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Special Positions for
Surfaces Bounded by
Closed Braids

Lee Rudolph*

A «braid» is an algebraic datum —an element of a certain group. A «closed
braid» is a geometric construct from that datum— a knot or link in a certain
sort of special position in the 3-sphere. By a theorem of Alexander, every
(tame, oriented) link can be moved into that special position. In this way the
algebra of braids has been brought to bear on various aspects of the
geometrical theory of knots and links.

Now, every link is the boundary of surfaces of various kinds (e.g., embedded
surfaces in S3; ribbon-immersed surfaces in S3; surfaces embedded in more or
less restricted ways in D*), and these surfaces are of interest not only for what
they tell about their boundaries but also in themselves. It is natural to ask
whether surfaces bounded by a closed braid can themselves be put into any sort
of special position, which might or might not be constructible from some kind of
algebraic data. These notes are concerned with various such constructions.

Here is a rough outline of the paper. In §1, I define closed braids and recall
from [Rudolph 1] the notion of a braided surface in D> x D? bounded by a
closed braid in S* x D?. A braided surface in D? x D? is essentially the same
thing as a ribbon surface in D*, and §2 gives a fairly detailed account of rib-
bon surfaces in D* and their relationship to ribbon-immersed surfaces in S>.
In §3, I use various simple branched coverings (first of C by C, given by a
complex polynomial of degree n with n — 1 distinct critical values; then of
S! x Cby S! x C; finally of S3 by S3, branched over a trivial link of unknot-
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ted circles) to establish «representation theorems» for braids and closed
braids. (Sample: Proposition 3.10 shows that every closed braid on # strings
is the inverse image in S* of a suitable unknot in S3, via the covering alluded
to above.) In §4, 1 continue this program, constructing braided surfaces in
S3which are ribbon-immersed (and correspond by «pushing into D*» to the
earlier braided surfaces), from preband representations of braids in the free
prebraid group. The methods throughout are geometric, emphasizing «multi-
valued functions», although the surfaces constructed all have convenient
algebraic descriptions.

In §5, I introduce the reader to the Markov surfaces which [Bennequin] has
recently contributed to the study of closed braids, with signal success. An im-
portant subclass of the Markov surfaces (which includes all the incompressible
ones), which I have named Bennequin surfaces, includes within it those braid-
ed surfaces in S which are embedded (rather than simply ribbon-immersed).
I show that, conversely, there is a formal sense in which the theory of Benne-
quin surfaces can be reduced to the theory of embedded braided surfaces in S°.

In §6, I quote without proof Markov’s Theorem and the important new Ine-
quality of Bennequin. Using Markov’s Theorem, I show that there is also a
formal reduction of the theory of general (smooth, oriented —in short, slice)
surfaces in D*, bounded by a closed braid 8, 8 € B, to the theory of band
representations of the various usual injections 8%’ of 8 into By + « (i.e., adding
k extra trivial strings). I end with a discussion of the possibility that Benne-
quin’s Inequality, which he has proved for the standard (Seifert) genus of a
closed braid, might hold also for the slice (or Murasugi) genus.

I am very grateful to my friend Jos¢ Montesinos, Chair of Topology at the
University of Zaragoza, for inviting me to Zaragoza, where in April 1984 1
gave four lectures of which the content has expanded into these notes; and
more grateful that he urged me to write them down. It is a pleasure to
acknowledge the support of the Fonds National Suisse, and of the Section de
Mathématiques, Université de Genéve—particular thanks being due to Pro-
fessors Gerhard Wanner (Président de la Section) and Claude Weber, and to
Michel Boileau for his helpful criticism of my preliminary treatment of the
«slice-Bennequin conjecture».

Geneva, May 1984
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§1. Preliminaries; closed braids, braided surfaces, and band
representations

Throughout, we will view the real plane R? in its guise as the complex line C.
In particular, complex structures (plus the «outward normal» convention)
orient such spaces as D%, D*, ... .

1.1. Notation. The round 4-ball is D* = {(z, w) € C*: N(z, w) < 2}, where
N(z, w) = |z|* + |w|* is the squared-norm function. The round 3-sphere is S* =
= dD*. (Note that D* and S have radius V2. We will drop the adjective «round»
most of the time.) We will write rD? for {zeC: |z] < r}, rS! for 8(rD?), and
drop the rif it equals 1. A bidisk is a product r1.D? X r.D? C C? (r1, r» > 0). We
will always take ry = 1, and write D, for D? X rD?. The unit bidisk is D = D;.

The boundary of a bidisk is a 3-sphere with corners. Let there be fixed, once
for all, a smoothing homeomorphism 4: D — D* such that 4|S* x S! is the
identity on S' x S' = $3NaD, and A|(D — S x ") is a diffeomorphism bet-
ween the smooth manifolds-with-boundary D — S! x S! and D* — §! x S!.
We will write 8, D, = S! x rD?and 3,D, = D* x rS! for the two solid tori into
which S! x rS! splits dD,. The smoothing # gives fixed product structures to
the two solid tori 4#(3:D) and A(3.D) in S3. We will use H, composed with
a homothety of w, to smooth any bidisk boundary aD;.

Fix an integer n > 1. The n-fold symmetric product of C is the quotient
C"/Sn, where the symmetric group S, of all permutations of {1,...,n} acts
on the space C" of ordered n-tuples of points of C (i.e., maps {1,...,n} = C)
naturally (by «permuting coordinates»). Let E, C C[T] denote the complex
affine space of dimension 7 consisting of the monic polynomials of degree n.
By the Fundamental Theorem of Algebra, the map from C"/S, to E, induced
by (z1,...,2:) 2> (T — z1)...(T — z,) is a bijection (in fact, it is a homeomor-
phism if the symmetric product is given the quotient topology). Henceforth
we identify C"/S, and E, by this map. In particular, we give the symmetric
product a smooth structure. We think of elements of C"/S,, = E, indifferently
as unordered n-tuples of complex numbers (counting multiplicities), n-
element subsets of C (counting multiplicities), or monic polynomials of degree
n, as suits our convenience. The subset A,, or simply A, of n-tuples with some
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multiplicity at least 2 (alternatively, monic polynomials with some repeated
root) is called the discriminant locus; its complement E, — A is the configura-
tion space (of n distinct points of C).

1.2 Facts. The discriminant locus is a complex algebraic hypersurface in the
affine space E,. It is irreducible (being the image of the hyperplane {z; = 22}
in C") but for n > 3 it is singular (along its subset of n-element multisubsets
of C supported by n — 2 or fewer distinct points). The isomorphism class
of the fundamental group of the configuration space does not depend on
the choice of basepoint (because A is of real codimension 2 and sufficiently
well-behaved), and for any choice of basepoint this group is the normal
closure of a single element (namely, the boundary of a 2-disk which meets A
transversely at precisely one point of its dense, open, connected subset of
regular points). There are exactly two (mutually inverse) conjugacy classes of
such elements.

1.3 Definitions. The n-string braid group B, (based at * € E, — A) is the fun-
damental group w1(E, — A; *) of the configuration space. A band in B, is an
element represented by a loop bounding a disk in E, which meets A transversely
in a single regular point; a band is positive or negative according to the sign
of its linking number with A (which, at least along its regular points, has a
natural orientation because it is a complex algebraic set). Bands will be one
of our principal technical tools in what follows: the name will be justified then.

1.4 Conventions. E, is a one-point set {0}, Ap is empty, and By is the one-
element group with identity denoted o. The identity of B,, n > 1, will be
denoted 0™. Note that B; = {0} is isomorphic to By but not identical to it;
more generally, each pair of groups B, Bm(n # m) is disjoint (they are, after
all, groups of homotopy classes of paths in disjoint spaces). This apparent
pedantry will, I believe, be seen to pay off later.

1.5 Definitions. An oriented closed 1-manifold L (briefly, a link) embedded
in a bidisk boundary 4D, is a closed braid on n strings if L C 8:D, and
pri|L: L — S is an orientation-preserving covering map of degree n. Closed
braids in S* are defined via the smoothing 4. A compact oriented 2-manifold-
with-boundary S smoothly embedded in D, is a braided surface of degree n
if pri|S:(S,dS)— (D3 S') is an orientation-preserving branched cover of
degree n. Braided surfaces in D* are defined via h. (Neither «cover» nor
«branched cover» is intended to imply that the total space is connected.) Note
that the boundary of a braided surface is a closed braid.

If X is any set, an n-valued complex function on X is a function f: X = E,,.
The graph of an n-valued function fis grf = {(x,2):xe X,zef(x)} C X x C.
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1.6 Proposition. A closed braid L on n strings is the graph of a (continuous)
n-valued function on S Y with values in the configuration space E, — A C E,. A
braided surface S of degree n is the graph of a (smooth) n-valued function on D?.

Proor. Clear (the smoothness of the function associated to S comes from
the implicit function theorem and the Fundamental Theorem of Algebra).[]

Conversely, if fis any continuous function from S' to the configuration
space, its n values are uniformly bounded in size by some constant, so its
graph is a closed braid in some bidisk boundary aD;.

1.7 Notation. If 3 € B,then any closed braid on 7 strings which is the graph
of a (based) loop in the homotopy class 8 will be called a closure of 3, and
denoted 8.

1.8 Proposition. The set of closed braids on n strings, modulo the equivalence
relation of isotopy through closed braids, is naturally in bijection with the set
of conjugacy classes in By.

Proor. Both sets are naturally in bijection with the set of free homotopy
classes of loops in the configuration space. [

The situation is less simple for braided surfaces, however. If g is an ar-
bitrary continuous (even smooth) function from D? to E,, then its graph cer-
tainly lies in all sufficiently large bidisks, but it need not be a braided
surface—for indeed it need not be even topologically embedded.

1.9 Example. The function D*— E,:z— T? — z? is smooth (in fact, com-
plex analytic); its graph is the union of two copies of D? with the origins iden-
tified. Note that this function is not transverse to A,.

The function D?— Es:x + iy— T° — 3(x*> + y>)T + x(1 + iy) is smooth,
though not transverse to As. Its graph is not smooth at (0, 0) though it is p.I.
locally flat there.

The function D* — E;3: z — T — z? is smooth, not transverse to As, and has
a graph which is a topologically embedded disk which is not p.l. locally flat
at one point.

The function D? = Ej: z — T® — z is smooth and has a smooth graph even
though it is not transverse to As.

To say precisely which functions into E, have smooth graphs is a non-trivial
problem. (It would involve having an explicit understanding of which closed
braids are of the isotopy type, in the 3-sphere, of some completely split link
of unknots.) However, for our purposes the generic situation suffices.
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1.10 Definition. A braided surface S is simple if the branched covering pri|S
is simple (that is, the critical points are locally like either z — z2 or z — Z? near
0 €C, and the critical values are distinct).

