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1. Introduction

In their well-known theory of singular integral operators, Calderon and Zyg-
mund [3] obtained the boundedness of certain convolution operators on R?
which generalize the Hilbert transform H in R!, defined for fe C3(R') by

0,

x-y|>e X — )Y

0.1 Hf(x) = lim J
e=0 J]|
Typical examples of such operators are the Riesz transforms Rj, je[l,d],
defined for fe C(RY) by
. Xj— Vi
0.2) R;if(x) = lim +— = fO) dy.
e—=0 Jlx—y|>e ‘X —yl
Their program can be decomposed into two steps. In the first one they prove
L*-boundedness using Plancherel’s theorem. In the second step they use the
smoothness and size properties of the kernel and the L*-boundedness to prove
LP-boundedness for p €]1, + o[ as well as the a.e. convergence of the r.h.s.
of (0.2) for fe L?, p €11, +oo[. Peetre [14] has shown that these operators are
also bounded from BMO(R?) to BMO(RRY).
The theory has been generalized in two ways.
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In the first extension, one considers non-convolution operators associated
to a kernel in the following sense. Let A be the diagonal set of R? x R? and
let K be a locally bounded function defined from RY x RY\A to C. Let T:
C5(RY) — [CT(RY]’ be a linear operator defined in the weakest possible sense.
Then K is the kernel of T if for £, g € C&(R%) with disjoint supports, <g, Tf)
is given by U g(x)K(x, y)f(y) dxdy. Suppose moreover that K satisfies some
smoothness and size properties analogous to those enjoyed by the kernels of
the Riesz transforms. Of course one cannot conclude that 7 is bounded on L?
and if T is not a convolution operator one usually cannot use Plancherel’s
theorem. However it was observed that if the operator is known to be bound-
ed on L? the second part of the program of Calderén and Zygmund can be
carried out and one obtains a variety of results as in the convolution case. See
[8] or [12]. In addition these operators are bounded from L* to BMO, the
obstruction for boundedness on BMO being purely algebraic; that is, they are
bounded on BMO if and only if they are well defined on BMO, as for in-
stance, in the convolution case. The most famous non-convolution operator
of this kind is the Cauchy-operator on Lipschitz curves 7, defined for
aeLE(R), |a|- <1, f,ge CG(R) by

0.3) (& Tufy = “ —-‘"’—‘xﬂyz—- _dxdy.
x-» + a(u)du

This example also illustrates the weakness of the theory since it leaves open
the question of the L2-boundedness of such operators. See however [2] and
[7] for the Cauchy kernel. This gap has been recently filled, up to a certain
extent, by the so-called T1-theorem [9] which asserts that under a very weak
regularity condition, T is bounded on L? if and only if 71 and 7*1, defined
appropriately, both lie on BMO.

The second extension is due to R. Fefferman and E. Stein [11]. They study
convolution operators which satisfy certain quantitative properties enjoyed by
tensor products of operators of Calderon-Zygmund type, as for instance the
double Hilbert transform defined for fe Cg(R) ® C§(R) by

0.4 [(H: @ H2)f](x1, x2) = lim jj __ SOy ~dy; dy».
e1—>8 [x1 = }1;>El (x1 — yl)(xl —yl)
2 X2 —y2|>e2

For such tensor products the L”-boundedness for p €11, + o[ is a trivial conse-
quence of Fubini’s theorem but for the more general Fefferman-Stein operators
a new machinery is built in [11] which unfortunately uses at each step that the
operators under consideration are convolution operators. Moreover it ignores
«the BMO aspect of things» in which we shall be mostly interested, while it
gives sharp results on maximal operators, which we cannot handle.
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Our purpose is to unify up to a certain extent these two generalizations and
to define on a product of n Euclidean spaces a class of singular in-
tegraloperators which coincides with the extended Calderén-Zygmund class in
the case n = 1 and coincides in the convolution case with the Fefferman-Stein
class when n=2. Actually we extend the non-convolution-Calderdn-
Zygmund class, and then proceed by induction for » > 2. The basic example
of an operator considered in this setting is the «n™-Cauchy operator»
associated to the kernel K,, defined for a € L&(R") and |a|- < 1 by

1

H xi—y)+ j' . ..Ji"a(ul, .., Un)du

i=1 1 n

Ki(x,y) =

As in the case n = 1, this kernel K, can be expanded in the sum .ZVL{; of
JEl
«commutators» where

. n -Jj-1 Y1 Yn J
Li(x,y) = [ 1_11 (Xi_yi)} U J a(u)duJ .

2,2<C{1"a”£o~

Let I/, be the operator associated to L. Then we show |/
Thus we can sum the series and obtain

Lo

|Kal2,2 < for [afeo<—

Cn
The general case |@|« < 1 remains open.

The connection between L? and BMO, emphasized by the 71-Theorem and
its proof, turns out to be extremely useful in this setting too. The BMO-space
to be considered is the space of Chang-Fefferman studied in [5] which takes
into account the product structure of the underlying space. As in the classical
situation one makes two kinds of size and smoothness assumptions (integral
or pointwise) on the kernel according to whether the associated operator is
known to be bounded on L? or not. In the first case we show under rather
weak assumptions on the kernel that the operator is also bounded from L%
to BMO and therefore on all L?’s for pe]l, -i;oo[ and under somewhat
stronger assumptions the boundedness on BMO, if there is no algebraic
obstruction. In the second case we show a 7T'l-theorem in the spirit of the
classical one. In the case where 7'is given by a kernel K antisymmetric in each
pair (xi, Yi)1<i<n as K, or L{; for instance, the the 7'l1-theorem reduces to: T
is bounded on L? if and only if T1 e BMO.

In Sections 1 and 2 we recall some basic notations on singular integrals and
Calderon-Zygmund operators in the classical situation and on BMO and
Carleson measures on product spaces. The class of operators we wish to study
is presented in Section 3, together with their more immediate properties.
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In Section 4 we reduce the implication «L2-boundedness — L*-BMO-
-boundedness» to a geometric lemma which we prove in Section 5. This lemma
may be thought of as a substitute for the Whitney decomposition in the setting
of product spaces. In Section 6 we state our «7T1-theorem» and reduce its
proof to two technical points which are studied in Section 7 and 8. Section
9 deals with a special property of antisymmetric kernels, which is new even
when n = 1 and which is applied to the study of the kernel K, for |a| < en.
Finally we apply in Section 10 the geometric lemma of Section 5 to extend a
result of J. L. Rubio de Francia on a Littlewood-Paley inequality of arbitrary
intervals of R to the n-dimensional setting.

It is a real pleasure to express my gratitude to Raphy Coifman, Guy David,
Yves Meyer, and Stephen Semmes for reading the manuscript and suggesting
several improvements, to J. L. Rubio de Francia for bringing to my attention
the conjecture solved in Section 10 and to Peter Jones for telling me it was
obviously true.

1. Classical singular integral operators and Calderon-
Zygmund operators on R

The definitions we shall adopt are standard. However, the terminology will
be slightly different than usual ([8], [12]).
Let @ = RY x RA\A, where A = {(x,),x =y}, and let €]0, 1.

Definition 1. Let K be a continuous function defined on Q and taking its
values in a Banach space B. This function K is a B-6-standard kernel if the
following are satisfied, for some constant C > 0.

For all (x,y) in Q,

|K(x, )| <|X—_Cy—|d- (1.1
For all (x,) in Q, and x’ in R? such that |x — x| < i ; ) ) (1.2)
|K(x, ) — K(<', )]s < C &’% and
|K(y, %) — K(y,x')|p < Cpt—x_fy%fa-

The smallest constant C for which (1.1) and (1.2) hold is denoted by |K|s, 5.
We shall omit the subscript B when it creates no ambiguity.

Definition 2. Let T: Cy(R%) — [Cff(ﬂ?d‘)]’ be a continuous linear mapping. T
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is a singular integral operator (SI10) if, for some 6 €10, 1], there exists a C-5-
standard kernel K such that for all functions f, g in C3(R%) having disjoint
SUppOrts,

(&, T = [[ 80K (x, »)f(7) dx dx. (1.3)

Here (g, Tf) denotes the action of the distribution 7f on the function g.
We shall also say that 7" is a 6-SIO.

Definition 3. Let T be a 6-S10. It is a 6-Calderon-Zygmund operator (5-CZO)
if it extends boundedly from L* to itself.

The following theorem gives necessary and sufficient conditions for a 6-SIO
to be a 6-CZO. The statement of these conditions is explained afterwards.

Theorem 1 [9]. Let T be a 6-SI10. It is a 6-CZO if and only if

T1 e BMO (1.4)
T*1 e BMO (1.5)
T has the weak-boundedness property (1.6)

In order to give a meaning to (1.4) we must show how T acts on bounded
C® functions. The meaning of (1.5) will then be clear since T*, defined by
(g, T*f) = (f, Tg) for all f, g e C5(RY), is also a 8-SIO if T is.

The action of an SIO, T on C5(R%), the set of bounded C* functions, is
described the following way ([8], [9]). For fe C5(R?), Tf will be a distribution
acting on Cgo(RR%), the subspace of C5(R? of functions g such that _f gdx=0.
Let g be such a function and let # € C§(R? be equal to f on a neighborhood
of supp g, so that g and f — A have disjoint supports.

If f has compact support,

(g Tf> ={g Thy + (g T(f— h)),  where, by (1.3),
(&, T(f ~ b)) = [[ 0K, L) — h(»)] dxdy.
Since g has mean value 0, this is also equal to

([ e@K(x, ) = K(xo, MILFB) — h(»)] dxdy,

where xo is any point of supp g. Notice that by (1.2), this integral is absolutely
convergent even if (f — 4) has non-compact support, and is independent of
Xo. This integral can therefore serve as a definition of (g, 7(f — 4)). Obviously
(g, Th) + {g, T(f — h)) does not depend on the choice of 2. Hence we can set

and this defines the desired extension.
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This description yields immediately an effective method for computing Tf
when fe CZ(RY).

