S) =\, . »(S) =
=+« = r.(S). So we have assigned to every S € £(X) the sequence (\,(S)).
For more details we refer to Zemanek [24] and the references given therein.

An operator S € £(X, Y) is called strictly cosingular, if QXS is never a sur-
jection, whenever N is an infinite dimensicnal subspace of Y, see [19, 1.10.2.].

ogs s G) . .
Proposition 7. Every operator in £§°’w is strictly cosingular.

Proor.. Let Se £(X,Y) with lim,.,G,(S) =0. Assuming S being not
strictly consingular one could find an infinite codimensional subspace N of Y
that Q}S is a surjection. Hence the following diagram commutes

X —— Y
o | | o

So
X/M Y/N

where M is the kernel of Q%S and S, is an isomorphism. Now, by the surjec-
tivity of local entropy moduli, for every ne N,

1= Gn(IX/M) = Gn(SO_ ISO) < “ So_ ! " Gn(SoQi{l) =
= [S¢ |G (QXS) < |85 [ G(S).

Letting n — oo this yields a contradiction, thus proving the proposition. [
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Next we need the notion of Riesz operators. These are operators S € L£(X)
such that for every complex number \ the operator 7 — AS has finite dimen-
sional kernel and finite codimensional closed range, see [19, 26.].

The essential spectral radius of Riesz operators is always equal to zero,
hence all their non-zero eigenvalues have finite multiplicities and can be ar-
ranged in non-decreasing order. Since every strictly cosingular operator in
L(X) is Riesz [19, 26.6.10.], we get

Corollary 8. For every Banach space X the class £L,(X, X) consists of
Riesz operators only.

The essential spectral radius can be computed by local entropy moduli, as the
following result shows.

Proposition 9. If Se L(X), then

Tbss(S) = lim G(S™M™N.

N-x

Proor. It is known (see e.g. [24]), that

Fess(S) = 117120 a(SMVN = 1\111510 e(SM)VN.

By Lemma 2 c,(S) < nG,(S) for arbitrary ne N.
Combining this with

a,(S) <2n'%c,(S)  [19, 11.12.2.]
and the monotonicity of approximation numbers we obtain
a(S) < 2n*?G,(S) for nmeN.
Observing that G,(T) < V2e,(T) for Te.£ we get for all n,k,Ne N

a(st)l/Nk < (2n3/2)1/NkG (SNk)l/Nk S

S (2n3/2)1/NkG (SN)I/N < (2n3/2)1/Nk21/2Ne (SN)I/N.
Letting now k — oo yields
Tess(8) < G (SMVN < 2Ve, (SM)'N.

Taking then the infimum over all n € N and letting finally NV — o the assertion
follows. [

Let us now turn to eigenvalue means.
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Proposition 10. Let Se £(X) and ne N. Then

n 1/n
< 11 I)\,-(S)|> = lim G,(S™)'7".
N_’&)

i=1

Proor. There is an n-dimensional invariant subspace X, of X such that the
restriction S, of S onto X, has exactly the eigenvalues A\(S), ..., \,(S). If P
is any projection from X onto X, and J is the canonical embedding from X,
into X, then for all Ne N, SY = PS™J. This implies

2,(80) = G,(PSNT) < | P[G.(S™) < | P| 2,(S™).

Now the result of Makai and Zemanek [17]
n 1/n
< 11 |>\i(T)|> = lim g,(T) for TeL(X)
i=1 N—o

and

1/n

<H |x,-(S)|>V" - <H |x,.(50)|>

yield the assertion. [J

4. Absolutely summing operators

The goal of this section is to establish some relationships between p- and
(p, 2)-absolutely summing operators, Weyl numbers and local entropy moduli
for operators acting in Banach spaces having certain (Rademacher) type.
Before doing that one more notion is required. Let (g;) denote a sequence
of independent standard Gaussian random variables. Then for any operator
Te £(%, X) one sets
‘ 2> 1/2’

and for T e £(H, X), H being an arbitrary Hilbert space, let

n

; Te;g;

(T)= <IE

I(T) = sup {{(TP): Pe £(/5, H) unitary, neN}.