The following is clear.

1.11 Proposition. A simple braided surface S of degree n in D, is the graph
of a smooth n-valued function on D?, transverse to An, which has all its values
bounded in absolute value by r; and conversely. Every braided surface of
degree n can be arbitrarily closely approximated by simple braided surfaces
of degree n. [

1.12 Definitions. A band representation of length [ > 0 in B, is an ordered
I-tuple b = (b(1),...,b(/)) where each b(j) is a band, positive or negative,
in By, (D_ef. 1.3.). We write /(b) for /. The braid of b is 8(b) = b(1)b(2) . . .
... b(l) € By; the closed braid of b is B(b), the closure of 8(b). (If / = 0 then
b is the empty tuple, with braid 0™ and closed braid 6®, the simplest closed
braid representing the completely split link of # unknots.)

1.13 Proposition. 7o each band representation b of length | in B, can be
associated a simple braided surface S(b) of degree_ n with [ branch points of
pri|S( b) and 35(b) = B( b). Up to isotopy though simple braided surfaces
(covering an isotopy of D?) every simple braided surface is some such S(b).
The various band representations b , such that a given simple braided surf:zce
can be so isotoped to S(b), are all related to each other in a reasonable way.

Outline of proof (for more details, consult [Rudolph 1]): The ordered
composition of loops in the configuration space representing the bands
b(1), ..., b() is a loop which extends to a map of D? into E, which meets A,
transversely in / points, each corresponding to one of the bands in the com-
position. A small perturbation of this map is smooth everywhere and its graph
is a surface S(&) with the desired properties.

Conversely, g_iven a smooth map g: D> — E, transverse to A, in / points, any
system of arcs in D? joining the points of g~ !(A,) to the basepoint of S?, and
disjoint except for that common basepoint, provides one with a band
representation b of the homotopy class of g|S!, of length /, with grg a
particular S(b )T Two different such systems of arcs differ by an auto-
homeomorphi—sm of D? which fixes S' pointwise and g~ (A,) setwise. The
group of such autohomeomorphisms (which is, as a matter of fact, isomorphic
to By) acts on the set of band representations of length /; this group is
generated by slides (or, in [Moishezon]’s language, elementary transformations)
BQ),...,bG0),bG + 1),...,b0)— (bA),...,bG0)bG + DbGE) ™1, bG),...,b(J).
(Note that the conjugate of a band is of course again a band.) [
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1.14 Remarks. The boundary of a braided surface, as we have defined it,
is a smooth closed braid. We did not require that a closed braid be smooth.
But no generality would be lost if we did: for pr; induces a normal bundle for
any closed braid L, and L is therefore tame, and can be isotoped (even though
closed braids) to be smooth.

Or course, every smooth closed braid bounds simple braided surfaces. They
are not unique, for indeed, one may always increase the number of branch
points by two. On the level of band representations, this corresponds to
replacing (b(1), . . ., b(l)) by the elementary expansion (b(1), . . ., b(l), w, w™ 1),
for any band w. It is shown in [Rudolph 1] that any two band representations
of a given braid in B, may be joined by a sequence of elementary expansions,
slides, and elementary contractions (inverses, when possible, of elementary
expansions).

We conclude this section with a digression—a proof in the language of
multivalued functions of a well-known and interesting fact.

1.15 Scholium. The configuration space E, — A is an Eilenberg-MacLane
space (that is, its higher homotopy groups wir(En — A), k = 2, all vanish).

PRrOOF BY INDUCTION ON n. Clearly E; — A = E; = C is contractible. Let n
be greater than 1, and let f: S¥ > E, — A be a continuous map of a k-sphere,
k > 1, into the configuration space. We will show that fis freely homotopic
to a constant map, which will prove the theorem. Consider grfin S* x C.
This is a covering space of S¥; because S¥ is simply connected, it is a trivial
covering space, i.e., gr fis the union of # disjoint graphs of 1-valued functions
fi, ..., fa. Clearly fis homotopic to f’ in E, — A, where gr f’ is the union of
the graphs of the # functions f; — fu, /o — fu,...,0,andfori=1,...,n—1,
the function f; — f, is nowhere zero on S¥. Then each f; — f;, lifts to a function
gi on S¥ with exp gi = f; — f»; since the graphs of the f; — f, are pairwise dis-
joint, so are the graphs of g1, ..., g: -1, and thus their union is the graph of
a continuous (n — 1)-valued function g on S*. A homotopy of g to a constant
gives a homotopy of f’, and thus of f, to a constant. [

§2. Ribbon surfaces and braided surfaces
Recall that N is the squared-norm function from D* to [0, 2].
2.1 Definitions. A smooth function » from a compact 2-manifold-with-

boundary S to [0, 2] is fopless if w~'(2) = 3S, w has no critical points in a col-
lar of S, and no critical point of w (in Int S) is a local maximum of w. (Note
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that no non-degeneracy assumptions are put on the critical points of w; but
if w is, say, real-analytic—and presumably in general—then suitable arbitrarily
small perturbations of w are both topless and Morse. In particular, if S sup-
ports a topless function then S is itself topless in the sense that it has a handle
decomposition without 2-handles; aiternatively, S has no closed components.)
A surface S embedded smoothly and properly (i.e., 3S = SNS%) in D* is
ribbon-embedded if N|S is topless, and S is ribbon if it is ambient isotopic to
a ribbon-embedded surface.

We define ribbon-embedded and ribbon surfaces in D via the smoothing
homeomorphism 4.

2.2 Remarks. Ribbon-embedded surfaces arise in nature. One class of ex-
amples comes from complex analytic geometry. Let U be an open set in C?
containing D*, and let I' C H be a non-singular complex analytic curve (i.e.,
locally in U, I' is the zero-set of a complex-analytic function with non-zero
gradient), so that I' intersects S> transversely. Then the surface S = 'ND* is
ribbon-embedded. (This may be proved directly by using a local parametriza-
tion of S. [More generally, the composition of M with the resolution of a
singular piece of complex curve will be topless too.] Or one may appeal to the
much more general theorem in [Milnor] on Stein manifolds.)

2.3 Example. Let U= C?, and let I be defined by 4zw = 1. Then S is an an-
nulus naturally parametrized by A= {{eC:4 —/15< ¢ <4+ NG 15}
under the map f: ¢ — (¢/2, 1/2¢). Considering N o f, we see that the critical
points of N|S are all degenerate—they form a circle of local minima.
Nonetheless, with our definition the surface is ribbon-embedded as it should
be. Of course, an arbitrarily small linear perturbation of S will replace it with
an equivalently embedded ribbon-embedded annulus on which N has a single
minimum and a single saddlepoint, both non-degenerate. (This is a special
case of an observation of Nomizu and Cecil.)

2.4 Remarks (continued). Another class of naturally occuring ribbon-
embedded surfaces (which in fact includes the complex curves) consists of
smooth minimal surfaces in D*, in the sense of differential geometry. In fact,
[Hass] proves a converse: every isotopy class of ribbon surfaces in D* contains
minimal surfaces.

(It is important, by the way, to understand that Hass’s result concerns the
round ball—of course, the value of the radius is irrelevant—with the flat
metric induced from C2. Presumably such other nice metrics as those of con-
stant, non-zero curvature could also be used. But it is easy to find, cf.
[Rudolph 4], for any smooth topless orientable S in D*, a smooth embedding
i of D* in C? which carries S onto a surface in the non-round ball i(D*)
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minimal with respect to its flat metric; or, alternatively, which pulls back that
flat metric to a non-flat metric on the round ball, in which S is minimal. Yet,
as we shall recall shortly, there are surfaces in D* isotopic to no ribbon
surface.)

2.5 Question. Of course there are non-orientable ribbon surfaces, while
every complex curve is naturally oriented. But: does every isotopy class of
orientable (oriented?) ribbon surfaces in D* contain a piece of complex curve?
(The answer is presumably «no» but I know of no proof.)

2.6 Remarks (concluded). Not every smooth, properly embedded, topless
surface in D* is ribbon. For relative Morse theory shows that if S is a ribbon
with tubular neighborhood u in D*, then the exterior D* — u of S can be built
from a collar of the exterior S* — u of 45 in 3 by attaching handles of index
2, 3, and 4 only. In particular the inclusion-induced homomorphism
71(S* — 88) = m(D* — S) is onto. Yet there are, for instance, many smooth
2-disks in D* bounded by an unknot and having a larger group than Z as fun-
damental group of the complement. Such disks are not ribbon disks.

2.7 Proposition. A braided surface is a ribbon surface.

Proor. Comparing M o h|S with |pri|S|?, we see that—perhaps after an in-
itial vertical isotopy to make pr;|S uniformly very nearly zero—the evident
toplessness of the latter imposes toplessness on the former. [

If S is a simple braided surface of degree n with / branch points of pr,|S,
the proof shows S is isotopic to a ribbon-embedded suface on which N o A
is Morse with 7 local minima and / saddles.

The following theorem is proved in [Rudolph 1]; a variant on the proof
(which needs only minor modifications, along the lines of the first proof, to
cover the general case) is presented in [Rudolph 2].

2.8 Theorem. FEvery oriented ribbon surface is ambient-isotopic to a braided
surface. [J

2.9 Remark. The isotopy constructed in the cited proof(s) is generally
«large», and cannot be expected to be «conservative»—that is, the isotopy
cannot usually be taken to be relative to a part of S on which pr; already hap-
pens to be a branched cover of its image. For instance, [Morton] gives an ex-
ample of a 4-string closed braid L which is unknotted in 0D and thus certainly
bounds ribbon disks in D; his proof that L is «irreducible» (in a certain sense)
actually shows more, namely, that any braided surface bounded by L has
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genus at least 1 (read the proof in conjunction with Example 5.2 of [Rudolph
1]), so an isotopy of a ribbon disk bounded by L into braided position must
move L quite far (across d>D, in fact).

Although we will give no proof of Theorem 2.8, it may be remarked that
the proof is essentially 3-, rather than 4-, dimensional, and makes heavy use
of the notion of ribbon-immersed surfaces in S3, which we now introduce for
other purposes.

2.10 Definition. Let S be a topless (not necessarily oriented, or orientable),
surface. A mapping f: S— S* is a ribbon immersion if it has the following
properties:

1. fis a smooth immersion without triple points;

2. in the domain S of f, the double points consist of 2r pairwise disjoint
closed arcs A1, AY, ..., A}, A} with f(4A%) = f(A¥), k=1,...,r, such
that each A is contained in Int S and each A% has both endpoints (and
no other points) on 4S; and

3. along the rarcs Ax = f(A%) of double points of fin the range, the two
sheets of f(S) cross transversely.