Lemma 1. Let 0 be in C5'(R®) and equal to 1 on {x, |x| < 1). Let 6, be defined
Jor ge N by 04(x) = 0(;), and for f on Cy(R?) let f; = f0,. Then for all g in
CGo(RY),

(g, T = lim (g, Tfy). 1.7)

g~ +o

We shall now give the meaning of (1.6). See [9]'.

Definition 4. Let T be a 6-SIO. It has the weak boundedness property if for
any bounded subset B of C5(R?) there exists Cp > 0 such that for any pair
(9, &) of elements of B and any (x,t) in Ri+1,

|<nt, TED| < cpt ™%, (1.8)

where & is defined by £(y) = 1, £(¥5*) and o} similarly.

We shall also write that 7 has the WBP.

Note that any operator 7 bounded on L? has the WBP since there exists a
constant C'g such that |£]2 < Cgt~%? for all (x, #) in R{.; and ¢ in B.

It is easy to show that 7 has the WBP if there exists a constant C and an
integer N such that for all cubes Q of length 6(Q) and all functions f and g
supported in Q, |<g, TfY| < C|Q|P(N, g, Q)P(N, f, Q), where

a

ox*

P(N,g,Q) = 2 [8(Q)" gl- (1.9)

|| =N
It is well known that CZO’s are bounded from L™ to BMO. However, there
exist conditions much weaker than (1.2) that will ensure that an operator 7,
bounded on L?, associated in the sense of (1.3) to a kernel K, is bounded from
L” to BMO. The weakest of the known conditions is
L . |1K(x,») — K(x', y)|dy < C
x—y|>2|x-x'|
and is due to Calderén and Zygmund. For our purposes it will be best to
assume something slightly stronger
| |K(x, ) - K(x', y)] dy < €27 (1.10)
|x —y|>2k|x - x'| .

for some ¢ > 0 and all ke N.

Definition 5. A locally integrable function K satisfying to (1.10) is an e
kernel. An operator T bounded on L* and associated to an e-kernel is a
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Calder6n-Zygmund operator of type e (CZ,). If K takes its values in a normed
space V, then it is a V-e-kernel.

We denote by |K]|., v the smallest C for which (1.10) holds.

This distinction between pointwise conditions like (1.2) and integral condi-
tions like (1.10) becomes crucial when the operator T maps functions of Cg(RR)
into Hilbert-space valued distributions, that is, distributions acting of func-
tions taking their values in a Hilbert space H. In this case the kernel K takes
its values in H and there are two possible ways to extend (1.10) in this setting,
namely

’ - ke
Lx_y| s 2tpe o 1KG6 D) = K&, )| gdy < C2

or, for all A€ H such that |\ gz =1,

o atie vy MK D) = KG9l dy < €275 (1.11)
Observe that an operator T bounded from L? to L2 associated to a kernel K
satisfying (1.11) is bounded from L* to BMOy; and therefore from L” to L%,
for all pe]2, +oo[, [15].

A slightly stronger version of (1.11) appears in the proof of the following
theorem of J. L. Rubio de Francia.

Theorem 2 [15]. Let {Ix}kex be a collection of disjoint intervals of R and let
Si1, be the Fourier multiplier with symbol Xz, Finally let A be defined on L?
by Af = [E(S1,f)"1"/?. Then A is bounded on L” for all p € [2, +o].

We shall conclude this section with a lemma of Coifman and Meyer, some
notations and a remark.

The letter ¢ will always denote a Cg radial function supported in the unit
ball and such that | pdx = 1. Let us define ¢ by ¢:(») = -5 ¢(%). Then P, is
the convolution with ¢,

The letter y will denote a radial Cgp function supported in the unit ball and
such that, for all £€ R?, (1.12) [g ~ |$(t8)|t~ ' dt = 1. We define ¥, and O, like
Pt and Py.

Lemma 2. Let T be a 6-S10 having the WBP. For all bounded subsets B of
C3(RY and v, £ € B such that [ndx=0or [tdx=0,

[<ni, TEY| < Cpws, (X — ), (1.13)

té
+x—y

where s, (x — y) = rE) ld+6'

Conversely every continuous operator T: C§(R?) — [CF(R?)]’ having the WBP
and satisfying (1.13) is a §'-SI10 for all &' < 6.
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We omit the proof of this lemma, which is elementary. For the converse
part one uses the decomposition of 7T as — :; a% (P:TP)) dt.

This lemma suggests the following convention. In order to unify (1.1), (1.2)
and (1.8) in an inequality analogous to (1.13) we shall remove the assumption
«fndx=0or [£dx = 0» when x = . In the rest of the paper and without ex-
plicit mention we shall assume that if two functions 7} and £ appear in an
inequality of type (1.13) and x # y, then jndx =0 or fédx = 0.

Finally let us observe that if a function fis, say, in L? and T is a CZe, then
Tfis a L*>-function and Q, Tfis a C* function. Let x € R? and suppose f(z) = 0
when |x — z| < 2¢. Then we can write

QT = . (@T)ef@d (1.14)

where (Q:T)xz = [:(x — Y)IK(y, 2) — K(x, 2)] dy.
By (1.10), we have
Lx—z|>zktl(QlT)xz| dngZ_ke. (1.15)

As a consequence, the following inequality holds for all ue R .+

j [(Q: T)xz] dz% <C,r (1.16)

r<u
2tVu < lx—z|

2. Carleson measures and BMO on product spaces

Let Q@ be an open subset in R X R. S(Q) is the subset of R% x R% of
(x1, 11, X2, £2)’s such that 1x; — t1,x1 + L[ X ]2 — L, X2 + 6[ € Q.

Definition 6 [4]. A Carleson measure on R% X R% is a measure
du(x1, t, X2, t2) = du(x, t) such that for all Q

js(m du(x, 1) < C,|9)|.

Definition 7. A function b is in BMO(R X R) if it can be written as ao +
+ Hia1 + Hya, + HiHhas, with Y3}_o|ai|o < + and where the H,’s,
j€ (1,2} are the partial Hilbert transforms. Moreover, [inf Y}_¢ |ai|«],
where the inf is taken over all possible decompositions of b, is a norm that
makes BMO(R X R) a Banach space.

Let Qi be defined on CF(R)® CF(R) by Q,[f® gl =0, /1®¢ and
similarly for Q,. Clearly Q: and Q, extend by linearity to L%.(R%. A. Chang
and R. Fefferman have proved the following.
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Theorem A [5]. A function b in Lb. is in BMO if and only if
([Q, Qtzb](xl,xz))2 dxidxy 1) 'dtidt,. Is a Carleson measure on
R% x R%.

Theorem B [6]. A linear operator T bounded from L* to L? and from L™(R?)
to BMO(R X R) is bounded on all L”’s for pe€]2, + .

It is a routine exercise to rewrite these definitions and theorems when R X R
is replaced by R?* x R% x ... x R% and R% x R% is replaced by R *1! x
X R2*1 % . x Ré*! Moreover Theorems A and B remain valid if the
functions under consideration are Hilbert-space valued. This will be used
without mention in Section 10. In order to avoid minor technical complication
we shall suppose from now on that all the d;’s are equal to 1.

3. Extension of the definitions of Section 1 in the setting of
product spaces

Let 77 and T, be two classical 6-SIO’s on R and let 7= 77 ® T>. This
operator T'is a priori defined from Cg(R) ® Cg(R) to its algebraic dual by the
formula

(81 ® &2, TH ® f2) = (&1, Tif1){8&2, T212).

Let L; and L; be the kernels of 7, and T>. If g; and f; have disjoint supports,
we can write

(81 R 8, THR L) = fgl(x)Ll(x,y)fl(J’ng, T»f2) dxdy.

Let us put on the set of 6-CZO’s the norm | |scz defined by |S|scz =
= | S|2,2 + |K|s where K is the kernel of S. This makes the set of -CZO’s a
Banach space which we denote by 6CZ. Let Ki(x, ¥) = Li(x, ¥)T>. Then K is
a 6CZ-valued function and is actually a 6CZ-é-standard kernel and one has

(61® &2, TH ®f2) = [[ @1(0¢g2, K, 2> fi(3) dx .

We can define K>(x, ) in a similar fashion. Now we forget that 7 is a tensor
product and set the following definition.

Definition 8. Let T: C§(R) ® C5(R) = [C5(R) ® CF(R)]' be a continuous
linear mapping. It is a 5-S10 on R X R if there exists a pair (K1, K>) of 6CZ-
8-standard kernels so that, for all f, g, h, k € C5(R), with supp fNsupp g = &,
(e®k, Tf® h) = [[ gt)<k, Ki(x, h3S () dxdy, 3.1
(k® g, Th® > = [[ s()<k, Kalx, h2S(y) dx dy (3.2)
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Let T be defined by
(ERKk,TFRh)y ={fQk, Tg® h).

It is readily seen that T is a 6-SIO if T is. Its kernels K; and K> will be given
by Ki(x, y) = Ki(»,x) and Ka(x, y) = [Ka(x, »)]*.

Definition 9. A4 6-SIO T on R X R is a 6-CZO if T and T are bounded on L*.
The role of T becomes clear in Section 6.
We can again put a norm on the set of -CZO’s on R X R by setting

2
| Tlscz®xmy = | Tl22 + [ Tl2,2 + 25 |Kils,sczm-
i=1

Using this remark one can easily define 6-CZO’s on a product space with an
arbitrary number of factors, by induction on this number.

We can repeat the same procedure to define CZe’s on product spaces.
However for CZe’s there is no need to consider the partial adjoints as for 6-
CZO’s. :

Let T be a CZe on R and K its kernel. We define | 7| cze as | T|2,2 + |K]e.
A CZe T on R x R will be a bounded operator on L? associated in the sense
of Definition 8 to a pair fo CZe-e-kernels and we shall put | T |cze = | T 2,2 +
+ 2 1|Kile, cze-

In order to state an analogue of Theorem 1 in the product setting we need
to observe that a 6-SIO on R X R has a natural extension from Cp ® C% to
[C8o ® Cool’. This can be shown by an iteration of the argument sketched in
Section 1. It also follows that Lemma 1 can be extended, using the same nota-
tions.