This so-called y-summing norm was introduced by Linde and Pietsch [16]. We
need the following relations to 2-absolutely summing operators (cf. [10]) and
entropy numbers (due to Sudakov, see e.g. [14]), which we state as
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Lemma 11. There is a constant ¢ > 0 such that for all Te £(H, X), where
H is any Hilbert space, X any Banach space,

() UT) < T,(X)my(T") and
(i) sup,»; (nn)'?e,(T") < ci(T).

Now we are prepared to prove the

Theorem 12. Let 1 <p<2<g< o suchthat }=_+5;-3>0.If Xisa
Banach space whose dual is of type p, then for all Banach spaces Y,

I, (X, Y) € £2X, Y).

Moreover, there is some constant ¢ > 0 (neither depending on p nor on q) such
that for all Se £(X, Y)

G.(S) S en™Vmy 2 (S)T,(X?).

Proor. Given any operator S € £(X, Y) and any n-codimensional subspace
N of Y one has the following factorization diagram

S

X— Y

S"l A l On
I Y/N

where 7,(QF.S) = 7,(S,) and |A4]| = 1.
Setting Z = S;(/3), which is an at most n-dimensional subspace of X', we
obtain from the preceding lemma

n'2g,(QXS) < 21 ?e0(QNS) < ) exn(So)| 4] <
< 2Y2l(Sp) < 2V%emy (SO T2(2).

By the results of Tomczak-Jaegermann [23],
m,(Sp) = m(QXS) < 2nWP = WDr, ,(QXS) < 2nP =W Dx, (S)
and
T,(Z) <2nVP-WAT(2) < 2nVP - UDT (X),
yielding the estimate
G.(S) < 2°%cn™V"m, ,(S)T,(X).

This inequality immediately implies the inclusion stated in the first part of the
theorem. [
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We state now the most important special case as

Corollary 13. Let2 < g < . If the dual of the Banach space X is of type 2,
then for all Banach spaces Y

0, ,(X, Y) € £O0X, Y).

Next we want to investigate the inverse problem: Under which conditions on
the underlying Banach spaces local entropy classes do consist of (g, 2)-
summing operators only? To answer this question we need the following result
by Pietsch [20] concerning Weyl classes:

£m

W cIl,, for p>2 and £ cIL,.

Combining this with Proposition 6 one can derive

+

Corollary 14. Given 1 <p<2<g<oand0<r<cosuchthat;=;—,

+ 2> 0, the inclusions

LPX, Y)E1, ,(X,Y) and
L£OWX,Y)SIL(X,Y)

hold for all Banach spaces X and Y, provided that Y' is of type p.

Corollaries 13 and 14 imply now a result similar to that for Weyl numbers
[20].

Corollary 15. Let X and Y be Banach spaces whose duals are of type 2.
Then
LOX,Y)CI, (X, Y) S £, for 2<g<»
and
LK, V) e TL(X, Y) € £0%(X, Y).
Remark. As shown in [7] the result for g =2 is valid also for entropy
numbers and moduli instead of local entropy moduli.
The next result is devoted to p-absolutely summing operators.
Theorem 16. If H is a Hilbert space and X a Banach space, then

I,(H, X) € £CLH, X) for 0<p< .
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Moreover, there is a constant ¢ > 0 such that for all 2 < p < o, ne N and
SeL(H,X)

G,(S) < cp*n~ 17, (S).

Proor. Let Se £L(H,X),2<p <o, neN and N S X with codim N < n.
Denote by Q the quotient map from X onto X/N, let H, be the orthogonal
complement of the kernel of OS, and let J be the embedding from H, into H
and P the orthogonal projection from H onto H,,. Then clearly QS = QSJP.
By the Pietsch factorization theorem [19] we have the following commutative
diagram

H 05 X/N Jo Y
Al , |5
Loo(K’ 7) ﬁLp(Ks 'Y)

where J|, is a metric injection into an appropriate Banach space Y (possessing
the metric extension property), v is a probability measure on a compact
Hausdorff space K, I is the identity and

T,(QS) = |A] | B].