Of course the arcs A¢ may be quite twisted, but there is an ambient isotopy
of §* carrying them onto short «straight» (e.g., geodesic) arcs, and after
such an isotopy a ribbon immersion looks, locally in domain and range, like
figure 1.

Fig. 1
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2.11 Definition. Let f, S, A1, ..., A7 be as above. Then a topless Morse
function w on S is adapted to fif is strictly positive and foreachj=1,...,r,
Ww(A)Nw(AY) = . A topless handle decomposition S = A3 U. .. UAUARIU. ..
...Uhlis adapted to fif each A} is interior to some 4% and each A/ is proper
in some hf.

It is easy to see that, given fand S, there do indeed exist both adapted topless
Morse functions and adapted handle decompositions, and indeed that the many-
many correspondence of functions and decompositions preserves adaptation

to f.

2.12 Construction. Let f be a ribbon immersion of S in S3. Then for any
topless Morse function w adapted to f, the map ;wf: S— D* x— Jw(X)f(x)
is a ribbon embedding of S in D*. (The factor 3 is due to our convention that
D* has radius v2.) We will call it the push-in of f by the factor /2.

Proor. The push-in is an embedding because the only possible double points
in the range are separated by the radial coordinate, by definition of adapta-
tion to f. It is ribbon because on the image the functions w and N are essential-
ly the same. [

2.13 Proposition. Each ambient-isotopy class of ribbon surfaces in D* con-
tains a ribbon-embedded surface which is the push-in of a ribbon immersion
in S* by an appropriate factor. Different push-ins of the same ribbon immer-
sion are ambient isotopic.

Idea of proof (see, e.g., [Tristram] for more details, in a different language):
Start with a ribbon-embedded surface in the given isotopy class, not contain-
ing (0, 0). By isotopy, this surface may be assumed to have all its local minima
for the restriction of N in the interval ]0, 1[ and all its saddle values in ]1, 2[.
At this stage, an application of relative Morse theory yields a topless handle
decomposition of the surface, and a ribbon immersion to which that decom-
position is adapted, such that the push-in of that immersion by the appropriate
adapted factor (half the square root of the restriction of N to the surface) is
isotopic to the surface by an isotopy leaving N invariant. The second state-
ment is proved similarly. [

2.14 Remark. Given fand S, an adapted Morse function on S may well need
to have more critical points than the minimal number for a topless, but not
adapted, Morse function. On the other hand, an obvious construction of
adapted handle decomposition —which makes each A4} a transverse arc of a
different 1-handle, and engulfs each A; by a different 0-handle, and uses as
many more handles as necessary to get adaptation— is likely to use far too
many handles.
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Figure 2 depicts a ribbon-immersed disk (bounded by the square knot),
together with immersions onto it from (a) a disk with an adapted handle
decomposition displayed, (b) a disk with some level sets of an adapted Morse
function drawn in.

In §4, we will see how to go from a band representation b in B, (more cor-
rectly, from a «preband» representation that maps onto—_) directly to a
ribbon b
immersion of (the abstract surface) S(b) in S, in such a way that a natural
push-in of this immersion recovers S( Q_ ) as braided surface. (See also 5.22.)

hy

Fig. 2

§3. Prebraids and «standard generators» of the braid group

Let V= {vy,...,v,—1} beaset of n — 1 (pairwise distinct) complex numbers,
vo a basepoint in C — V. Let F,_; denote the group m1(C — V; vg) = m((CU
U{xo}) — (VU {x}); vo). Of course F, - is a free group of rank » — 1. More
specifically: there are n — 1 arcs I} in C, such that I} has endpoints vo and vj,
IINIi = {vo} if j # k, and the counterclockwise cyclic order of the I/ at their
common endpoint v is Ii, ..., Iy -2, 1,1, Ii; and there are closed 2-cells N},
with N'N\Ni = {vo) if j # k, and I} embedded in N} like a radius in D2. Then
the elements xi,...,x,—1 of F,_1, where Xx; is represented by the boundary
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of Nj traversed once counterclockwise, are free generators of F, -1, which we
call the standard generators of F,_1 with respect to the star U} _ 11, (The
generators don’t depend on the Nj, only on the star; in fact, only on the star
up to ambient isotopy fixing VU {vo} at all times. Differently embedded stars,
however, do give different sets of standard generators—which are of course
related by easily understood moves. We will not be concerned with this.)

Represent F,, -1 on S, (the permutations of {1, ..., n}) by sending x; to the
transposition (jj + 1), for each j. In the usual way, the regular covering space
of (CU{w})— (FU{x}) which corresponds to this representation has a
unique completion to a branched covering space p: X — CU {00} branched
over VU {eo}. The map p has simple critical values at the points of V (two
sheets come together) and complete branching (all sheets coming together in
an n-cycle) over oo, and X is a compact, connected surface.

By calculating Euler characteristics, one finds that X is homeomorphic to
a sphere. The map p induces on X a unique complex structure for which p
is complex analytic, so with that structure X must be biholomorphic to the
Riemann sphere CU { oo} itself. But now p must be a rational map. As only
one point of X maps to o, there are coordinates for X in which p is a
polynomial. Now we drop the notation X and forget about the points at in-
finity. We have proved the following.

3.1 Proposition. With V as above, there is a polynomial p: C — C of degree
n with simple critical points, and critical values V, so that p realizes the bran-
ched covering of Cwhich corresponds to the given representation of F, 1.
(We may take p to be monic.) []

3.2 Remark. A critical point of a polynomial is one where the derivative
vanishes; it is simple iff the second derivative is non-zero there. Of course it
is a generic property of polynomials to have all critical points simple and all
critical values distinct.

3.3 Example. Let n=3, V=1{2,-2}, Ii =[0,2], I, =[-2,0]. Then we
can take p(z) = z° — 3z. The critical points of p are 1 and —1, with correspon-
ding critical values —2 and 2 as desired.

Consider p~'(V}) in the domain of p. Since N} contains a single, simple
critical value of p, this inverse image has n — 1 components. Let N; denote that
one which contains a critical point of p, so p|Nj: Nj— N} is a 2-sheeted cyclic
branched cover of a disk by a disk. Let I; = N;Np~!(I}), so I; is embedded
in N;jlike a diameter in D?. Evidently the endpoints of ; are points of p~(vo).
In fact, we can number the points of p ™ *(vo) as z1, . . . , Z» in such a way that
I; has endpoints zjand zj+1,j = 1,...,n — 1. The union / = U} Z] I;is an arc
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(which p folds onto the star used to define the standard generators x; of Fy, - 1)
with endpoints z; and z,, containing all the z; in order.

3.4 Definition. Let J C C be an arc with endpoints w; and w, containing,
in linear order, n distinct points wi, ..., w,. Let Q; be a closed 2-cell in C
which intersects J along Jj, its subarc with endpoints w; and wj. 1, in such a
way that J; is embedded in Qjlike a diameter and Q;N Qk contains either one
point or none, depending on whether |j — k| =1 or |j — k| > 1. Realize the
n-string braid group B, as wi(E.— A;{wi,...,ws}). Then for

Jj=1,...,n—1, the standard generator o; of B, (with respect to the given
basepoint and given arc J) is the homotopy class of the loop /:
SHL D)= (En— A, (Wi, ..., Wn)): expid— {s(8), 10), Wi, ..., Wjs Wjs1,...,-

wy}, where s(6), t(6) are the preimages of expif by a fixed (for instance, by
using arc length if 3Q; is rectifiable) double cover of S’ by dQ; such that 1 € S’
is covered by {wj, wj+1} and the cover respects orientations.

3.5 Remarks. The notation o; makes no reference to n. Since (cf. 1.4) the
groups B, are disjoint, this—though hallowed by use, justified by algebra,
and undoubtedly convenient—is geometrically unfortunate. ...Nor does the
notation indicate the arc J. Clearly, choices of J which differ by isotopies fix-
ing each w; at all times give the same «standard generators» (nor do the
choices of Q;, etc., matter); but differently embedded arcs give different sets
of generators, which, however, differ by understandable moves. Abstractly,
of course, all such sets of generators are identical, in that they differ by
automorphisms of B, (induced by homeomorphisms of C fixing each w).

3.6 Proposition. Each o; is a positive band in B,. The set o1, ...,0n-1 Of
standard generators of B, is, indeed, a set of generators of B,.

Proor. The first phrase follows from the observation that the double cover
of S! by dQ; used to define g; extends to a 2-sheeted cyclic branched cover of
D? by Q;, and that the 2-valued inverse to this, extended to be n-valued by
the n — 2 constants w; (i # j,j + 1), is a map of D? into E, which—with a
minimal amount of care—is transverse to A which it meets in one point,
positive by orientation arguments.

The rest of the proposition is due to [Artin]. A proof may be given along
these lines: take w; = j, J = [1, n], Q; the round 2-disk of radius 1/2 centered
atj + ; With the right choice of double cover Q;— S ! the real parts of the
n values of the loop /;look as drawn in Figure 3A (where S' has been cut open
into [0, 27]). By isotopies (through closed braids, respecting a basepoint) any
closed braid can be first put into general position with respect to projection
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of its n values onto their real parts, then moved until it is a composition of
(appropriately rescaled) pictures like that in Figure 3A; cf. Figures 3B, 3C. [

(,2m) (j+1,27) (1 27r) (2,27) (3,2m)

Fig. 3

3.7 Remarks. The standard generators satisfy some geometrically obvious
relations, namely, for i =1, ,Hn— 2, Ri:0i0i+10i = 0i+10i0i+1, and for
1<i<j—-1<n-1, Rij gioj = gjoi. We will not scruple to use these. It is
somewhat less obvious that all relations in B, are consequences of these; since
we will not use this fact, we refer the reader to various published proofs, in
[Birman] and sources cited there (beginning with [Artin]).

(In the light of what we will do next, an alternative proof of 3.6. and 3.7.
can presumably be given by carefully following through the details of a
Lefschetz-style analysis of the fundamental group of an algebraic surface and
its plane sections.)

We return to the polynomial map p: C— C of degree n.

3.8 Proposition. The n-valued map p~': C— E,mapsC — V into the con-
figuration space E, — A. The induced homomorphism on w1, (p~ 1)*: Fo-1— By
(where we use p~ '(vo) as basepoint of By), is given by xj—aj,j=1,...,n— 1.