Lemma 3. For all g1, g, € C5(R) and f1, f> € C5(R),
lim (81 ® &2, TI(1)e ® (1) = lim (g1 ® g2, T[(f1)g ® 21D

g +oqg > +x q— +o

(81 ® 82, TFi @ f2).

In order to extend the definition of the WBP in the product setting it is con-
venient to introduce the following notations.

Let Tbe a 8-SIO on R x R and £, g € C5(R). The operator (g, T'f>:C5(R) =
- [CF(R)] is defined by

(hy (g, T'fYk) = (g R h, Tf® k).

It is easy to see that (g, T'f) is a 6-SIO on R with kernel <g, T*f)(x,») = g,
K>(x,»)fy. One defines (g, T?f) similarly. The notation T'f=0 simply
means {g, T'f) = 0 for all g. Notice that all this makes sense if fe C5(R) and
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g€ Cxn(R). In particular 7'1 =0 is equivalent to (k, T*h)1 =0 for all
k, h e C§5(R). Similarly 7'*1 = 0 means {k, T?h)*1 = 0 in the same condi-
tions. Exchanging the role of indices we obtain the meaning of 7721 = 0 or
T?%1 = 0.

In the following, the notations are those of Definition 4.

Definition 10. Let T be a 6-SIO on R X R. T has the WBP if for ie {1, 2}
| <n%, T8} | czs < Cyt ™. (3.3)

It is easy to see that a 6-CZO on R X R has the WBP.
Next we indicate the extension of Lemma 2 in the product setting.

Lemma 4. Let T be a §-S10 with the WBP. Then for all B, (n,£)e B X B,
x,)eRXR, t>0andie(l,2},

| <nfs T8, | ezs < Cras,e(x — ). (3.4)

Conversely every bounded operator T defined from Cy ® Cq to its dual
satisfying to (3.4) is a &§'-SIO having the WBP for all §' < 6.

In this statement we made use of the convention of Section 1. The proof
of this lemma is routine and we omit the details. Of course lemmas 3 and 4
extend in the setting of an arbitrary product of copies of R.

To conclude this section, we shall give the analogue of (1.14), (1.15) and
(1.16) in the product setting.

Suppose first that there are only two factors in the product. Let 7 be a CZe
on R x R and fe L*(R?. Then (Q:, Q:, Tf)(x1, x2) is a C™ function of (x1, x2).
If x1, t; are fixed and f(z1,z2) = 0 for |x; — z1| < 2¢1, then we can write

[0,Qr, Tf 1001, x2) = [ 0, (@6 Ts,2,/ G, 2)1(x2) dza, (3.5)

where (Q:, T)x,z, is a CZe acting on functions of z», and given by

(Q1, sz, = I\Ptl(xl — yIK1(y1,Z1) — Kilx1, Z0)] dy1.

Here K is the first kernel of T and the symbol « ™ » over z; simply means that
Z; has become a parameter in (3.5). It is not clear that the integral in (3.5) con-
verges absolutely. However by (3.6) below, that will be the case if f(Z1, 22) is
uniformly in L*(dz,), in particular if fis bounded with compact support.
The definition of a CZe on R X R immediately yields the following
generalization of (1.15),
Jllxl —z,| =2k, ” (QIIT)XIZI ” CZe dzl <C2” k. (3.6)

The case of a product of three spaces or more is very similar.
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Forall 1< [1,n], (xi,ieI)e R and (t;,ie I) e (R+)" and (z;, i € I) € R such
that for all iel, |z — x| > 2t; (we write also |z7 — xi| > 2¢;) the symbol
[Qr,Tx,z, denotes a CZe acting on L*(R”’), where J = [1, n]\I. This CZe is
defined by induction on |I|. If I = {i} and K;is the kernel of T'in the variable
i, then

[0, Tleyz, = [ ¥, = ¥)IKi(iy 2) = Kiloi, 2] dyi.

Now if [Qr, T]x z, is defined and I" = IU {i} we define [Qy,.z,, = [Q4,[0:, Tk, =
zlxz,- This makes sense since [Qr, T'lx,z, is itself a CZe and has a kernel in the
i-variable. On the other hand it is readily seen that [Q,, T]x,.z,. depends only
on ¢y, xr and z; and not on the decomposition of I’ as 7U {i}. So the nota-
tion is consistent.

Let 7/ € [1,n] and J = [1, n]\[ and let fe L*(R") have compact support and
suppose f(z) = 0 if |x; — zi| < 2t for some i € I. Then with obvious notations
we write

[QTA1() = [ Q4 1Q:, T e,/ Cr, 2))(xs) . 3.7

From (3.10) below it follows that this integral is absolutely convergent. Indeed
(1.15) and (1.16) extend easily to the following, where i ¢ I and I' = TU {i}:

S o m 1190 Thyplzedts < C27501Q0 Tleye, | cze (3-8)
and for ue R,
dt;
J‘ " [QtI,T]xI,z,: " czedzi T < Ce " [Qt,T]sz,” CZe- (3.9)
isu 13

2tVu s x; -z,
Moreover it follows from (3.8),
1(Q1, Mxyz, | cze dzr < Ce|| T cze X 27 FistHi, (3.10)

.[|x,— zII =2k1t,

4. L*-BMO boundedness of CZe’s on RX R X ... X R=R"
We wish to show the following.

Theorem 3. Let T be a CZe on R"=RXR X ... X R. Then T admits a
bounded extension from L(R") to BMO(R X ... X R).

By interpolation it follows that 7'is bounded on all L?’s for p €12, + o[ and
if T* is also a CZe, then T is bounded on all L”’s for p €]1, +o[. This situa-
tion occurs automatically in the convolution case where we can conclude the
following.
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Corollary. Let Thea CZe on R" = R X ... X R and a convolution operator.
Then T admits a bounded extension from BMO(R") to itself.

To prove the corollary we use the H'-BMO duality [5] and an argument of
[10], p. 150. Since L? is dense in A" (this is a trivial consequence of the atomic
decomposition for H! [6]) it is enough to show that for all fe L>NH?,
| T*f | a1 < C|f]| &1, or equivalently that T*f, H,T*f, H,T*f and HiH,T*f
are all in L' with a norm less that C|f|#. But as functions of L* these four
functions are equal to T*f, T*H,f, T*H,f and T*H H,f which are in L’
since by Theorem 3 T* maps H' in L' and f, H.f, H,f, and H,Hf are all
in H'. The corollary is proved.

There are other CZ¢’s which are candidates for being bounded on BMO,
namely those defined on BMO. In the case n = 2 to be defined on BMO is
equivalent to the conditions 7?1 = 0 = T21. It turns out that one can still pro-
ve that T is then bounded on BMO but the assumptions on the kernels of the
CZ¢€’s have to be strengthened in order to know that TH,, TH, and TH:1H>
are also CZ¢’s if T is and satisfies T'1 = 0 = T%1. We omit the details.

We now turn to the proof of Theorem 3. In order to use the induction
hypothesis it is convenient to have the following formulation of Theorem 3,
which is clearly equivalent by Theorem A.

Theorem 3'. There exists Cn,. > 0 such that for all bounded open subsets 2
of R", all b e L”(R™) with compact support and all Te CZe(R X ... X R),

di
j lQ:Tb(x)izdx—t < Cr,e| T2z 11210 @4.1)
S() t

We shall need the following lemma.

Lemma 5. There exists a constant Cy, . such that for all bounded open subsets

Q of R” there exists n functions T, . . . , T, defined from S(Q) to R . such that
Ti(x, t) = 2t; and with the following properties:
If &%= U Il - Ty,xi+ Ti, (4.2)

x,DeS(M) 1<i=<n
then |Q,] < Cx|Q|.
Forall TeCZe(RX ... X R),all IS[l,n], I#¢, let

Extyz, = U II Ixi— &, % + 4.
T, ) <|x,—z,| j&I

Then

dt
j lEx,t,z,‘ " [Qt,T]x,z,l( CZet—IIdZIde < Cn,e ‘Q' “ T” CZe- (43)
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Of course when I = [1, n] (4.3) has to be interpreted the following way:
[Q’IT]W: is a real number and |Ey..|=1 if Ti(x, t) < |x. zi| for all
ie[l,n] and |Ey .| = O otherwise. '

We postpone the proof of Lemma 5 to the next section.

Let Q and Q. be as in Lemma 5, be L®(R") with compact support and
|b]» < 1 and let T € CZe(R™) with | T|cze < 1. We want to prove

dx dt

L( |Q: Th(x)|* < Cn,|9Q|. 4.4)

Using (4.2) we immediately reduce to the case where b is supported out of Q,.
Just write b = bxa_ + bXac and observe that

dxdt

L( 1@ Thxa YW 2% < Calbxa, 12 < Cal@] < Gl

Suppose from now on that b is supported out of @, Then, for each

(x,1) € S(Q) and zesupp b, |z; — xi| = T; for at least one index i. This yields
the following decomposition for b:

b= Z (—l)ll'_lbx,t,b

I=][1,n]
I#6
where
bx, t, 1(2) = b(2) I__; Xizi, xi - zi| = Tutx, D}
1E.
Thus

Q@T® = 3 (=D"17HQTby,. ).

I*¢

Therefore, to prove (4.4) it is enough to prove for all 7€ [1, n], I # ¢,
dxdt
j‘S( !QlTbx t, I(x)|2_"— Cn,e|Q|- (45)

Since Ti(x,t) = 2t;, we can use (3.7), which reads
(Q:Tb,,,, D) = jz [0:10:,Tx,2,bG1, 2D CDXx, - 2,1 = 7, dZr- (4.6)
’4

For x;, t; fixed, let Ey. = U Il jerlx; — 4, % + ¢, the union being
over the /s such that (xr, xJ, t1, 7)) € S(2). Minkowski’s inequality and (4.6)
yield
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dt
[0 1070 0P ax % <
S(Exﬂr t"

< (j‘ [Q:,[0:,Tx,2,bGr, 2] (x))|* %
lzp—x =21, $Eepe)

dXJdt_] 172 _ 2
X Xix,-z)=T, ) az| .