Let m:= dim H,. Then by a result of Kashin (see Szarek and Tomczak-
Jaegermann [22]), there is an m-dimensional subspace E of /3™ with
d(E,I7) < 4e. (Here d(X,Y) denotes the Banach-Mazur distance of two
isomorphic Banach spaces X and Y.)

Hence also d(E, H,) < 4e and one can find an isomorphism T € £(E, H,)
with [T | T~'| < 4e. Now we have the commutative diagram

-1
T-'p JT_ . hOS

B
Jl J’ AO A l I I
llm —————— —>Lw (K, 'Y)_) Lp(K, 'Y)’

T
ty

where J; is the canonical injection and A4, is an extension of AJT with
[Ag] = |AJT|. Such A, exists, since L, (K, v) has the metric extension pro-
perty. By Lemma 3 we have (see [6])

gm(IAo) < aTy(L,(K, v))m™*| 1A, |

with some absolute constant @ > 0. Observing that 7,(L, (K, 7)) < p"/* we get
from the monotonicity and injectivity of entropy moduli [5]
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< &m(0S) < 28m(JoQSJIP) = 2g,,(BIA.J, T~ 'P) <
< 2g,(IA0)|B| |/, T~ 'P|

<2ap?|A| T |B| | T m~ 2 <

< 8eap'*w,(QS)n ™12,

£.(9S)

Since N was arbitrarily chosen this finally yields the desired estimate
G,(S) < cp’m,(S)n~* with ¢ = 8ea.
Hence, also

IL,(H,X) < £%(H, X) for 0<p< . a

5. Identical and diagonal operators

As concrete examples we consider in this section identical and diagonal
operators between /,-spaces, and determine the exact asymptotic behaviour
of their local entropy moduli. As an application we shall see that there are
non-compact operators whose local entropy moduli tend to zero, in contrast
to the situation for entropy numbers or moduli. We start with identity ope-
rators.

Proposition 17. Letl<p<g< and}= .Then G,(I: [,—> ) ~n~ v
hence I'e £, 1,).

1_1
P q

Proor. The estimate from below is quite simple. Given n € N one has the
relation ' '

1=G,I: 1}- 1)< |- 1| G, 13— 1) < nWP - VDG, (111, ~ 1),

hence G,(I: [,~> 1) >n""".

Now let us turn to the estimate from above.

First we consider the case 1 < p < g < 2.

By Bennett [1] or [3] it holds /€11, ;(/,, /) with | = 2 — 2 + 5. Moreover,
there is a constant ¢, > 0 such that for all p, g with 1 < p < g < 2 the estimate
7y, 1(I: 1, = 1) < ¢y holds. This implies

7, (L, = 1) < ¢
and by Theorem 12

G,(I:1,~ 1) < c;n™ YTy (L)w, (1) < o (p)*n 17,
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Note, that c, is independent of p and g. Next let us treat the case 2 = p <
<g< oo,

Let N be an arbitrary n-codimensional subspace of /,, and let Q:/, = [,/N
be the canonical quotient map. Our aim is to estimate 7, (Qf) from above.
Denoting the orthogonal projection from /, onto the orthogonal complement
of the kernel of QI by P, and the injection of this space into /, by J, one has
obviously

QI = QIJP.
Therefore, using the inequality
,(S) < 7, (S") forall SeL(h, /)
(see Pietsch [19, 19.5.2.]) we obtain
7,0 < 1, () < 7, (J'T) < TU'T).
Since J'I’ has rank at most n, by Tomczak-Jaegermann [23],
') 20D W0q (It = b) < 20D =D,

where ¢, is the constant from the previous case. As shown in the proof of
Theorem 16, there is a constant c¢; > 0 such that