PRroor. A choice of arcJ is implicit in the notation o1, ...,0,-1. Take J =1
(as defined before 3.4.), Q; = N;. The composition (p~') o mj, where m; is
a loop representing x;, isn’t quite a loop /; of the sort required in 3.4., but it
differs only by inessential activity in the n — 2 2-cells other than N; which lie
in p~'(N)).
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(The parenthesis at the end of 3.7. is based on the observation that p~'is a
linear map into E,. Indeed, writing w = p(z), we have p " '(w) = {z€ C: p(z) =
=w} = {z: p(z) — w = 0}, so p~ ! linearly parametrizes a line on which only
the constant term of the monic polynomial changes. If this line is in general
position with respect to A—and it is—then Lefschetz tells us that F,,—; maps
onto B,. Further, [Zariski] and [van Kampen] tell us that moving the line
around appropriate loops of lines gives all relations.)

3.9 Definitions. With V, p, etc., as above, the prebraid group is Fn_1. A
closed prebraid is the graph in S' x C — Vofaloop f: S' = C — V. (Note that
a closed prebraid, as a subset of an appropriately large S' x rD?, is a 1-string
closed braid in dD; and in particular an unknot.) A criticized closed prebraid
is the union of a closed prebraid and S' x V; appropriately oriented, a criticized
closed prebraid is a closed n-string braid of a very special sort, in sufficiently
big bidisk boundaries.

3.10 Proposition. The set in S' X C, which is the inverse image by idg X p
of a closed prebraid, is a closed n-string braid (in every sufficiently big bidisk
boundary). Every isotopy class of closed braids on n strings contains such
covers of prebraids.

Proor. The first statement is evident. The second is the geometric counter-
part of surjectivity of (p ™"« (3.6., 3.8.). O

In §§4-5 we shall see how the use of prebraids can simplify various construc-
tions of surfaces bounded by closed braids.

3.11 Remark. All the material in this section can be somewhat generalized,
as follows. Instead of representing F,-: in S, by x;— (jj + 1), take some
other representation in which each x; goes to a transposition and the product
X1...Xn-1 goes to the same n-cycle (1n n — 1...32) as before. Then, again,
the corresponding simple covering can be taken to be a polynomial p of degree
n with simple critical points, and critical values vy, ..., v,—1; now, however,
the interesting part of the preimage of the star U} Z 11} is a tree T which is not
necesarily an arc. (It is combinatorially equivalent to the tree on vertices
1,...,n with an edge for each transposition which is the image of an x;.) As
before, T can be thickened into a «cactus» on which p is 2:1 onto a
neighborhood of the original star; and one can read off from the tree certain
generators (represented by motions of points inside the cactus) of B, which
might be called T-standard and which are the images by (p ™ ')« of the x;. For
n >4, however, these generators do not have to be equivalent by automor-
phism to the standard generators.
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3.12 Example. 1If Tis atriod Y, we can express a set of Y-standard generators
of B, in terms of the standard standard generators as o1, 020303 ', 02. No
automorphism of By carries these three elements to a1, 02, 03 in any order (con-
sider the standard relations, and the calculation o:(020305 o7 (020305 1) ™! #
# 0™ fori=1,2).

3.13 Remark, concluded. The construction in [Rudolph 3] of the fibration
of the complement of a closed strictly positive braid works equally well for
braids that are strictly positive (or more generally, strictly homogeneous) in
any fixed set of 7-standard generators.

§4. Prebands, tadpoles, and ribbon immersions

As in §3, p: C— C is a polynomial of degree » with » — 1 distinct critical
values vy, ..., vn—1 which form the set V, vp is a basepoint in C — V, and
F,_; is the (free) prebraid group m:1(C — V;vo), with standard generators
XlyoeoosXn—1.

4.1 Definition. A positive (resp., negative) preband in F, — is a conjugate
of a standard generator (resp., the inverse of a standard generator). Note that
(p ™ Y#: Fn-1— B, maps each preband to a band (of the same sign), but for
n > 3 the preimage of any band contains both prebands and prebraids that are
not prebands.

4.2 Definition. A (smooth) map 7: (D?, 1) — (C, vo) is a standard tadpole if
it has the following properties:

(1) for Rez, the real part of z, non-negative, 7(z) = 7(Re 2);

(2) 7|(Int D*N{z: Rez < 0}) is a diffeomorphism onto an open set U(7);
the closure U(7) is disjoint from vy and includes precisely one point of
V, namely vi¢», which is 7(—1/2);

(3) 7|[0, 1] is an immersion in general position (i.e., it has no triple points
and only finitely many double points, at which tangent directions are
distinct) into the complement of U(r)UV, and 7~ (vo) = 1;

(4) 7|/(S* = {1}) is an immersion.

A tadpole is a composition 7 o 6!, where 6 is a diffeomorphism of (D?, 1)

with some other smooth 2-cell and 7 is a standard tadpole.

We note that (1) forces 7/S! to hve tangent vector zero at 1, so we can’t
strengthen (4); nor is 7| (S' — {1}) in general position, for again by (1) the en-
tire right semicircle consists of (at best) double points of this immersion. From
(2) and (4) we deduce that U(r) is a homeomorph of D?, with boundary
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smooth except at the single point which is the image by 7 of the diameter of
D? on the imaginary axis; there, the boundary has a (generalized, real)
«cusp», i.e., there is a one-sided tangent line.

We call U(7) the head of 1, vi» the eye of 7, and the immersed arc ([0, 1])
the tail of 7. The head of 7 and 7 itself are called positive or negative depend-
ing on whether the orientation induced on U(r) by the range agrees or
disagrees with that induced by the domain. If we abuse language slightly and
call the image of 7, rather than the map 7, a tadpole, no harm is done so long
as we remember orientation.

The following lemma is clear, and clearly the motivation for these defini-
tions.

4.3 Lemma. A prebraid is a preband if and only if it is represented by the
boundary of a tadpole. []

4.4 Definition. A tadpole is embedded if its tail is embedded. A preband is
embedded if it can be represented by the boundary of an embedded tadpole.

4.5 Construction. Fix, once for all, a homeomorphism «: [—1, 1] = [0, 2]
such that o [ [—1,0]: x= (1 — x)"?, ais C*on]-1,1[, and « ™' is C* at 1
and has all derivatives 0 there. (If we are willing to work with C' surfaces and
braids—and there is no real reason not to—one could take o | [0, 1]: x— 2 —
— (1 —x»'2) Call the region T = {zeC:Reze[-1,1], |Imz| < a(Rez)}
the tongue; the tongue contains D? and any standard tadpole 7 has a unique
extension, which we shall also denote 7, over T which preserves property (1).
Note that 7 has a boundary which is smooth except for two corners, at 1 + 2i,
where it has (infinitely flat) cusps.

The function C — {3} = S':z— (z — 3)/|z — 3| restricts to a map n,,;: 7~ S’
with image a closed subinterval Io = exp i[} m, ; 7], which sends the corners of
T to the endpoints of the interval and has each other level set a closed line seg-
ment in 7. Write »; for the composition 7, with the direct similarity (in the
affine structure of S' = R/2xZ) which carries Ip onto I, any other (non-trivial)
closed subinterval of S'. A function %, is a height for T.

Finally, given a (standard) tadpole 7 (as extended to 7T'), we construct the
map R(7,1): T— S' x C: z— ((2), 7(2)), and call it (or, abusively, its image)
a (standard) geometric preband.

4.6 Proposition. A geometric preband is a ribbon immersion of T into
S* x C. It is an embedding if and only if the tadpole involved is embedded.

(In 2.10, ribbon immersions were defined with target S°, and on manifolds
without corners, but it is clear what should be meant.)
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ProOF. On the right half of the tongue, R(7, I) is, essentially, the restriction
of the product of an embedding 5; and 7, an immersion on each level set of
15, S0 R(7,I) is an immersion there. On the left half of the tongue, 7 itself is
an immersion, so R(r, ) is there, too. Now we need only check the double
points. They are all due to double points of the tail of 7. If 7(s) = 7(f), 0 <
<s<t<1, then each of the intervals I, 3; ({Rez = t}), 57 '({Rez = s})
contains the next in its interior. Write A” = {ze T:Rez =15}, A’ = {z€T:
Rez=t,7,(z)endA")}, A=R(r,I)(A). Then also A = R(r,I)(4A")=
= n,(A") x {7(s)}; A" is a proper arc in 7, and A’ is an interior arc; and all
such pairs of arcs A’, A” exhaust the double points of R(r, ) and enjoy the
properties required in Definition 2.10. [

4.7 Definition. (Compare with 1.12.) 4 preband representation of length |
in F,_1is an I-tuple x = (x(1),...,x(/)) of prebands in F, - ;. The prebraid
of x isp(x) =x(1). ._.x(l). The closed prebraid of x is 5(x) C S x (C — V).

The foll?)wing lemma is easily proved, and provides one way to get around
a slight technical awkwardness in Construction 4.9.

4.8 Lemma. Lef q: C— C bea polynomial of degree n with leading monomial
qo(z) = az", a # 0. Then for every e > 0, there exists a radius r > 0 for which
the following are true.

(1) The critical values of q lie in :TDZ.

@ ¢ '(5D%) C g5 (5 D).

(3) There is a smooth branched covering §G: C — C, uniformly within e of
q in the chordal metric of 8> = CU {0}, such that § is equal to q on
g0 '(5;D?) and § is equal to qo on q¢ '(3rD?). O

4.9 Construction. We use our polynomial p to construct related branched
coverings. It will now be convenient to write w for its variable, rather than
z. Let r be such as provided by Lemma 4.8., for p = g (for any ¢), and p
likewise. The map C>— C?: (z, w) — (z, p(w)) is a branched covering, with
n — 1 complex lines of critical points, and critical values C X V. So is its ap-
proximation (z, w) — (z, p(z, w)), and this latter map has the advantage—since
P is a monomial «near infinity»—that what covers a sufficiently large bidisk
is itself exactly a bidisk. In fact, let 7= |5~ '(r)|, then this map covers D, by
D:. We will use the letter P to denote, indifferently, the restriction of
(z, w) ~ (2, P(z, w)) to Dy, or to dDr Somewhat more abusively (but to our
immense convenience) we shall also denote by P the branched covering
D*— D* induced by P via our standard smoothings of bidisks, as well as its
restriction §° — S3.
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4.10 Remarks. Of course (from (1) of Lemma 4.8, and taking minimal care
with the basepoint) the induced homomorphisms (p ')« and (5~ ")« from
F,_, to B, are identical.