Now let xy, 7, z; be fixed and Ex sz, as defined in Lemma 5. If (x,, £,) € S(Ex )
and Ti(x, t) < |x; — 24|, then (x;, #;) € S(Ex,1,2,). Therefore we need only to
dominate

dx,d 172 2
[ J “Q‘J[Q’IT]“rirb(zI’ z2)1x)|? X; tj] azy| .
lz,-x =2t SEx2) 7

The induction hypothesis under the form (4.1) yields the following majorant

[ Lz,- =2t lEX!’IZI' vz I [QtlT]‘rIzl I CZe dz[] "

By (3.10) and Cauchy-Schwarz, this is less than

C": € [ Lz]_ xll =21, |Exjt]z[l U [Q’[T]X[Z[” CZe dzl:‘ .

It remains to integrate against dx,dt,/t; and use (4.3). In the case where
I = [1, n] some minor modifications in notations are needed. They are left to
the reader. The proof is therefore reduced to showing Lemma 5.

5. Proof of Lemma 5

When n = 1 this lemma is trivial. Let Q be a bounded open subset of R and
for xeQ, let I(x) be the connected component of x in . Then simply set
T(x, 1) = [I(x)| for (x,?) € S(Q). Clearly T(x, f) > 2t since ]x — £, x + {[ S I(x).
Moreover ]x — I(x), x + I(x)[ € 31(x) which implies (4.2) with C; = 3. Finally
(4.3) reduces to

dt
¢.1) j j‘ |(QtT)x,leix—z| > 1) dzdx— < C|Q] | T“czs’
s@) Jz t

which follows trivially from (3.9) with u = |I(x)|/2. This observation will per-
mit us to illustrate in a simple case one point of the strategy of the proof.
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Lemma 6. Suppose we have built Ti...T, such that (4.3) holds for
I=12,n]. Then if Ti > |L:(x1)|, (4.3) holds for I' = [1, n].

Here I, (x1) denotes the connected component of x; in Ex ;, as defined in
Section 4.

Let x;, ¢;, z, be fixed. To deduce (4.3) for I' form (4.3) for I, it is enough
to show that

dt
j lEx,:t[’zr| |[Qt1:T]x1/z,,| t_ le dxl < CIEXII,Z!| ” [QI[T]X[Z] " CZes
1

. . dt
and then integrate against dx,T’— dz;.
1

This inequality actually means

dt
—t—l—dm dx1 < ClEx,1,z)| |1Q:, Tlx,2, | cz.-

J |[QI,VT]x,:z,,|
2y, tl)/lx,, —zplz2Tp

Thanks to the formula
[Qt,'T]X,'z,: = [QII[Qt,T]X,z,]xlzl,

we are almost in position to use (5.1). We only need that the conditions on
(x1, 21, £1) imply

i) (1, 1) € S(Exjry2)
i) [x1 — z1] 2 |Lx¢,2,(x1)|, where Ly,1 2 (x1) is the component of x1 in Ex 1 z,.

i) follows from the definition of Ej,x,z, and from the condition |x, — z,| >
> T,. ii) follows from the fact that Eiz S Ey,. for all z, Therefore
lx1 = z1| = T1 2 Ly, (x1)| 2 |Lx,,2,(x1)|. This implies ii) and lemma 6 is
proved.

In general one point in the strategy will be to define the 7;’s by induction
on i in such a way that if /is a set of indices and ip < inf 7, and if the 7;’s are
such that (4.3) holds for I, then it holds for {ip} UZ, almost independently of
the choice of the T;’s for i > io.

Lemma 7. Let QS R, (x1,t:))eR% and for (x2,...,X%n) €Exr, let
T, 1, X2, oo %) = 200V oInf (o, (e, g ) * 06 e vy Xn) > ). For
(x, ) e S(Q), let 1(x,t) = sup 7(x1, t1,¥2, ..., Yn), the sup being over those
(Vi)2<i<n Such that |x;— yi| <t; for all ie[2,n]. For z1€R such that
|Z1 - X1| > 2t let

Exltlll = U H Ixi — ti, xi + 4.

T, <|x1—z1]i<2
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Then, for Te CZe(R X ... X R) with | T ¢z < 1

. dt
(5»2) j |Ex1t121| " (Qll T)Xlzl “ CZe dx; == dzi < C"'Ql
lx1 - z1] =28 t

Moreover, if

Y= U Mm—-7mxx+1x []Ix—t,x+t
x,esS(d) iz2
then
(5.3) Xo < 3 (Xo)*,

where * is the strong Hardy-Littlewood maximal operator.
In order to prove (5.3), it is enough to prove that, for all (x, ?) € S(Q),

|]X1—T,X1+T[X H ]x,-—t,-,xi+t,~[r'19| 1
i=z2

>

2"y x It 2

iz2

If 7 = 21, this is obvious since (x, #) € S(Q). If 7 > 24, we can choose 8 such that
7> > 2t; and (yi)2<i=nsuch that |x; — yi| < t; for i e [2, n], and 71(x1, 11, ¥2,
-+»¥n) > B. Therefore (Xg, , \g, )*(¥2, ..., ¥n) <} and in particular

I i — ti,xi + ti{l N Ex;4,\ Ex,8
i=z2
2n-1 H ti

iz2

Since ][] Ixi — ti, xi + ti[ € Ex, 4y, this is equivalent to

iz2

H ]xi - tiaxi + Il[ nEX;B

iz2

1
> .
2n_1H1i 2

i=2

Since ]x1 — B, x1 + B[ X Ex, 5 € @, this implies
l]x1 —Byx1+Blx I Ixi—tiyxi+ t,-[ﬂ().‘ :
i=z2

Zn[{ix HtiJ | >E.

i=2

Letting 3 tend to 7, we obtain the desired inequality and (5.3).
To prove (5.2) observe that

Eonu S {02, v eRPY, 1, t,y2, .,y < Ix1 — 21|} €
c {(yz, e ) Ky Bl ) 2 ) 2 i]



72 JEAN-LIN JOURNE

This latter inclusion follows from the trivial fact that X, \Ex, ¥ 25 - - -5 V1)
is an increasing function of «. These inclusions imply |Ex s 2] <
< Cu|Ex,1,\Ex;|x, - z||- At this point we need the following.

Lemma 8. Let x1eR, TeCZe(R X ... X R) with |T|cz <1, and let F:
R+ — R4 be a decreasing function vanishing for t large. Then

d
(-4 [F(t) = F(x1 = 2D (@i Dy | cze 7:]" dz: < CF(O07).

lx1—z1l z 281

It is easy to reduce to the case where F is C'. In this case write
F(ty) - F(x — 1) = = [/~ * F'(u) du. Using (3.9) with 7 = ¢ and I' = (1},
we obtain, since —F" > 0, a domination of the L.H.S. of (5.4) by — | T | ¢z, X
X f0+°°F "(u) du, which proves Lemma 8.

To prove (5.3) we apply (5.4) with F(f) = E;,.. The restriction
|x1 — z1] > 2t is irrelevant since otherwise Ej,: z, = ¢. An application of
(5.4) and the inequality |Ex, s, z2| < C(|Exyes] = |Exixs - 1l]) yield

_ dt
J‘ lEn t121‘ “ (QtlT)xl 21 " cze't—lldzl < CEIEX'10+ I, where Ex10+ = U Exln-

t11>0

An integration in x; yields C. [ |Ex,0+| dx) as a majorant of the L.h.s. of (5.3).
But this is exactly C.|Q|, and Lemma 7 is proved.

We shall use Lemma 7 with many indices playing the role of index 1 and
with many sets instead of Q; we shall specify which index and which set are
considered, e.g. 71(x1, f1, X2, t2, - « « » Xny En, D).

A direct consequence of Lemma 7 is the following. If 7i1(x, t) > 71(x, ¢, @),
then Ey, ¢z, S Ex 1,2z, and (5.2) implies (4.3) for I = {1}. Now we define the
T;’s by induction on i. The letter » will denote an open subset of R¥ for some
k €[1, n] which will be specified by the context. We shall use the notation
E;,, as in Section 4 but we shall specify the set under consideration, e.g.
Ey (). Finally I; = Iy,.,(x1) with the notations of Lemma 6.

We set

Ty = |Lu|V sup  1i(x1, t, X, 8, ),
1< [2,n]
J=1[2,n\I

w S Ey.,(Q)
(x1, t1, x5, 25) € S(Q)

Q= Ulx; — Ti,xi+ T x T Ia— ti, % + til,

iz2
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the union being taken over (x, f) € S(Q),

T, = sup 72(x1, T1, X2, t2, X, £, @),
I<[3,n]
J=1[3,n\/

w S Ex,1(21)
(XI, Tls X2, t21 st t.]) € S(w)

and Q, = Ulxy — T1,x1 + Tilx]x — T, x2 + To[ X H 1xi — ti, xi + ti[.
i=z3

Suppose Ti...Ti;-1T; are already defined and let

Qi=U I b — Tjxi + L x IT 1xe — i, 2 + tel.

Jj=i k=i

We define T;+: as follows

Tiv1= sup Tiv1(xt, T1y o ooy Xis Tiy Xie 15, Liv 1, X 1), @),
IC[i+2,n]
J=1[i+2,n\/
wEEx,zI(Qi) .
Ot T1yvo o5 Xiy Ty Xig 1, i 1, X, £) € S(w)

Finally let

Qo1=U( TI Ixi- Thxi+ T,-[) X 1% — tny X + tl,

i=sn-1

and let T, = 7u(x1, Tty . .o s Xn—1, Tn—1, Xn, tny Qn—1).
The property (4.2) will be a trivial consequence of the following.

Lemma 9. Forall ie[l,n— 1], (xo)* >} Xa,, .

If i = n — 1, this is an immediate consequence of (5.3) applied with index
n and set Q,-1.