£.(QI) < ¢3¢V 7, (QI) < c4q"*n 2,
where again ¢, does not depend on g. This finally gives the desired estimate
Gall) < caq**n™ ",

Combining these two cases we get the result in the case 1 < p <2< g < 0.
It holds with some absolute constant c¢s > 0

G,I:1,~ 1) <G,I: 1,~ L)G,(I: ,~ ) <

— cs(pr)l/Zn(l/Z)-(l/p)ql/Zn(l/q)—(l/Z) —
— cs(prq)l/Zn— 1/r

Finally, the remaining case 2 < p < g < « can be treated by interpolation. Let
0 << 1such that ;=7 + %" . Since /, is then of K-type 6 with respect to
the interpolation couple (/,, /,), we get the estimate

G,(I: 1, = 1) < 2G/a - oyT: 1, = 1) " Gy b= 1,)° <

0 1 -(1/2 1/q) - -1/
< 264[2]010/D - A2  p /D= P = ¢ op =1,

where ¢4 only depends on 6 but not on n. [J
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As a useful consequence let us state

Corollary 18. There is a constant ¢ > 0 such that for all n>8 n™' <
<G,(I:,~ 1) <c(nmn™"', therefore T1e £, 1) for all p>1, 0<
<t oo,

Proor. The estimate from below can be proved in the same way as in Pro-
position 14. The estimate from above follows from the factorization

G, (I, =)< | L= LG, = 1), = 1| < es(p'g)*/?n/9-0/P),

where 1 <p<2<g<oo are arbitrary, and c¢s is the constant from the
previous proposition. Specifying now p and q as p' = g = inn we get

G,(I: ;> 1) <csqgn® ™' = cs(Inn)n~ 'n*™" = c(lnm)n~! with ¢ = cse’.

The inclusion 7 € OCf,G,) forp > 1,0 < t < =, is a consequence of the estimate
from above. [J

Now let us return to the question, how «local» and «giobal» degree of com-
pactness are related to each other. The following result shows that there is in
general a big difference between them. This supplements Proposition 5. Let
X denote the ideal of compact operators.

Proposition 19. Let 0 < p,t < . Then

Lk iff p<l.

p,t —

Proor. Since the (clearly non-compact) identity I € £(/;, /) belongs to all
classes £ with p > 1, it remains to prove the «if» part. Let Se £{? for
some 0 < ¢t < oo, Assuming S being non-compact one had inf, ¢, c,(S) > 0,

and the inequality (Lemma 2)
ca(S) < nG,(S)

would imply the contradiction

o

© 11
©=2 c";S)‘ < 21 (0 Y0G,(S) < .

n=1

hence S e X, and the proof is finished.

Remark. The exact asymptotic behaviour of G, (I: [, — [,) is not known, but
the conjecture G,(I: [, > ) =n" ! seems reasonable. The validity of this con-
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jecture would imply, that even the class £{°), contains non-compact opera-
tors. Obviously, £{%), c X

Similar estimates as for the identity Ie £(/;,/.), involving certain
logarithmic terms, can be derived also for the identities € £(/,, [,), where
either p=1 or g = .

Now let us turn to diagonal operators. The diagonal operator D,, generated
by a given sequence o = (0,) €/, and acting between appropriate Banach se-
quence spaces, is defined by D ({,) = (0,,¢,)-
> 0.

Proposition 20. Let1<p,g<o,0<r<ow,0<t<wand}=1+1-

Then D,e £9(,, 1) iff o€l ,.

Q [

1
p

Proor. If o€l,, then by [4], D,e £, 1,) € £9(,,1,). It remains to
prove the «only if» part. Without loss of generality let us assume that
g, =20y2--->0. Let D, be the operator D, restricted to the first #» coor-
dinates.