On S3, P actually decomposes—as we have set things up—into a covering
of A(d:D) by itself, and a covering of 4(3.D) by itself. All the action happens
in the former, where each meridional disk 4({expif} x D?) covers itself by a
simple n-sheeted cover; in A(d2D), P is unbranched, the product of the identity
on D? with the n-sheeted cover of S! by itself.

In fact (after giving them a natural orientation) the critical values of P on
D; or on D* are a braided surface of degree n — 1, none other than a par-
ticular S(¢) (where ¢ is the band representation of length zero in B,-1);
likewise, the critical values of P on dD; or on S° are a closed braid 6© V.
And the same is true of the critical points (in the covering spaces). Proposition
3.10 can be sharpened to say that every isotopy class of closed n-string braids
in S3 is represented by a closed braid P~ '(5), where 3U6" ~ is a closed braid
@(i.e., p is a closed prebraid criticized by the critical values of P in S%).

4.11 Construction. Let the polynomial p and radius r be as above.
Henceforth we demand of each tadpole 7 that it satisfy these extra hypotheses:

(5) the head of 7 lies in 5 D%
(6) the part of the tail of 7 in the annulus ¥ D*> — Int;D? is a straight

radial line segment.
Thus we have put the basepoint vo on ¥ S', which is no loss of generality.

Certainly Lemma 4.3 still holds for these restricted tadpoles.

Now, let x be a preband representation in Fy,_i; let I(1),...,I(/(x)) be
disjoint closed intervals of S' — {1}, occurring in the order of their indices;
let 7; be a tadpole representing x(j). We construct a subset of D, from this
data; denoted I(x), it is the union of the (images of the) geometric prebands
R(7j, I()))(T), together with the annulus S* x [1,3]vo C ' X rD?, together

with the disk D? x {%vo} C D? x rS'. The following lemma is evident.

4.12 Lemma. The set ©(x) is a smooth, ribbon-immersed disk in 0D, (with
corners along the corners of dD,). It intersects the critical values of P
transversally in I( x ) points (one in each geometric preband). It intersects 32Dy
in a single meridional disk. The boundary dX(x) is a closed prebraid in 3D,
of type A(x), and is criticized by the critical values of P. The map (x)N
Né&1D — S gotten by restricting pry has no critical points. [ B

The reader may formulate a notion of equivalence of surfaces with the pro-
perties enunciated in the lemma, so that the various examples of X(x) pro-
duced by varying the choices of tadpoles, etc., are equivalent.
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4.13 Definition. A prebraided disk is any such X(x). If £(x) is a prebraided
disk, let Y'(x) temporarily denote its «resolutio_n», that _is, the canonical
smooth disk which ribbon-immerses onto X( x) (abstractly, an identification
space obtained by glueing together a disk, an annulus, and several tongues).

4.14 Construction. Let x be a preband representation. Denote by S( X) the
subset of S° obtamed as the image by smoothing of P~ 1(Z:(x)) C 8SD; (or
alternatively, as P~ ! of the image in S°, by smoothing, of X(x)CaD,). We
suppose 4 to have been chosen sensibly so that S(x) is smoot_hly embedded
near S' x S'. -

4.15 Proposntlon Let x be a preband representation in F,-1, b = (p‘l)
LX), (p7 ) (x(l))) the corresponding band representation in B,. Then
S(x) is a ribbon-immersed surface in S*, and there is a push-in of it into D*
which is the braided surface S(b). In particular, 3S(x) = B(b).

Sketch of proof. The covering P induces a covering of Z'( X ), call it S'( Xx),
which is a smooth surface, and evidently ribbon-immerses onto S(x). -

We can actually produce a push-in back at the level of the prebrai?ied disk
X(x), which pushes it (rather, its smoothed image in $*) into D* to be a braided
surface of degree 1, transverse to the critical values of P. It suffices to find
a topless Morse function of X'( x ), with a single local minimum of value (say)
1, and constantly 2 on the boundary, which is adapted to the ribbon-
immersion onto X( x ). To find one, consider the geometric preband associated
to a tadpole; thanks to evident properties of the height function, of the two
components A’, A” of the preimage of a double arc in the range, it is always
the case that the proper arc separates the interior arc from the head of the tad-
pole; so we can construct a Morse function that «engulfs» the interior arc
before it touches the proper arc, and this is what is wanted.

When we lift such a push-in factor back to S’( x ), the single local minimum
becomes #n local minima, and each of the /( x) intersections of E(x) with the

critical values of P creates a saddlepoint. [J

4.16 Remarks. This proposition gives a practical justification for the nota-
tion S(x ), which in any case is not in JSormal conflict with the notation S(b)
as introduced in 1.13, since x and b are objects of two different types.

When x is embedded (4. 4), or rather when the tadpoles chosen to represent
the prebands are all embedded, S(x) is embedded in S3. It is the (essentially)
what was called an O-braided sua‘ace in 83 in [Rudolph 2]: here O is the
unknot A({0} x S?) thought of as a fibred knot in S3; that component of P!
of the image of an embedded geometric preband, which contains a critical
point of P, is a (geometric) band in the sense of [Rudolph 2].
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4.17 Definition. Such a surface as S(x) is a braided surface in S*. (This,
again, is not a formal conflict, nor should it be one in practice since the braided
surfaces S( b ) previously defined are in 4-dimensional ambient spaces.) This
is sharpenin_g of the usage in [Rudolph 1], where S(b) was used indiferently
for S(x) and S((p~ ") L(X)): the new notation seems preferable because it
actually indicates the arra_ngement of the singularities in S°.

Figure 4 illustrates two prebraided disks and corresponding brainded sur-
faces. (Only the parts in A(6:D), cut open, are shown.)
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Fig. 4 A & B: ©(x) and S(X), x = (xi ', x3x{ 'x3 %) in F; (immersed).

C& D: Z(x) and S(x), x = (x1,X5 ', x23) in F3 (embedded).

I Ix

4.18 Remark. The reader is referred to [Rudolph 1] for an exposition, and
examples, of the «calculus of (pre-)bands» (use of slides, expansions, and con-
tractions, cf. 1.13-1.14, above) and the techniques of picturing braided sur-
faces in S°>.
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§5. Markov surfaces and Bennequin surfaces

Recently, [Bennequin] proved some new and interesting facts about closed
braids, and obtained new proofs of some old results, as a preliminary stage
in his investigation of exotic contacts structures on S>. His proofs involved the
introduction and exploitation of a class of specially positioned Seifert sur-
faces. I propose to reinterpret these surfaces in the context of braided surfaces
which we have established.

5.1 Reminder. A surface S in S°is a Seifert surface (for the link 3S) if it is
smooth, compact, oriented, and topless. A surface S in S* is incompressible
if, for every simple closed curve C C S such that C is the boundary of a
smooth disk with interior disjoint from S, there is a disk contained in S with
boundary C. It is a fact that every (smooth) link in S* is the boundary of some
incompressible Seifert surface. In particular, if Sis a Seifert surface which has
maximal Euler characteristic among all Seifert surfaces with the same boun-
dary, then S is incompressible. (There are, however, links with incompressible
Seifert surfaces of arbitrarily high genus.)

5.2 Notation. If L is a link in S, let X(L) be the maximum of the integers
x(S), S a Seifert surface for L.

For L a knot, or more generally a link which admits only connected Seifert
surfaces (e.g., a fibred link), the genus g(L) is unambiguously defined, and of
course g(L) =1 — ;(X(L) + rkHy(L)). But X is easier to calculate with, here.

Recall (1.1) that S* contains S' x S! and is split by this torus into the two
solid tori we have called A(d.D) and A(3.D), where h(3:D) = {(z, w) € C*:
|z|* + |w|* = 2, |z| = |w|}. These solid tori are equipped, via h, with fixed
product structures. In particular, we can identify the universal cover of 4(3.:D)
with R X D?, and treat projection on the first factor as a multivalued function
6: h(8:D)— R (that is, 8 is some fixed branch of } log o pr1 o h~'|h(3:D)). We
write D? for the meridional disk 6 ~1(f) C #(3,D). Similarly, write ¢ for the
«angular coordinate» in A(6:D).

5.3 Definition. A Seifert surface S C S* is a Markov surface if it has the
following properties (1) — (4):

(1) 0S is a closed braid in Int 4(3:D);

(2) SNA(32D) is the union of finitely many meridional disks ¢~ '(s))
(disregarding orientations);

(3) 0s, the restriction of § to SNA(31S), has no degenerate critical points,
and distinct critical points of s have distinct critical values (modulo
2m);

(4) each critical point of s is a saddlepoint.
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5.4 Remark. Taken together, (3) and (4) mean, geometrically, that all tangen-
cies of S with leaves of the product foliation of Int #(d.D) by fibres of 6 are
non-degenerate saddles. Now, in [Bennequin] (which after all appears in a
volume dedicated to Georges Reeb), Markov surfaces are defined similarly but
in terms not of this foliation but rather of a Reeb foliation of Int #(d,D). But
I claim the definitions are essentially equivalent: for, granting non-degeneracy
of the tangencies, there are only finitely many; they all happen, therefore, in-
side some closed solid torus interior to 4(31D), on which the foliation induced
by the Reeb foliation and the foliation by meridional disks are isotopic. Thus
the two species of Markov surface differ only by an inessential change of coor-
dinates.

Thus (see also 5.7) all the pictures in [Bennequin] can be understood in terms
of the present definition: in fact, more readily than for the original, since what
is drawn is a disk but on the original interpretation it has to be understood
as a plane (a leaf of the Reeb foliation) together with a circle at infinity.

5.5 Definition. Let S be a Seifert surface satisfying properties (1), (2), and (3)
of Definition 5.3. Then both the level set 65 '(#) and the pair (D7, 85 () will
be called the t-section of S. If t is not a critical value of fg, the f-section
is a smooth, oriented 1-manifold-with-boundary, containing some number
(perhaps zero) of simple closed curves as components, together with »n arcs
joining a point of S} to a point of Int D? and k arcs joining two points of S}
to each other: following [Bennequin], we call the former arcs free and the lat-
ter tied. (The integer n > 1 is of course the number of strings of the closed
braid 8S; and n + 2k is the number of meridional disks ¢ ~ !(s;) of 4(3.D) con-
tained in S.) A critical section, 65 '(¢) for t a critical value, has precisely one
singular point, which is either an isolated point of Int D?(if it is a local ex-
tremum of fs) or a point at which the section is an immersed 1-manifold with
two transverse branches (a saddlepoint). The critical sections also have well-
defined oriented boundaries. A saddle section may have zero, one, or two sim-
ple closed curves (through the singular point) which are properly contained in
a component of 65 (7).