Ifi<n-—1,let (x,7)eS(Q), o >0besuch that #;; ; < o < Ti+1. There ex-
ists /S [i+2,n] and w S E; 1, (Q) such that (x1, T1, ..., %, Ti Xi+1, ti+ 1,
X, t) € S(w) and 754 10x1, T1, -« .+, Xiy Tiy Xi 41, Li+ 1, X, £, @) > o The proof of
Lemma 7 shows that

T —Thxi+ T X WXiv1— Tivn, Xiv1 + 1isal X I, — 25, % + 1]

j<i

has at least half of its volume in w. Since w S Ex,¢ (), 0 X Ix; — t, x, + [ S
< . Hence
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- Thxi+ T X WXiv1—mis, Xie1 +mial X I -t x5+ 4l
Jjsi Jj>i+1
has half of its volume in ;. Let « tend to 7;+; and the same is proved for
T;i+1 instead of 7;4:. Finally we have proved that ;. is the union of rec-
tangles that have at least half of their volume in ;. This implies the lemma.
Actually we have skipped the case where / = 1 and 7; = L, but then the argu-
ment is trivial.

We are left with proving (4.3). To do so we replace Ex ¢z, by a larger set

529

Fi,t,z, defined as follows. Let ip = inf /. Then
Fyjt2, = U 11— Thxi+ T x I1 Ix— 6, % + ¢l
T x,0<l|x,—z, j<io j;i;)
J

Now we shall prove by induction on |/| that

dt
65l 1€, Tl er 5 d < Cul8] T
1

This will be sufficient since ¢; < Tj for all j and E ¢,z, € F, Also, by Lem-
ma 6 it is enough to consider the case || < n.

If I has a single element i, then (5.5) is a direct consequence of (5.2) applied
with the set Q; and the index i, since Ti(x, ©) = 7:(¢1, Tty o o s Xi— 1, Tive 1, Xis iy o o @
e e Xn, tny Q) and |Qi] < Cy|Q| by Lemma 9.

If I has more than a single element let K = I\ {io}, and let G2z,
fined as

Lz

be de-

1T Ixi = T, xj + Tl X 1o = tios Xig + till X T 1xj — tj, % + il
Ty <lxg—2z4l j<io j.>¢i10
J

Clearly Gf&szK € Fi, 1.z, Moreover we have the following.

Lemma 10.

dt; :
j‘ |Fx]1]z1| " [QtIT]X,ZIH CZET’OdZiO < C"’GI(QtKT)XKZK " CZ(‘G’I\";(IKZKL
o

With Lemma 10, one deduces ifnmediately (5.5) for I from (5.5) for K.
Therefore the induction, and the proof of Lemma 5, reduce to Lemma 10
which we now prove. To do so we shall apply (5.2) with the set G, . , the
. . ~ kkZK
index io and the operator (Qr, T)x z,- Let Fxr,z, = U 11 jerlyi — 8 ¥i + sils
where the union is taken over those (v}, sj )j¢ such that
)< Ixi, — zi,] and  (xiy, Ly, ¥, ) € S(GY o)

io
Tio(xioy tioy Vs S, G XplpZg?®

XlgZk
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Then (5.2) reads as follows:

[ 1Btz 1@ Dz, | cze i, '0 dziy < Cn|(Qe, Dz, | cze| G,
0

o el

Therefore we need only to prove FX]tIzI Fx,, 2 1N other words we must show
that if Ty(x, 1) < |x; — zi|, that is Tk(x, f) < |xx — z&| and T; (x, ?) < |x;, — zi,|,
then ((xj, T))j<iys (Xigs tig)s (Xjs t,)J>,0,¢1)eS(G (gz,) and the associated
7ig( " }‘;( et S |xi, — z,0| The first assertion follows from the definition
of T;,. Indeed G"’K, 2 S XK,K(Q, _1) (with Qo =Q), and therefore T,

P r,-o( , GpK,KZK) where « - » means ((xj, T))j<i,» (Xiy» tiy)>(Xjs ))j > i, j e1)- NOW

7-,.0( ., G'I‘::(IKZK) < T, (x, t) < |xi, — 2| and the lemma is proved.

6. A «T1-theorem» in the product setting

If Tis a 6-SIO on R X R and has the WBP, the conditions 71 = 0 and 7*1 = 0
do not imply that 7 is bounded on L2. This is why we introduced in Section
3 the partial adjoint 7. Now if 71 = T*1 = T1 = T*1 = 0, then T is bounded
on L%, Moreover the following is true.

Theorem 4. Let T be a 6-S10 on R X R having the WBP and such that T1,
T*1, T1 and T*1 lie in BMO(R X R). Then T extends boundedly from L* to
L2

Let us consider an example. Let (ak, «,)zxz be a bounded real-valued
sequence on Z X Z and let @ = X, >, aklkzeizk"‘eiszy be the tempered distribution
such that (d|y) = X X ax &, ¥(—2!, —2*?) for all Y € S(R). Let yo € S(R) be
such that ¥o(0) = 0 and Yxez¥o(2 %) = 1 for £ = 0 and let Ex be the Fourier
multiplier of symbol Jo(2 " %%). Let T.:CF(R) ® CF(R) — C5(R) ® C§(R) be
defined by (g1 ® g2, Tufi ® f2) = Tk, T,k ¢ AF 81, €2 11382, €2 A 12
It is easy to show that this series is absolutely convergent. Moreover, if the
rows and columns of the matrix ((ax,«,)) are uniformly bounded, then 7, is
a 1-SIO, satisfies T,1 = T#l = T# =0 and 7,1 = 4, and T, has the WBP.
Finally 7, is bounded if and only if ((a ) is bounded on /*(Z) and 7,1 is
in BMO only if ((a«,,)) is Hilbert-Schmidt.

This example shows that 71 and 7*1 have to be taken into account in order
to obtain L*-boundedness but the conditions 71 and 7*1 e BMO are not

necessary.
From Theorems 3 and 4 applied to 7 and T we obtain the following.
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Corollary. Let T be a 6-S10 on R X R. It is a 6-CZO if and only if T1, T*1,
T1 and T*1 lie in BMO and it has the WBP.

To avert the suspicion of vain aesthetism, we shall now explain why we re-
quire 7 to be bounded on L? in the definition of a CZO. This is not merely
to have a nice characterization of CZO’s but to have statements which extend
in the setting of an arbitrary finite product of copies of R. It is a very good
exercise to extend the proof of Theorem 4 that we shall give below and an
opportunity to see why one needs to take into account 7 in the definition of
| |czsrx®). We shall leave it to the reader and stick from now on to the
case n = 2 (except in Section 10).

The proof of Theorem 4 can be decomposed in three steps.

In the first step, one simply observes that if T satisfies 7'1 = T'*1 = 0 and
has the WBP, then if can be viewed as a classical vector valued SIO, T acting
on C5(R) ® H, where H = L*(R, dx»), and for which 71 = T*1 = 0. The pro-
of of the L2-boundedness of such an operator is the hilbertian version of the
proof of [9] based on the Cotlar-Knapp-Stein lemma.

The second step is the decomposition of an operator T having the WBP,
such that T1 = T*1 = T1 = T*1 = 0 as the sum of two operators Sand 7 — §
having the WBP and such that $?1 = §**1 = 0 and (T — S)'1 = (T — S)*'1 = 0.
The L?-boundedness of T'is then a consequence of the first step. The construc-
tion of S is given in Section 7.

The last step is, as in the classical situation, to construct for all functions
beBMO, a CZO Vj, such that V,1 = b and V¥l = V1 = V§1 = 0. Now if
T satisfies the assumptions of the theorem and by, b, b3 and b4 are T1, T*1,
T1 and T*1 respectively, the operator T — V,, — Vi, — Vi, — V3, is of the
type studied in the second step, so that T is bounded on L2. The operator Vj
is described in Section 8.

7. Decomposition of 7 when 71 = T*1 =T1 = T*1 =0

Let 3e€ BMO(R) and let Up:C5(R) = [C5(R)]' be defined by (g, Usf) =
= 0+ ® {(Q:8), (O:B)(P.f)) dt/t. 1t is classical that this integral is absolutely
convergent and that Ug is a 1-CZO with |Us|icz < C|B|smo. Moreover
Usl = 8 and Ug1 = 0 ([9)).

Now let T be a 6-SIO on R X R such that 71 = T*1 = 71 = T#1 = 0. We
define the operator N as follows.

For all f1, f>, g1, 82 € C5(R)

(81 ® &2, Nfi ® f2) = &1, Ue,, T21,p13/1)- (7.1)
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Lemma 11. The operator N is a §-S10 having the WBP for all § <.
Moreover N*1 = (N**1 = (NY)*1 = 0 and (T — N)'1 = 0.
In order to prove Lemma 11 we shall need the following.

Lemma 12. Let T: CG(R) ® C5(R) = [CT(R) ® CF(R)' be a continuous
linear mapping. Suppose that for every bounded subset B of Cg(R), there ex-
ists a constant Cg such that:

AN

i) for all x1,x2,y1,y2€R, all ti,t € R+, and all 1, 1,12, € B
<0, ® e, TEY, ® £37,0] < Caws, 1, (1 — yi)ws, 1,(X2 — y2);
i) for all (x,y)eR,t>0, ie{1,2} and 4, £ B,
| <, T 1| BMo < Cpws ,(x — ) and | (n}, T’ Y*1 | Bmo < Cpws, (X — ).

Then T is a §'-SIO on R X R and has the WBP for all ' < 6. Conversely any
6-S10 having the WBP satisfies i) and ii).

This lemma is an immediate consequence of Lemma 2 and of Theorem 1.

Let us apply it to N. Applying the converse part of Lemma 12 to 7, using
(7.1) and the properties of the operators U for 8 e BMO(R), one obtains easily
the property i) for N as well as the property ii) for i = 2. From the formula
(f,N%*gy = Uy s, 72613 We also conclude (T — N)'1 = 0 and (N")*1 = 0. We
are left with showing that N satisfies ii) with /i = 1. In fact we shall prove
N?*1 = (N»)*1 =0, or, in other words (g, N'f)1 = (g, N'f>*1 =0 for all
f, &€ C3(R). For this we shall use the assumptions 71 = T1 = 0.