In the case p < g Proposition 17 implies

VPP G (I 1y~ 1) < G,(D,: 1~ 19| Dy 2 17~ 1] <
< G,(Dy: 1, = [)oy .

if p > g, we proceed as follows, again using Proposition 17,

1=G,I: 13~ <
< G,(Dy: 3= D; 1= 12| G, 17— 17) <
< ¢G,(D,)o,; 'nVD-A/P),

In both cases, G,(D,) > c,0,n""? "7, hence D, e £) implies the desired
assertion o€/, ,. U

6. Eigenvalues of integral operators

In this section we apply the results obtained till now to certain integral
operators, namely to Hille-Tamarkin and weakly singular integral operators.
For the latter ones we only consider the critical case where the order of the
singularity is half of the dimension of the domain on which the operator acts.

Throughout the section let (2, £, u) be any o-finite measure space. By a
kernel we mean a p X p-measurable function K: Q x Q@ — C. To every kernel
K we assign the integral operator Ty, defined as

Txf(s) = [ K@, /@) du(t),  seQ
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for measurable functions f, provided the integral exists. We shall pose
such assumptions on K, that Ty acts as a bounded operator between
appropriately chosen function spaces. Thus let us introduce the classes
LHL, = (L, (2, Z, w)L (2, Z, ), 1 <p,q <, consisting of all kernels K
with

"K" (Lq)Lp: = <J.9 <jg |K(S’ t)lqdﬂ(s)>p/qdu(f)>l/p < o,

These kernels are called Hille-Tamarkin kernels.

Theorem 21. Let 1 <p<o,1 <g<2and Ke(Ly)L,. Then
Ty € L&u(Ly, Ly).
Moreover, for all neN
G, (T) <cnV? K| a€HL,
with some constant ¢, depending on p and q but not on the underlying

measure space.

Proor. Put
g0 = ([, 1K, 0|%du(s)) " for req,
and for s, 7€ set

K(s,t)/g(t) if g(#)>0
0 otherwise.

K(s, 1): = {
Then geL, and jg |K(s, 1)|?du(s) < 1 for every teQ. This implies M, e
e £(L,, L), where M, f = gf, and for fe L,
1T&f e, = ([, | [, K. 05 @ duto) | du(s)) " <
< [, ([, 1RG0l du)) 1 fO)| d) < [ f 1.z,

Hence Tge £(L,, L), and Ty = TgM,.
If 2< p < =, then L, has type 2. By Kwapién [15] one has

L(Ly, Ly) = 7y (L, Ly)
and with some ¢; > 0

1p.2(8)<c|S| forall SeL(L,L,).
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Now Corollary 13 impiies for n e N
G, (Tx) < cn~ v I T¢| < cn™ ve IK| €L,

where the constant ¢, depends only on p, g, but not on the measure space.
In the case 1 < p < 2 one can determine 2 < r < o such that ; = 5 + ;. Then
g can be splitted as g =g,g,, where g,€L, and g,eL, Therefore

M, € £(Ly, L)), M, € £(Ly, L,) and M, = M, M, . Hence, similar as in the
first case one can conclude

Gu(TY) < | M, | Go(TeMy) < | 82| c3n~ "R & lo,=csn” YeIK| @)L,
Thus, in both cases,
Txe £ (L, Ly). a

Next we apply this resuit in order to get estimates for eigenvalues of Hille-
Tamarkin operators with kernels from the space (L,)L,,2 < p < .

These results are already known, see [20], but the approach via local en-
tropy moduli is new. In [8] entropy numbers were used to obtain similar
results. But there some additional restrictions (e.g. finiteness of the underlying
measure space) had to be posed, which can be omitted now.

Theorem 22. Let 2<p < and Ke(L,)L,. Then (\,(Tx)) €l,.

Proor. Without loss of generality we may and do assume that | X | aL, S 1.
Then, by the proof of the preceding theorem, there is a constant ¢ > 0 only
depending on p, but not on the underlying measure space, such that

G, (Ty) <cn™YP forall neN.
Hence, by Corollary 8, T is a Riesz operator, and by Proposition 10,
Ma(T)| S Go(T) <cn™ Y7 for all neNlN.