5.7. We leave to the reader to formulate and prove converses to the assertions
of 5.6, to the effect that any (suitably smoothly changing) family of
«abstract» #-sections actually fits together into the part of a surface with pro-
perties (1), (2), and (3) which lies in A4(3:D). (Be cautious: it might not be a
Seifert surface without extra hypotheses, i.e., a closed component could ap-
pear.) Also, note that, given S, if 7 C S* is an interval without critical values
of fs, then SNA5 '(I) is the trace of an isotopy between the two sections of
S at the endpoints of /, which is suitably unique, and that therefore a surface
with properties (1), (2), and (3) can be adequately pictured (as in [Bennequin,
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pp- 109-110 ff.], or at the lower corners of the pages in [Douady]) by drawing
sections «just on each side of» the singular sections (and, if there are closed com-
ponents, making it clear how they move about in sections with more than one).

5.8 Theorem. Let 3 C h(9:.D) C S* be a closed braid, and S C S* an incom-
pressible Seifert surface for B. Then S is ambient isotopic, with 8 fixed, to a
Markov surface.

(This slightly strengthens the statement of Théoréme 4 of [Bennequin]; the
proof is basically the same.)

Proor. We achieve properties (1) — (4) of Definition 5.3 by a sequence of
isotopies, each of which leaves intact those properties already acquired; we
keep calling the surface S.

Property (1) is a hypothesis.

An arbitrarily small isotopy not only puts S transverse to the core circle
h({0} x S') of h(3,D), but makes its intersections with an infnitesimal solid
torns h(eD? x S') all into (not necessarily correctly oriented) meridional
disks. A radial expansion of this torus achieves property (2).

Again, an arbitrarily small isotopy (supported in Int 4(3:D)) achieves pro-
perty (3).

We are left with the task of eliminating local extrema of fs. First, without
changing their number, we rearrange them, as follows. Let the ¢;-section of
S be non-singular. Among its simple closed curves (if any), consider one of
those (if any) which were born at a local minimum of fs with value
to €t1 — 27, t1[: that is, if possible, take C C B '(#1) which bounds a disk (its
life history) on S with interior disjoint from thl and on which 6s has a single
critical point (a local minimum). Such a curve C also bounds a disk in D,2]
(possibly with interior points in S). The two disks together make a 2-sphere,
which bounds a 3-cell, which guides an isotopy («pushing from bottom to
top») which decreases by at least one the number of simple closed curves in
the #;-section of S which were born at minima —so we may assume there are
none such.

Now let to € t1 — 2, #1[ be the greatest minimum value of s less that #; (if
there are any local minima). The simple closed curve born at the isolated point
of 85 '(to) does not survive to the #;-section, so it dies at some intermediate
critical level. It doesn’t die at a local maximum (or S would contain a
2-sphere), so it dies at a saddlepoint. If it dies by absorption (i.e., the number
of simple closed curves in the sections decreases by one as you pass up through
the saddle section), the life history of the 2-cell it bounds in D, is a 3-cell with
interior disjoint from S, in position for an «embedded handle cancellation»
—an isotopy which reduces the total number of critical points of 6s by two
(the minimum and the saddlepoint). If, on the contrary, the curve dies by
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splitting into two disjoint simple closed curves C; and C, (in the regular sec-
tion 65 '(#2) «just above» the saddle), then certainly one of C; or C, (and
perhaps both) bounds a 2-cell in D,Z2 with interior disjoint from S (for
—numbering so C; does not enclose C>— nothing but C; could possibly get
inside C,, and nothing at all could get inside C; since we have controlled
births): now we use incompressibility to conclude that C; (say) also bounds
a disk contained in S, on which 6s necessarily has at least one local maximum.
Now an isotopy cancels (at least) two critical points of s (namely, the saddle-
point where the minimum died, and the maximum).

Thus after isotopies which don’t create new critical points, we can assume
s has no local minima. Turning the procedure upside down, we can eliminate
local maxima the same way, achieving (4), and S is now Markov. [J

5.9 Definition. A Bennequin surface is a Markov surface for which no sec-
tion contains a simple closed curve.

5.10 Theorem (Bennequin). Let 3 be a closed braid in S*. Then 8 = 3S for
some Bennequin surface S. If F is a Seifert surface for 8 with x(F) = X(B)
then F is ambient isotopic, wilh B fixed, to a Bennequin surface.

ProOF. Let S be a Markov surface. If C C 65 '(¢) is a simple closed curve then
C does not bound on S (for if it did, s would have to have a local extremum
on the subsurface of S bounded by C), much less bound a disk on S. Yet if
C'is an innermost such curve in D?, it does bound a disk with interior disjoint
from S. So an incompressible Markov surface is a Bennequin surface. In par-
ticular, an incompressible Seifert surface (for instance, one of maximal Euler
characteristic for its boundary) is ambient isotopic, with boundary fixed, to
a Markov surface which is ipso facto Bennequin. [

5.11 Definition. Let S be a Markov surface, with boundary 3 a closed braid
on n strings. Each meridional disk ¢ ~'(s;) in SNA(d2 D) inherits an orientation
from S, which it passes on to its boundary (oriented counterclockwise), a cir-
cle (S x {expis;}) C 8! x S. If this orientation agrees with the orientation
by increasing # on S?, call the circle and the disk positive, otherwise negative:
so there are n + k positive and k negative disks. Let S* be the (essentially
unique) Markov surface obtained from S by removing from S each of its
negative disks ¢ ~ '(s)) together with a collar of d(¢ ~ (sj)) in 4£(3:D) on which
0s has no critical points (either interior to the collar or as restricted to its boun-
dary circles).

5.12 Theorem. Let x be a preband representation in Fy — 1 with each preband
x(i) embedded. Then the braided surface S(x) C S3 is a Bennequin surface
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with no negative disks. Up to isotopy through surfaces of the same sort, every
Bennequin surface with no negative disks is a braided surface S( X).

PRroOF. Via h, we can consider the prebraided disk L(x)C S* as a very
special Bennequin surface, containing a single (positive) meridional disk of
h(02D), and such that 65 has no critical points —so each section is a single
free arc. Then the preimage S(x) =P YZ(x)) in §* is manifestly a Benne-
quin surface with n positive disks (and no negative ones); the section OS'(ﬁ_( @)
is singular if and only if 05/, () passes through a critical value of P in D
then, as the branching of P is simple, the singular point of 05'(1{ y(?) is a crossing
of two transverse branches, i.e., ¢ is a saddle value for 03(;), and we have
derived as a bonus that the number of critical values of g, is the length
of x.

As to the converse, we prove (what appears to be) more than stated (see the
Remark following), namely, that up to isotopy through Bennequin surfaces
with no negative disks, every such Bennequin surface is S(x) for some pre-
band representation x in which each x(j) is an elementary embedded preband:
one of the n(n — 1) prebands x&5'= (XuXus+1...Xo- DX Ku. .. xo-1)" 1, 1 <
Su<gv<n-—1(so xu =X, is a standard generator).

In fact, by Constructions 4.9, 4.11, and 4.13, all S(x ), x a preband represen-
tation in F, - 1, meet A(92D) in precisely the same set of n positive meridional
disks, and these may be naturally numbered (cf. 3.3) from 1 to #n so that they
appear in that cyclic order and so that, for instance, S((x;)) has n — 1 com-
ponents, one of which contains disks j and j + 1. Let S be a given Bennequin
surface with no negative disks. By isotopy we may assume its z positive disks
are these 7 canonical disks. Let #j, 0 < #; < ... < #; be the critical values of
6s. The component of 65 (¢, containing the singular point has two boundary
points on 4S and two others on two of the # canonical positive disks, let them
be numbered u(j) and v(j) + 1, u(j) < v(j). Also, there is a sign e(j) = =1
naturally associated to the critical point of fs in the ¢;-section, determined not
just by the section but by local behavior on either side of it; the sign of the
critical point of S((x)) is +1. Put x(j) = X}, v(jy» X = (1), ..., x()). 1
claim that S is isotopic (by an isotopy through Bennequin surfaces, supported
in A(3:D)) to S(x). This claim is a refinement of the claim in 5.7, and like
that, is left to the reader to prove. (See also 5.22). [J

5.13 Remarks. A consequence of Theorem 5.12 is that there is a «retraction»,
call it x = x’, of the set of all embedded prebands onto its subset of elementary
embedded prebands, for which (p 1) LX) =(p" D .(x"); and this latter band is
always one of the bands 0&'= (040u+1, . - - » Ov-1)05 (Ouy - - . , 0w 1)~ ' which
were called embedded bands in [Rudolph 1]. In that paper’s construction of
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models of braided surfaces S(b) in S (as ribbon immersions), only these
bands —expressed as given as words in the standard generators— could be used
if double points were not to be created (essentially because not only the positive
disks, but also their collars in 4(d1D), were held fixed). The present construc-
tion, using surfaces S( x ) associated to preband representations, is thus at once
more precise and less géﬁeral, for not every ribbon-immersed surface called S(b)
in the earlier paper occurs as S(x ) in the current terminology (the point being
that S(x) is, as it were, p-equivariant). However, all embedded surfaces do
SO occur.

For n > 3 there are always non-elementary embedded prebands. One source

of many such (perhaps all?) is the following. Let f: D*—%D?* be an
autohomeomorphism fixing 7S ! pointwise and V setwise. Then f . 1S an
automorphism of the prebraid group F, - 1. If f, leaves invariant the represen-
tation on S, associated to p (equivalently, if f is covered by an
autohomeomorphism g of p~ 1(";DZ), then f, will carry any embedded pre-
band, in particular an elementary one, onto an embedded preband that will
generally not be elementary.

For example: with V, N, etc., as at the beginning of §3, write W;; for some
2-cell which is the union (not disjoint) of N}, N, and a small disk centered
at vo which is disjoint from V. Let o: W;;— Wj; be an autohomeomorphism
which is conjugate, via a homeomorphism of (W, {vi,v;}) with (2D?,
{—1,1}), to rexpy/—10— rexp~/ —1(6 + (2 — r)x). Then if j>i+ 1, the
two-fold composition f = ¢ 0 ¢ is such an fas described above, whileif j =i + 1,
the three-fold composition f = o 0 ¢ 0 g is. In the first case, from the standard
generators x; and x; are produced embedded prebands (xixj)xi(x:x;)” ' and
xixjxi !, respectively; in the second case we get (XiX;i + 1X)Xi + 1(XiXi + 1x:)) ~ ' and
(xixi+ 1)xi(xixi + 1)~ !; other generators aren’t touched.