To show (g, N'f>1 = 0, it is enough by Lemma 1 to show that for all 2 e
€ Coo(R), qgngw(h, (g, N'f»8,) = 0, which means qur}}w (& Ugn, 2013 =0,
where 0, is defined in Lemma 1. This is immediate from the two following
lemmas.

Lemma 13. Let (Bg)qen be a bounded sequence taking its values in BMO(R). If
qlirP B4 = 0 for o*(H', BMO), then for all f, g € C5(R), lir£1 (g, quf) =0.
— 4+ g— +

Lemma 14. Let T be a 6-SI0 on R X R such that T1 = 0. Then for all h e
€ Coo(R) and for ie{1,2), the sequence ({h, T"(9,,>l)q>,,0 satisfies the
hypothesis of Lemma 13 for qo big enough.

To prove Lemma 13, observe that the integrals [[(Q:g)(x)(Q:B8s)(x) -
- (P.f)(x) ¢t~ 'dxdt are uniformly absolutely convergent since | QB4 < C,
jo+w |Qg| t~'dt < +o0 and sup | Pf |2 < +oo. Therefore we can take the limit
under the integral sign. Since by assumption lin} (Q:Bg)(x) =0 for all
(x,)eR%, Lemma 13 is proved. o=
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To prove Lemma 14 we pick a function k£ € C§(R) and we want to prove
that |(k, (h, T'04)1] is less than C| k| g1 for ¢ > go, go and C being indepen-
dent of &, and that Blllw |<k, {h, T'0,)1)| = 0. This latter fact follows from
T1 = 0 and from Lemma 3 in Section 3. To prove the first fact it is enough
to prove that for g > go and ¢’ > qo

[<k, <k, T84 — 04))1)| < C|k|an, (7.2)

and then take the limit when ¢’ — +o. Notice now that if suppAn’
Nsupp (64 — 04) = ¢, then (A, Ti(eq — b)) = H h(X)Ki(x, y)(0q — 04)(¥) dx dy.
This will be true if go is chosen large enough and in this case a straightforward
computation (using f hdx = 0) yields | <k, T'(0, — 64)) | scz < C, which implies
(7.2).

We have proved N?1 = 0. The proof of N**1 = 0 is identical. One just has
to use 71 = 0 instead of 71 = 0. This proves Lemma 11.

We also need another operator M, similar to N, defined by

(81 ® &2, Mfi ® f2) = (&1, Ufa,, 121,y 13/1) -

This operator M is also an SIO and has the WBP. Moreover, M?1 = M**] =
= M"1 = 0and (T — M)'*1 = 0. This can be shown using the same arguments
as for N.

We now set S=M + N so that S has the WBP, S§%1 = §?*1 =0 and
(T - 9)'1 =(T - 8S)*1=0.

8. Construction of the operator V,

The construction of V} is inspired by the construction of the operators Ug, 3 €
€ BMO of Section 7; see [9].

The family of operators (P:);>¢ is defined as in Section 2, but now Q;
denotes —7Z. Py, so that [ Q% = Tand [ 07 4" = Col, where Co is not necessari-
ly 1.

Let e BMO(R X R) and let Wy: CE(R) ® CZ(R) = [CE(R) ® CE(R)]’ be
defined by
(N RS2 Whg1 ® g2) =

dti1 dt
= j Q1,1 ® O1,/2, (01, Q1 b)Pr,81 @ Pr282) o

The L*-boundedness of W} is, as in the classical situation [9], a consequence
of the fact that (Qletzb)2 dxidxz 1 - 1)~ 'dt) dt, is a Carleson measure [5]
and of the properties of such measures on product spaces [4]. On the other
hand one sees easily that W, is a 1-SIO whose kernels take their values in
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{Us, € BMO(R)}. Moreover, an application of Lemma 3 shows that
Wyl = Cob, W#l =0, W1 = 0 and W1 = 0. It remains to show that Wj is
bounded on L?. In order to do this, it is enough to show that W, maps L~
into BMO. Similarly W} will map L* into BMO so that the L>-boundedness
of W; will follow by interpolation between H'— L' and L™ — BMO [13].

We want the estimate | W5/ | smo < C|b|smo|f| . Consider the operator
Ty: b— Wpf. We need to show that it maps BMO to itself. Observe that T},
which is given by

dt, dt
(i ® b2, Trb1 @ b2y = J (P,h ® Q1,h2, (Q1, P, f)Q: b1 & Q2> L2,

H b
is itself a 1-SIO, and satisfies 771 = T7*1 = T}1 = 0. Therefore we already
know that 7y maps L? to L%. From Theorem 3 it follows that 7y maps L* to
BMO. To show that 7y maps BMO to itself, we observe that 7rH:, TyH> and
TyH{H, are SIO’s, because the kernel of Q,H satisfies the same estimates as
the kernel of P,. Since these operators are bounded on L? as well as T}, they
also map L* to BMO. Hence Ty is bounded on BMO.

The proof of Theorem 4 is complete.

9. Bicommutators of Calderon-Coifman type

In the classical situation, a standard kernel K is antisymmetric if K(x,y) =
= —K(y,x) for all (x, y) € Q. Such a kernel induces automatically and SIO T
defined for all £, g € C5(R) by

(. Tf>=lim [[  gOK(x,»)/f(»)dxdy. ©.1)

€20 x—y|>e

The existence of the limit is a consequence of the antisymmetry of the kernel
K and of the smoothness of f and g. Actually,

(& TfY =} [[ KGx, g0 f ) — F()e()] dx dy, 9:2)

so that [(g, Tf>| < C (diam [supp gUsupp f1)*[ &' |« [/ ] -

This clearly implies that 7 has the WBP. Since 7= —T*, T is bounded on
L? if and only if 71 € BMO, by Theorem 1.

The best known examples of CZO’s generated by antisymmetric kernels in
the manner just described are the Calderon commutators associated to the
kernels [(A(xX) — A))/(x —NI¥-(x—y)~! where k>0 and A: R—C
satisfies A’ = a € L*. Calderén proved in [2] that | Tk|czi < C¥. This estimate
which has been improved in [7], can be easily obtained from Theorem 1 ([9]).
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Actually, this can also be derived from a more general result on antisymmetric
kernels.

Let K be an antisymmetric standard kernel and A: R— C be such that
A'=aelL”, and let K, be defined by K,(x,y) = K(x,y)[Ax) — A()] -
-(x—y)~! for all (x,y)eQ. Clearly K, is also an antisymmetric standard
kernel and defines an SIO 7, having the WBP.

Proposition 1. If T is a CZO, then T, is a CZO, and for all 6 €10, 1] there
exists Cs > 0 such that

| Talczs < Cs|alw| T czs. 9.3)

This propostion can be generalized to the product setting.
Let L: @ X Q— C be a function such that for all (x1,y:) and (x2,)2) € 2

C

. 9.4
lx1 = 1| |x2 — ya|

|L(x1, y1, X2, ¥2)| <

If L is antisymmetric in each couple it defines a continuous operator 7
Co(R) ® C5(R) — [CE(R) ® C5(R)]' by

(81 @2, TH QL) =
= lim ‘Uﬂl g1(x1)&2(x2)L(x1, y1, X2, ¥2) [1(¥1) [2(y2) dx1 dx2 dy1 dy>

ﬁ*OQ*O
[x1=y1l > €1, lx2-y2| > e2

for all f1, /2, &1, &2 € Co(R).

As in the classical situation, the existence of this limit is a consequence of
the antisymmetry of L, of (9.4) and of the smoothness of fi, f>, g1 and g». It
is easy to see that 7 has two kernels K; and K in the sense of Definition 8,
in Section 3. These are given by

(g, Ki(x)f> = lim ” g(WK(x,y, u, v)f(v)dudv

g UNTRAS?
and

(g, K2(x)f> = lim ” g(w)K(u, v, x, y)f(v) du dv
€20 1ty
for all f, g e C5(R).
Let A: R X R— C be a function such that

9%A

2 —gel®
3,0,



CALDERON-ZYGMUND OPERATORS ON PRODUCT SPACES 81

(in the distributional sense) and let A: Q x A — C be defined by

ACa, X2) + A1, y2) — A1, X2) — AX1, y2)
(1 = y)e2 — y2)

A~(X1,y1,X2,y2) =

for all (x1, y1) and (x2, y2) € Q. If L is antisymmetric and satisfies (9.4), then
LA has the same properties. Hence LA defines an operator 7, in the same
manner as L defines 7. The first kernel K,,; of T, is defined by

(& KanCo)fy =lim || g@)L(x, y,u, A, y, u, 0)f @) dvdu.

|u—v|>e

Notice now that because 7 is a §-SIO, so is T,. This is an immediate con-
sequence of Proposition 1 and the fact that for x and y fixed, A(x, y, u, v) is
of the form [B(u) — B(v)]/(u — v), with |B’|« < |a|«~ and 94 (x, y,u, v) is of
the form [C(u) — C(v)]/(u — v), with |C'|~ < |a]o/(x — ¥).

Proposition 2. If T is a CZO, then T, is a CZO, and for all 6 €10, 1] there
exists Cs > 0 such that

| Talczs < Csla] | T|czs.

In particular the kernel [(x; — y1)(x2 — ¥2)] ~* - [A]¥ defines a CZO T of
norm less than C*|a|%. The L?-boundedness of Ty was first proved by J.
Aguirre in [1].

We now turn to the proofs and start with Proposition 1. For simplicity we
shall assume 6 = 1. We know that it is enough to show that for aeL”,
T.1 e BMO and | T.1|smo < C|a]«. To show this inequality we are going
to exhibit a CZO S such that 7,1 = Sa, that is, for all g € Coo(R)<g, Sa) =
= (g, T,1). This equality determines g, Sa) for all g € Co(R) and a € C5(R).
But since |K,(x, )| < C|x — y| ~* when a € C§(R), T.1 acts not only on C5o(R)
but on C§(R), so that (g, Sa) is well defined for all € C5(R) and g € C5(R).
Moreover,

(g, Sa) = lim j gK(x, ) 34—()%:44(—”—

lx—y|l>e

dxdy.