Hence for arbitrary r > p

7 *)

2 IM(TRI" <
n=1 r

Now we proceed in an analogous way as it was done in Pietsch [21]. Define
the kernel X on Q* x Q% by K(s;, 55, t1, t,) = K(s;, 1,)K(5;, t,). Then K belongs
to the space (L,)L, over the product measure space (2, Z, p) X (2, L, p), and
again | K| L, S 1. As in [21] it can be shown, that if \, u are eigenvalues
of T with algebraic multiplicities / and m, then Mu is an eigenvalue of T¢ hav-
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ing multiplicity at least / - m. Applying now inequality (*) to T instead of Ty
we get

© 2 w - 3
(E'“(T"W) - 33 TN, Tl < 3 TRl <

n =1n,=

Thus (*) holds even with constant (,—c_’; )m. Iterating this argument it follows

2 IN(TRI"< 1 for every r>p,
n=1

which implies

Z |xn(Tk)|p g l,

n=1

hence the proof is finished. [J

Finally let us consider weakly singular integral operators. Here we want to
restrict our attention to the border case where the order of singularity is half
of the dimension of the domain on which the operator acts. Let @ € R be
a bounded domain, N any positive integer, and let A = {(x, x): x e Q2}. Sup-
pose the measurable kernel K: Q*\A — C is of the form

L(x,y)

Kx,y) = lx___yljv_—a’

0>a=N,

with L € L,(Q%. (Here | - | denotes the Euclidean norm on R™.) Then the
operator 7% is compact in L, (?). As shown by Konig, Retherford and
Tomczak-Jaegermann [13, Proposition 12] its eigenvalues are square sum-
mable whenever o > N/2 and satisfy

M(To) =0~y if 0<a<N/2.
In both cases the result is optimal. The conjecture
M(Tx) =0(n~?) in the border case o = N/2

fails, as was proved by Konig [12]. The optimal asymptotic behaviour is

1 172
o3

In order to illustrate the usefulness of the concept of local entropy moduli
we want to give a proof of the last mentioned result via local entropy moduli.
We replace the condition L € L. (2% of Ko6nig [12] by a weaker one.
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Theorem 23. Let Q be a bounded domain of R™, N>2, and let
A = {(x,x): xe Q). Given a measurable kernel K: Q*\A — C of the form

L )
K(x,y) = foy]%

with
I(y):= sup L, )| €L, (@), 2<p<eo,
one has
ln n 172
T =0 | —
o (%))
Proor. Put
K(x,) .
. a4 if I(y)>0
Rey =1 1) »
0 otherwise.

Then Ty as operator in L,({) can be factorized as follow;

T,
L, X L,
M| Iy
La—"—L, —>—1L, ,

where sis any real with p’ < s < 2, and [, I; are the respective identities. Since
L, (the dual of L,) is of type 2 and since every Se £(L,L,) is (s',2)-
absolutely summing with 7 ,(S) <p|S|, for some constant p >0 not
depending on S and s, Corollary 13 implies with some constans c;, ¢, > 0 in-
dependent of s,

G(Ty) < G,(I, TeMp | 1| <

<o(Lyn~ I/sy7rs',2(10 TyM)| 1| <
S en™ VL TeM | [ 4] -

Observing that

) 2 e 1/5) = (1/2)
Il < (5= ) wo ,

IL] <p@@P799, M| < |!]L@ and

| Tzl < 1k[L, @-a) <o, where k(x)=|x|~"7?,
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we obtain the estimate

, 2 1/s
G.(T S i Y4 o e ,

with ¢; = ¢;(Q, p, I) not depending on s. For n large enough one can specify

now s such that 52 =Inn, p' <s<2. Then n~ V¥ (3%;)"° < cy(™22)/, and

2-s s n

we finally get G,(Ty) < ¢5(*22)"/? for n large enough. Via Proposition 10

this implies the desired assertion. [
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