It seems likely that further analysis of this situation would pay off. Perhaps
it would lead to a geometric derivation of the relations in the standard presen-
tation of the braid group. But we will not pursue the topic further at this time.

To continue our study of the connection between braided surfaces and Ben-
nequin surfaces, we must hark back to the braid groups.

5.14 Definition The usual injection i, » +r of the prebraid group F, - into
F,+k-1,k =0, takes the standard generator x; of F,_1(j=1,...,n— 1) to
the standard generator of the same name in F,.x-1. The usual injection
Un,n+k: Bn— Bn+ i likewise is defined on standard generators, taking o; € By
t0 0j€Bn+k (j=1,...,n—1), cf. 1.4. That ty,»+« is 2 homomorphism
follows from the fact that it actually is the homomorphism induced by such
a map of configuration spaces E, — An —>E;,l+k —An+k as {Z1,...,2n} >

n n
AT S le |zj], 2 + 2;, |Zil, ...k + ZIJ |zj| }. (But note the adhockery
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of this map, which in any case could never be chosen to be a complex
polynomial.) That u,, » + £ is injective is less evident. But that (and the fact that
it is a homomorphism) follows from the known presentations of the groups
(cf. [Birman]), so we take it for granted. It must be emphasized again,
however, that (for £ > 0) the usual injection is NOT an inclusion, for the do-
main and range are disjoint groups; nor is the injection canonical, which is
why I have named it merely «usual».

We also define F_; and Fy to be (distinct) 1-element groups, and o, «
and ug, x in the only possible way. Then for n,m, k > 0, always Un, n+k+m =
= Un+k,n+k+mO Un n+k and similarly with # for u. Also the canonical surjec-
tions F,_1— B, and the usual injections make up various commutative
squares.

Now, the notations i, » + k and i, » + ¢ are cumbersome. We intend to avoid
them, whenever practical, as follows.

5.15 Notation. If 8 € By, let B% = un, 4 £(8) € By + k. Similarly for prebraids.
Thus 0% is the identity of B (recall that o is the unique element of Bo), consis-
tent with the earlier notation 1.4. (We could also resolve the ambiguous nota-
tion for standard generators by a convention that, for n > 2, o,- 1 € Bn, thus
making the standard generators of B, carry the names o{"~?,...,¢{" 179,
ey 09 = 0,_;. We will not carry out this plan in this paper, however.)

Further, we denote the closure of 3% by 8%, rather than trying to stretch
the roof over the whole complex symbol. Not only is this kind to typographers,
but it is consistent with the following useful convention: if L is a link, then
L® denotes the split sum of L with k unknots (that is, the union of L with
the boundary of k& smooth disks, pairwise disjoint and disjoint from L-out of
the context of closed braids, this could also be denoted by L # O, adapting
the notation for boundary connected sum of pairs to the case of submanifolds
without boundary). In particular (and this is a bit of misfortune), 6 = ¢J is
the empty link, 6V is the unknot.

We amend our conventions in the case of prebraids: by £* we will denote
the criticized closure of the prebraid @, » - k(x) (without the critical points of
the covering, we couldn’t see any difference between the two prebraids),
where x € F,_1. So #@ # £ (the first is an n-string closed braid, the latter a
1-string closed braid).

Note that the consistency of the usual injections means that always
6(k)(m) - 6(k+m)_

5.16 Theorem. Let S be a Bennequin surface with boundary B, 8 € Bn, and k
negative disks. Then S* is a Bennequin surface with 3(S*) = f®.

Proof. Obvious. [
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5.17 Warning. The conclusion of 5.16 must be interpreted with care. Sup-
pose one has chosen a way to cut open 4(3:D) along a meridional disk, and
project it onto a rectangle, in such a way that dS projects onto a braid diagram
in the usual way. Thus the crossings in the diagram correspond to standard
generators (and their inverses) of B, (with some basepoint of the configura-
tion space implicit). Then, very likely, a(S*) will not project to (what you
think ought to be) a braid diagram for 3%. For the choice of projection (of
the solid cylinder onto a rectangle) imposes (by the conventions for reading
braid diagrams) an injection of B, into B, which is probably not u, »+ .
By moving the k «<new» points «behind and to the right of» the n «old» points
(at the top and bottom of the cylinder, and then straight all the way down)
—a move which can be effected by a diffeomorphism of D? (times the identity
on S')— the boundary of S * can, indeed, be made to look right. But general-
ly the standard, narrow collars of the negative disks on S* will be carried into
broad, flop: ones. (See 5.19, for an example.)

5.18 Theorem. Up to isotopy through Bennequin surfaces, every Bennequin
surface bounded by a closed n-string braid f is obtained from a braided sur-
face S(x), where x is an embedded preband representation in F + x -1 which
maps to B® in By, by attaching k collared negative disks to B — 8.

Proor. Immediate from 5.12 and 5.16. OO

5.19 Warning. 1t is not true that, if x is an embedded preband representa-
tion in Fy+x—1 mapping to B® € B, 4+, k > 1, then necessarily it is possible
to attach k collared negative disks to 8%’ — 8 in the complement of S(x),
to obtain a Bennequin surface for 3. Two distinct problems arise. a

First, if x is already the image by (the obvious map on preband representa-
tions associated to) the usual injection i, + m, » + x Of a preband representation
in Fn+m-1, for some 1 < m < k, then attaching collared negative disks to all
the components of 8% — 8 would produce k — m >1 2-spheres in the
resulting surface. (For instance, if x = (x12) in F3, then the obvious projec-
tion of dS(x) doesn’t look like 612, /¥ € uz,4(B2) C Ba, viz. 5.17; yet it is,
and attemptfng to attach two disks to the last two components brings trouble.)
Of course this could be handled by convention.

More seriously, there are cases like x = (x1, X1, X1 U xi Y in Fy, a preband
representation for the braid 0@ = 0" in B,. Here, each component of 6@
has non-zero linking number with a suitable (simple closed) curve on S(x ), so
no disk at all (let alone a collared negative disk) can be attached to S(x )_allong
either boundary component. B

Note, however, that the surface just constructed is (very) compressible. In
fact, we have the following converse to 5.18.
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5.20 Theorem. Let S(x) be an incompressible embedded braided surface
with boundary B®. Then there is a smoothly embedded surface S in S* with
boundary B which is the union along 8% — 8 of S(x) and k 2-disks, such
that the topless components of S are a Bennequin s?trface.

PRrOOF. Let us say that an oriented 2-disk G~ embedded in S is a floppily
collared negative disk if G = —G~, the same disk with opposite orientation,
is a Bennequin surface for a 1-string closed braid and G has only one (positive)
meridional disk of #(d.D) in it. It is clear that if we can find & floppily collared
negative disks, pairwise disjoint and with boundaries the k& components of
B% — B, and interiors disjoint from S(x), then (suitably smoothed along
B% _ B) the union of S(x) and these disks is such an S as we require.

We begin by finding F, a union of pairwise disjoint floppily collared
negative disks with 9F = 8% — 8 such that IntF is disjoint from 3 and
transverse to Int S( x). (For instance, one can realize S( x) so its boundary
really looks like 2% in a braid diagram, then take Fto be the union of obvious
collared, and a fortiori floppily collared, negative disks; naturally the
transversality is no problem.) We will modify the given F, staying in the class
of unions of k floppily collared negative disks, until Int FNS(x) = J, at
which point we will be done.

If Int FNS(x) # J, by transversality it is a union of simple closed curves.
Let C; be one of them which is «innermost» on F (that is, bounds a 2-cell in
F with inteyior disjoint from S(x)). By incompressibility, C; bounds a 2-cell
on S(x). Let C; be an innermost curve in this 2-cell (possible Cj itself). Then
C, is not necessarily innermost on F, but we don’t care. Let £ C S(x) and
E’ C Fbe the 2-cells bounded by C. I claim that if we remove a 2-cell s_lightly
larger than E' from F, and replace it by a 2-cell with the same boundary which
lies parallel and close to E in the complement of S(x), then the revised F is
still a union of pairwise disjoint floppily collared ne_gative disks with boun-
dary 8% — B. In fact, by the transversality of the intersection and property
(2) of the Markov surfaces S(x ) and —F, either £’ contains a negative disk of
—F, or it lies in A(3.D); since 9E’ = 0E = C;, consideration of linking
numbers shows that whichever alternative holds for E’ also holds for E. In
each case, we see that «replacing E’ by E» (as we essentially have done)
preserves the desired properties of F. The operation also, of course, decreases
the number of intersections of Int ' and S(x ). When this reaches zero we are
done. [

5.21 Remark. Theorems 5.12, 5.16, 5.18, and 5.20 in a sense reduce Benne-
quin surface theory to braided surface theory, and thence (via the calculus
alluded to in 4.18) to the algebra and combinatorics of band and preband
representations. It might, for instance, be possible to prove Bennequin’s Ine-
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quality (see the next section) purely within the context of braided surfaces,
though to date I have not succeeded in doing so.

An interesting practical question that arises when one considers Theorem
5.20 (and one which might have an answer of independent interest, given the
interest in incompressible surfaces among 3-manifold topologists) is, How can
one tell from x whether or not S(x) is incompressible?

5.22 Addendum. Here is a direct path from a Bennequin surface S C §3
without negative disks to a braided surface S(b) C D which is essentially a
push-in of S. (Presumably, with a suitable definition of «Bennequin ribbon-
immersed surface in S3» one could obtain all S( ) this way.) First, by isotopy,
arrange S so that in each critical section the ar—c-lengths of the four arms of
the singular component of S; C D? are of equal arc-length. Next, define r:
SNh(3:.D) — [1/2, 1] by requiring r|3S to be identically equal to 1, 7|(SNS* x S*)
to be identically 1/2, and r|A4 to be an affine function of arc-length from 4S
for A a component of any section S;. Clearly r is smooth and well-defined
(and takes the value 3/4 at the singular points of the critical sections). Map
SNA@31D) into (D> — Int3D?) x D* by sending a point x = h(exp it, w) to
(r(x) exp it, w). Then SNS' x S' maps to the union of  circles ; S* x {expis;},
and we extend our map to SNA(9.D) by sending x = A(z, exp is;) to (%, exp iSj).
Evidently, the map constructed embeds S in D with image a braided surface
S(b) of degree n, and h(3S(b)) = dS by construction.

§6. Markov’s Theorem, Bennequin’s Inequality, and some
conjectural generalizations

In this section I will state, without proof, two major results in the application
of braids to knot theory: the reader is referred to [Bennequin] for proofs of
both (or to [Birman] for Markov’s Theorem: however, the differential-
topological approach of [Bennequin] is perhaps closer to the spirit of the pre-
sent paper than the combinatorial-topological approach of [Birman]). I will
then discuss various generalizations, all conjectural, which are suggested when
one thinks in terms of braided surfaces.