Let g and a have disjoint supports. Then if x e Supp g and |y — x| < dist
(Supp a, Supp g), A(x) = A(Y) so that the integral defining (g, Sa) is absolute-
ly convergent. This permits us to compute the kernel of S, namely K,(x, u) =
=" K@, y)i5dy if x>u and Ki(,u) = [, " K(x,p);tdy if x<u
This kernel K is clearly a standard kernel and because of that we can apply
Theorem 1 to show that S is a CZO. We first notice that S1 = T1 and therefore
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lies in BMO. This is formally obvious, since when a = 1, [A(x) — A(})] -
- (x = ») " 'dxdy, but it can be proved rigorously using Lemma 1. Next, we
compute S*1. For a € C5(R), A(x) = 0 for x large enough. Moreover, since
(g, Sa) can be rewritten as ; ([ [2(x) — g(IK(x, ») [A(X) — AW)]I(x — ») " dxdy
an application of Lemmal shows easily that S*1 = 0. Finally, to prove that
S has the WBP we choose g and a € C5(R) and suppose that the supports of
a and g are contained in some interval Jxo — ¢, xo + f[. We decompose the in-
tegral as I, + I, + I5, where

1
L =— U [g(x) — gMIK(x, y) f_(x)_g(y) dxdy,

x,y€lxo — 2t,x0 + 2¢[

12=—;- H gK(x, )—A—(x) f‘” dxdy,

X€]xg — 2t, x0 + 2t[
y €lxo—2t,x0 + 2]

and I3 = I, because of the antisymmetry of K. Clearly |I;| < C|g'|«|a|«t*
and || € C|g|«|a]«t. These estimates imply that S has the WBP. Theorem
1 can be applied to S, which is a CZO. This proves Proposition 1.

We shall denote by U the linear mapping that sends a CZO T defined by
an antisymmetric kernel to the operator S we have just considered. From the
proof of Proposition 1 it follows that (9.6) |U(T)|czs < C| T czs-

The proof of Proposition 2 follows the same lines as the proof of Proposi-
tion 1. Notice first that an SIO T defined from an antisymmetric kernel by
(9.5) has the WBP. This can be seen exactly as in the classical situation.
Moreover, such an operator satisfies 71 = T*1 = —T1 = —T*1. Hence, to
prove that it is bounded on L2, it is enough to show that 71 € BMO, by
Theorem 4, and this is necessary by Theorem 3.

We now wish to prove that if an antisymmetric kernel L defines a CZO, T
then the SIO T, defined by LA satisfies 7,1 e BMO. To do this we consider
the operator W: L*(R X R)— [Coo(R) ® Cto(R)]’ defined by Wa = T,1. If
aeC§(R) ® Cy(R) then T,l is actually an element of [CF(R) ® Cg(R)]
because of the decay properties of LA at . Hence (g1 ® g2, Wa1 ® a2) can
be defined for g1, g2, a1, @> € C5(R) by

lim H” g10x1)g2002)L(x1, Y1, X2, Y2)A(x1, y1, X2, y2) dx1 dy1 dxz dy>.
el—'Ocz—*O ]r I>e
I

We are left with proving that Wis a CZO. To compute the kernels X; and
X, of W we notice that if a = a1 ® a>.
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A1(x1) — A1) A20x2) — Ax(y2) ’

A‘“(xl,ylsXZsyZ) =
X1 — N X2 — )2

where A} = a; and A% = a,. The computation we did to compute K; shows
that if x; > u; and g, a2 € C5(R), then

(&2, X1(x1, u)az) =

. . L(x1, 1, X2, Ax() — A
_ lim j j oy LU 000) A) ~ A)

dx> dyz dy1 .

50
’xz_yz[ > €

This is also equal to

ujp 1
<g2, <U[ J ) Ki(x1, 1) X — dyl:l) az>

Similar formulas hold for the case x1 < u; and for X>. From (9.6) it follows
that X; and X> are both 1CZ-1-standard kernels. The WBP of W can also be
checked easily. Indeed, for g1, a; € C5(R),

Ai00) — Ai(y1)

dX1 dyl} ,
X1 — N

(g1, Way) = U[lim JJ g1(x)K1(x1, y1)-
e—0 lx, =yl >e€

so that the proof in the classical case extends immediately. Moreover, this
equality implies that for ai, g1 € C5(R){gi, W'a;)*1 =0, or equivalently,
W2*1 = 0. Similarly W'#1 =1. By Lemma 3 this implies W*1 = W1 =
= W*1 = 0. Finally, W1 = T1 can be proved using Lemma 3. Therefore W
is a CZO and Proposition 2 is proved.

Of course this result extends to an arbitrary finite product of copies of R,
by a simple induction on the number of factors. We omit the details.

10. A Littlewood-Paley inequality for arbitrary rectangles

We wish to prove the following extension of Theorem 2.

Theorem. 5. Let {Ri}ken be a collection of disjoint rectangles in R" with
sides parallel to the axes and let Sk be the Fourier multiplier of symbol XR,-
Let A be defined on L* by |Af| = [Zk(Skf)?]"?. Then A is bounded on L”
forall pe 2, +xl.

We shall assume the reader to be familiar with [15] where this theorem is
proved in the case n = 1. In this paper it is shown that the theorem for n = 1
is a consequence of the following.
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Lemma 15. Let  be fixed in S(R) son that Xi—2,2 < ¥ < X{-3,3) and let ¥},
be the convolution operator of symbol J(% —J). Let x: ZxZ~ (0,1} be
such that the operator Ty is bounded on L* where Ty f(x) = X(j, O[¥Lf )],
takes its values in IX(Z x Z). Then T, is bounded from L™ to BMOpz x 7).

Observe that, by Plancherel’s theorem, the L>-boundedness of T is equivalent
to

gxu, kKyE2~* - j)|* e L™(db).
Js

The reduction of Theorem 2 to Lemma 15 is done by means of standard
Littlewood-Paley theory, A, weights and interpolation between L> — L? and
L”— BMO. All these arguments go through in the n-dimensional setting
without any problem. Finally the main ingredient in the proof of Lemma 15
is the following.

Lemma 16. Let (x,t) € R% and a € L%, be supported out of 1x — 2t, x + 21[.
Then for all n > 0, there exists C, > 0 such that

¢ >5/3—77 dZ
lx — z| t

(10.1) kZ (@ ¥a)x)* < G, J az(z)<
sJ

Note that the summation is over all (k,j) € Z X Z. This lemma is actually
a reformulation of the Lemma 4.1 of [15] and we leave the translation to the
reader. From (10.1) it follows by a standard argument that if ¢ € L™ then

. d
XU, 0| ¥iay ()] Tt dx
»J

is a Carleson measure, or equivalently that [Xx(j, \)¥{(a@)l; lies in
BMOy2z x z(R). Thus Lemma 16 implies Lemma 15.

As we said, Theorem 5 follows from an appropriate analogue of Lemma
15 in the n-dimensional context.

Lemma 17. Let ¥ and ¥ be as in Lemma 15 and let x: [Z")* = {0, 1} be such
that the operator Ty: L*(R"dx) _’LIZZ(ZZn)(ar dx) is bounded, where T, f(x)
takes its vlalues in L*(Z*") and is given by [X(j, (I¥%, ® ... ® YL 1))y, b-
Then Ty is bounded from L* to BMOyzz2ny, or equivalently,

. : d
(10.2) SXG.RIQ YL, ® .. ® Q, Vi at dx
Js

is a Carleson measure on [R%]" if ae L™.



CALDERON-ZYGMUND OPERATORS ON PrRODUCT SPACES 85

To avoid any convergence problems we suppose that X is finitely supported
but we shall obtain estimates independent of this assertion. We shall use a
variant of Lemma 5. It can be shown that (5.3) remains true if |[Qr,T'lx,z,| cz
is replaced by [#§/(x; — z))' * ], the point being that Lemma 8 remains true if
in (5.4) |QuT)xizi| cz is replaced by [¢5/(x1 — z1)' T€]. Let us rewrite the
variant of (4.3):

e—1

(10.3) J |Ex iz, (_xl_t—l_z,)m dz;dt;dx; < Cn, Q.

For technical reasons we need to assume that the 7;’s constructed in Section
5 take their values in the set {2¥, K e Z}. This is of course not a restriction.
Replacing 7; by inf {2%, 7; < 2*} yields (4.3) and (10.3) a fortiori and (4.2)
with the constant 2"C,. We shall use this familly of functions {7;, i€ [l, n]}
with various sets playing the role of Q and even various dimensions. Let 7 be
a set of indices in [1,n] and w a bounded open subset of R’ Then
{Ti(x, t,w), i€, (x, ) € S(w)} will refer to the family of functions constructed
in dimension |7| with w playing the role of Q.

Let Q be an open subset of R” and let Q,, Ti(x,?,Q), 1 < i< nbe as in Sec-
tions 4 and 5. By the same argument as in Section 4, and with the same nota-
tions, we are reduced to proving an estimate similar to (4.5), namely for
ael”(R") and |a]-<1

; dxdt
(10.4) L(m x(k,J) IQz‘I’%ax,z,r(X)lz—xt—“ < GilQf.

This inequality will be a consequence of the following.

Lemma 18. Suppose that the function ay is of the form axg,, where Ex; & R"
is defined by the following set of conditions.

Let i€[l1,n). For all je[1, nl, xj, z;, let [; € Z, be such that 2 < |x; — zj| <
< 25*1 Let Si(x, 1), Sa(x, t, 1), . . ., Si(x, t, I, bo, . . ., li=1) be i functions tak-
ing their values in the set {2¥ keZ)} and larger than 2t1,2ts,...,2t;
respectively. Let Fy,i,x,t5. . xit; be a subset of R". Then (z1, . . . , Zn) € Ex, if and

only if
(Z1,220+ -+ Z0) €EFxyry . oxity = Fx[z,

2lx+1 > ]X] _ zl| 22!1 > S1(x, l) > 2;1
HS 221> | — 2| 222 2 Sx, 1, 1) > 20,
24> xi— 2] 224 > S 4,0, lioa) > 20

Let I =[1,i] and xy, t1, I} be fixed, and let Dy, i, =U 11 g>ilxq — tg: Xq +
+ t4], where the union is extended to those (Xii1,ti+1, . . . ,Xn, [n) SUch that
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20> Si(x, D), ..., 2 = Si0x, t, 1y, ... Limy). If for all € >0
dx, dt dZ1
(10.5 Hj Dyt | 1= < CQY,
) lx,—z,iazr,l lt,lll tll |x1 - ZI|1+ l l
then
] : dxdt
(10.6) L(m Exth 0¥ a, 00 P % < clal.

Let us see first why Lemma 18 implies (10.4). Observe that it is enough to
prove (10.4) when I is of the form [1, i]. Indeed, if the construction of the 7;’s
is non-symmetric in the various indices, the properties of the 7;’s which are
used are expressed symmetrically and therefore we can reorder the coordinates
in such a way that 7 is of the form [1,/{]. Now we apply Lemma 18 with
Si(x, ) = Ti(x, t,Q), Sa(x, t, Q) = Ta(x, £, Q). .. Sibx, t, .. . liz1) = Ti(x, ¢, Q)
and Fx,z,...x,t, = R". In this case Dx,1, = Ex,z, (With the notations of Lem-
ma 5). Indeed if the Tj’s take their values in {2* keZ}, then |x;— z| >
> Tj & 2Y > Tj. Thus (10.5) coincides with (10.3) and (10.6) coincides with
(10.4). We are left with showing Lemma 18.

The proof of Lemma 18 uses a backward induction on i. We start with the
case i = n. Then we can use the following.

Lemma 19. Let (x,)€R% and by, € L. be such that by, (2) = 0 if |x; —
— zi| <2t for some i€ [1, n]. Then for all € > 0 there exists C. > 0 such that

{' I fi]2/3_"

lgisn ) dz.

[ T Ix- zil}S/s—n
I<isn

This lemma is the n-dimensional analogue of Lemma 16 and its proof is
nothing but the n-th fold application of Lemma 16 successively in each
coordinate.

As for Lemma 5, (10.5) has to be interpreted differently when 7 = [1, n]. In
this case it reads

(10.8) m _dadhdy g,

T1-¢ 1-
lx; = z;| = 2t,, Hsatisfied t lx[ - Z[| €

(10.7) Z 2 |(Qt‘y[{bx,l) (x)|2 < J [bx,t(z)]z

¢,J)elzn

the restriction z € Fx,, being irrelevant. Now to obtain (10.6), choose n =
= %, Dy, 1= ax: and apply (10.7). Then integrate against dx;dt;/b; and (10.8)
with e = 3-

We turn to the general case and choose i < n.
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Let (ax, (x, 1) € S(Q)) be a family of functions satisfying the hypothesis of
the lemma. We decompose a,; as Z[]alel where /; > 2t; and

Qxtl, = Qxt III Xobs < |x5— 2] < 265+ 1
sE

Now for x;, #, /; fixed and Dx ., as defined in Lemma 18 we apply Lemma
5 in dimension (n — ||). This yields (n — |I|) functions 73, j > 1, where
Ti(xy, ty) = Tj(xy, 1), Dy,

tidp) for (x5, 2;) € S(Dxep1)). Let
Dip,= U IT - Thx + Tl
Xty j>i

From (4.2) we conclude |Dy1,| < C|Dx,
(Zi+1 ‘e Z,,) and ﬁxz = ZII [ixtl,-
Let (x, ) € S(Q), (k,j) € [Z"* and o > 0 be given. By Cauchy-Schwarz,

th‘I’{,dxl(x)‘z < [Zz—ﬂls;siiwz—l [[ZZESIWIQt\IIf;dxtl,(x)iZ‘I
1 - T B

- We define @w, = @, Xp,,.,,

which is less than

1« ) :

(109) ,:1 H }_:] [Z2}:1sssllsaIQI\I,.I/(dX”'(xNZ:’.
<s=ils I

We wish to show (10.6) with d,, instead of a. Observe that the L2-bounded-

ness of T, is equivalent to

_Zx(j,k)[ 11 &(srz*k'—j,)]zsc.
J.k ,

lsr=n
Fix (jp, k;) € (Z")* and set &, = j, 2%, Since J(0) = 1, we obtain

> xGR| TI w2 -p]P<c
Jyky i<r=n i
where j = (j;,j;) and k = (k;, k;). This implies that for (j;, k,) fixed, the
operator Tj, defined by T, f(x) = [XU, k)\If{;Jff(x)]jJ, k,» is bounded from
L*(R’) to Lpgsxz(R).
In order to estimate the /- 4 - s of (10.6) with @, we rewrite it as

dx;dt; | dx;dt;
Iy I ’

(10.10) j >, H > X(k, )| Qr¥ay, ()]

jlkI j.l" k.l

and estimate first the part between brackets. By (10.9) this is less than

1 : . P dx;dt
= 2325 =s e Sk, )| Q¥ (9 =L
() Kd, Iy
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Observe that dxu,(z) is of the form a(z)xc,,, (z) where Gy .y, is some subset
of R" depending only on x, ¢;, and /;. Now for x,, t;, I, j,, k; fixed we can
apply the boundedness of the operator Tj, to the function of z,

[O: ,‘I’{cl,dxtl,] (xp 2y)

since this does not depend on x; and ¢, We obtain a majorization of the
previous integral by

1 . o i~
(_tl).a‘_ ; 2F1=r= " JFRJ l [Q,I‘I’#,axt[,] (xl) zJ)’2 dz-/'
1

To estimate (10.10) we must sum in (j,, k;), then in /,, and finally integrate
against dx; dt;/t;. We fix x;, t;, [; and z;. observe that the function @ (z;, Z)
vanishes if |x; — 25| < 2¢; for some s € [1, i] = I. Therefore we can apply Lem-
ma 19 in dimension / and obtain:

[ I t5]2/3—”
Qe ¥ dru,) (xs ZJ)|2<j | @ (2)|? === -dz;
ik, RY 1 I |xs—zs|}5/3"’
l=ss=<i

Now we integrate in z; and sum over /; keeping in mind that 2 < |x; — 2] <
< 2%, We are then reduced to integrating the following against dx; dt,/t;:

[tl]2/3 -(n1+o

~ 2
jﬂ?" |@x1,(2)] (% — 2|3~ @+ dz.

But this is less than

[tI]2/3 -+

(s
lo12 | 1Byt o oy

[x; = z]

Now we use ]D~x,,,1,| < C|Dx,1,1,|, then integrate against dx;dt;/t; using (10.5)
with n =a=¢= %, and we obtain the desired estimate for the expression
(10.10).

To complete the proof of (10.6) we must prove it also when ay,, is replaced
by ax,: — dx,. in the /- h - s. This is where we are going to use the induction
hypothesis, namely that Lemma 18 is true for & € ]i, n]. Recall that ax — dx:
is given by

[axl - dxt] (Z[, ZJ) = IZ axul(z,, ZJ)XD';-’I’,I(ZJ).
7

By the definition of Dx,,1,, we can write, if zy€ Dy, 1,14,
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1= Z H Xix, - 2| > Tr-

KcJ rek
K=o
Therefore
Ayt — Ayt = Z dx,1,K,
KcJg
K#¢
where

x,1,K = {Z @xtl X5 1 (27) II X — 21> Tr]'
17 rek

Now we apply the induction hypothesis to each function ay,, k. It is enough

to show that we can do so when K is of the form [/ + 1, k], the general case

being deduced by a reordering of the coordinate indices. Let £ > i + 1 be fixed

and K = [i + 1, k]. Then ay,,, x satisfies the assumptions of Lemma 18 for &k,

with S;...S; as before, Siy1=Ti+ 1(xs, t, DXI’I’I) e Sk = Tk(x_,, ty, Dx,z,1,).

The set Fx, .1, is equal to

Fe, uz,[ [ I (e 2" <=2l <271y x Bty .
sel

Finally (10.5) with /UK instead of 7 is a consequence of Lemma 5 applied to

Dx,¢,1, and more particularly of (10.3) which in this case says that

!

l IxK _ Z](l dZKdthxK < Cn,eIDx,t,lIls

J. lDXIUKrIUKIIUK
Dy, ptroxir, being defined as in Lemma 18. The conclusion is that we can in-
deed apply the induction hypothesis to all the functions ay, ., x for K € [1, n]\I
and K # ¢ and therefore we obtain (10.6) for a,s — dy,. Thus Lemma 18 is pro-
ved, from which follows Lemma 17. Theorem 5 can now be proved by the
same arguments as developed in [15] to deduce Theorem 2 from Lemma 15.
We omit the details.

This proof shows the limits of the underlying philosophy of this paper, also
implicitly contained in [11]: take a good class of operators, look at the tensor
products of them, write all the quantitatives properties you can about those
tensor products and look at the class of all operators that satisfy the same
quantitative properties; then you can work on this new class. From what we
just did, it seems that working with the class obtained by starting from vector-
valued singular integral operators satisfying (1.11) is not so simple. Indeed to
prove Theorem S we had to use the very special structure of the operator
under consideration, in particular that the summation in Lemma 16 could be
taken over all (k, j) € Z? independently of the function x and that the operator
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T, is a «local tensor product», which corresponds to the fact that it could be
written under the form (\If{c’l ® Tk; jl)k with the Tk, Jr essentially of
the same form that 7.

Let us conclude with a remark along the same lines. Starting with a class
of symbols S% on R x R, one can do the same «tensor product manipula-
tion» and define a class of symbols [S%]” on R” x R” by the conditions

rir

’ a+B

a5 ax® O s)’ Cap I [+ [&[1°777%.

l<i=sn

Are the corresponding YdO’s bounded when 0<é6<p<1 or when
0<6=p<1, for instance on L? or on some L”? A partial answer is the
following: if p = 1 then the corresponding ydO’s are CZO’s in our sense. This
can be seen by the same arguments as in [12]. Otherwise the problem seems
entirely open.
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