6.1 Markov’s Theorem. Let 3 € By, v € B, be two braids such that the closed
braids B,%5 C §* are ambient isotopic in S*. Then there is a finite sequence
B(j) € Bugjy of braids, j=1,...,N with 3(1) =8, B(N) = v, such that for
eachj=1,...,N— 1, one of the following three cases holds:
(1) n(j +1)=n() and for some w(j)€ Bui) we have B(j+1)=
= w(HBUIW() s or,
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Q) n(j+1)=n()+1 and for e= +1 or e= —1, we have B(j + 1) =
= B()Pony; or,

B)n(j+ 1) =n()—1 and for e= +1 or e= —1, we have B(j) =
= B( + DD+ 1.

Conversely, if two braids are joined by such a sequence, then their closures
are of the same ambient isotopy type. [

6.2 Definition. In case (1) [resp., (2); (3)] of Markov’s Theorem, we say that
B(j + 1) is obtained from 3(j) by a Markov move of type (1) with conjugator
w [resp., of type (2°); of type (39)].

6.3 Bennequin’s Inequality. Let 3 € B,. Let e(B) € Z denote its exponent sum
(see Remark 6.4), X(B) the maximum Euler characteristic of a Seifert surface
for B (cf. 5.2). Then we have

IB(B): n — |e(B)| = X(B)

(which I will call «Bennequin’s Inequality for B»). [

6.4 Remark Recall that e: B,— Z is abelianization, normalized to send a
positive band to +1. Consequently |e(g)| is certainly a lower bound for the
number of bands needed to represent 3 in B, so n — |e()| is an upper bound
for the Euler characteristic of a braided surface (in D) with boundary §.

6.5 Definition. A slice surface in D* is a compact, topless, smooth 2-mani-
fold-with-boundary properly embedded in D*. If L is a smooth, oriented link
in S, define invariants X,(L), X;(L) by putting X,(L) = max {x(S): S ¢ D*
is an oriented ribbon surface with 4S = L}, X;L = max {x(S): S C D* is an
oriented slice surface with S = L}. Then (since any Seifert surface in S° is,
in particular, a ribbon-immersed surface without singularities, and can thus be
pushed into D* to become a ribbon; and any ribbon surface is slice) we have,
for every L, X(L) < X;(L) < Xs(L). It is well-known that the first inequality
can be strict (existence of non-trivial «ribbon knots», e.g., 38((o1, 030105 >)));
it is an open question whether the second inequality is ever strict, even in the
case Xs(L) =1, L a knot.

6.6 Ribbon-Bennequin Conjecture. For every n and every 3 € B,, we have
rIB@B): n— |e(®)| = X (B).

(which I will call the «ribbon-Bennequin inequality for (»).
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6.7 Slice-Bennequin Conjecture. For every n and every (3 € B,, we have
sIB@B): n — |e(B)| = Xs(B)

(which I will call the «slice-Bennequin inequality for (3»).

6.8 Remarks. (1) Of course, for every 3, sIB(3) — rIB(3) — IB(().

(2) There are various 3 for which s/B(B) is known to hold with equality. For
example, the various positive braids of € By (k > 1), (0102)¥ € Bs(1 < k < 5),
0¥ *Y(02010302)% € By all have «total signature, i.e., positive-definite Siefert
form (they occur as links of so-called «simple» singularities of complex plane
curves), so the embedded braided surfaces S((o1, . . ., 1)), etc., corresponding
to the given braid words (read as band representations), of Euler characteristic
n — e(B) in each case, actually are of maximal Euler characteristic among all
slice surfaces for the closed braids.

(3) I know of no counterexample to the Slice-Bennequin Conjecture. On
the other hand, suppose one defines a topological slice surface in D* to be a
compact, topless 2-manifold with boundary properly embedded in D* which,
though not necessarily smooth, has a neighborhood in D* which is homeomor-
phic to the product of the surface and Int D?. Then (using a deep result of
[Freedman] on knots with Alexander polynomial 1) I have shown that the
natural «topological-slice-Bennequin Conjecture» is false: for every n > 5,
there are braids 8 € B, such that 8 bounds some topological slice surface of
Euler characteristic strictly greater than n — ]e(B)[, cf. [Rudolph 6]. (Though
not remarked in that paper, it is in fact the case that «many» such braids exist
—e.g., any positive braid with «summit power» at least 2, cf. [Birman]). Of
course, such a topological slice surface must be expected (if it is not
smoothable) to have horrible behavior, somewhere, with respect to those
smooth functions (N, for the round ball D*; pr;, for the bidisk D) in terms
of which we have gained some understanding of ribbon surfaces, braided sur-
faces, and even (as we shall shortly see) smooth slice surfaces.

6.9 Definition. Let S C D* be a compact, smoothly embedded 2-manifold-
with-boundary with 4S = SNS? (but not necessarily topless), in general posi-
tion with respect to the squared-norm function N. Let the Morse function N|S
have exactly m > 0 local maxima in Int S, and let Gy, . . . , G be disjoint clos-
ed smooth 2-disks embedded in Int S such that N|G; is constant on dG; and
has a single critical point in Int G;, a local maximum, j = 1, ..., m. There is
an isotopy of S in C? which fixes the points of S outside the G; and replaces

m m
SbyS'=(S - 'U1 GJ~>U<'U1 G}), where Gj(j =1, ..., m)is a disk on which
J= J=

N|Gj has a single interior critical point, a local maximum with value greater
than 2 (the value of N on §3). Let S™ denote S'ND*.
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By construction, S is a ribbon-embedded surface in D*, and 3(S™) =
= (35)™ (Notation 5.15), so we may unambiguously write S“. It may be
seen that §® is well-defined up to isotopy. We call S the decapitation of S.

More generally, with S as above, let g > m. By a small isotopy, S may be
perturbed to a surface S, with N|S; Morse, having 2(g — m) more critical
points than N|S in pairs of cancelling saddlepoints and local maxima. (If S
is connected, S, is essentially well-defined; in general, one should specify the
partition of the ¢ new maxima among the components.) We let S denote
S,‘,"). If, in particular, S is ribbon-embedded and g > 0, a surface S@ will be
called the result of punching q holes in S.

We use the smoothing 4 to transfer all these notions and notations to the
bidisk.

6.10 Example. Let b be a band representation in B,. Then (extending Nota-
tion 5.15) by b @ we denote the band representation in By 4, with b@(j) =
=b(H?, j=1,... ,I(b). Of course B(b ) = B(b)“?. Denote concatena-
tion of lists by C (e.g., (A1, A2)C(As, As) = (A1, A2, A3, As)). Then for g > 0
one easily sees that S(b )@ (rather, the particular type of S( )@ obtained by
punching all g holes in a certain single component of S(b)) can be braided as
S(bDPC(On, 0n Y, 0ns 15,0041, v+ Onta-1,n+q-1)). (f S(b) isn’t connected,
the various types of S(5)@ could all be represented similarly, using suitable
embedded bands in pla?:e of standard generators.)

6.11 Proposition. Let 3 C dD be a closed braid. If S C D* is an oriented
slice surface with boundary h(B), then there is some q >0 and some band
representation b of B9 such that h(S(b)) = S9P. (In words: any oriented
slice surface fo_r_ a closed braid can have holes punched in it until it can
be realized as a braided surface for the original closed braid with trivial
strings added.)

ProoE. By Theorem 2.8 (proved in [Rudolph 1]), the ribbon surface S™ ob-
tained by decapitating S is isotopic to a braided surface A(S(c)), for some
band representation ¢ . Now, as an oriented link in aD, 0S( ¢ )Ts of the same
isotopy type as B“. Then the proposition is a consequence of the following
lemma (take g = m + k, k as provided by the lemma). []

6.12 Lemma. Let o and 6 be braids with & ambient isotopic to §. Then there
is an integer k > 0 such that, for any band representation d of 6, there is a
band representation a of o™ with S(a) ambient isotopic to S(d)®.

Proor. Let d be a band representation of 4.
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If 6 is obtained from o by a Markov move of type (1) with conjugator w,
then w™! d w (in the obvious sense) will do for g, with k£ = 0. If é is obtained
from « by a Markov move of type (2°), 6 = aPo§(« € By), then let k = 1 and
put @ = dC(on ). If 6 is obtained from « by a Markov move of type (3°),
o = 8W05(8 € By), againlet k = 0, a = dVC(0%). Each time, S( &) is isotopic
to S(d)®.

For | general o and 6 with isotopic closures, Markov’s Theorem 6.1 says that
a finite sequence of Markov moves joins o and . We see that the lemma is
true, with k£ the minimum number (over all such sequences) of moves of type
(2°) required. [

6.13 Remark. Proposition 6.11 is a strong form of the observation made in
the final paragraph of the body of [Rudolph 1], pp. 30-31. It allows a partial
answer (Theorem 6.15) to the question raised there, whether the method of
band representations can give any information about «slice genus» (essentially,
X;s). It also suggests a method of attack on the problem of whether every slice
knot is a ribbon knot, or more generally, whether X; = X;: namely, find very
well controlled braided surfaces isotopic to arbitrary oriented slice surfaces
with holes punched in them; then manipulate these surfaces until, along the
lines of 5.20, the holes can be filled back in to produce ribbon surfaces. The
problem is to find the right manipulations... .

Similarly, if we apply 6.11 to the empty closed braid, we see that in some
sense the whole theory of smooth, oriented, compact surfaces in D* without
boundary «reduces» to the study of band representations of the trivial braids
0("), k=1,2,3,...; however it remains to be seen whether this «reduction»
is useful.

6.14 Examples. Let 8 = o305 ‘0305 ‘o1 20201 ‘02 € Bs. This braid, found by
[Morton], has closure an unknot, yet 3 is the boundary of no braided disk in
D. There is, of course, a sequence of Markov moves connecting 3 € B4 to
oY € B, and [Morton] gives an explicit and straightforward such sequence in
which there figures a single move of type (2). Then Lemma 6.12 says that there
must be a once-punctured braided disk (i.e., braided annulus) in D with boun-
dary 8. In fact, one discovers the quite complicated surface S( ), where b
is the band representation in Bs given by w(os, 05 ', 03 !, uaiu = Yw ™ 'C(os D),
where w = 0304 ‘03 lo103 and u = ¢35 20%. This can be simplified somewhat by
the calculus of slides, but (to date) I have not succeeded in putting into a nice
form. Note that this braided annulus certainly does not appear to be the push-
in to D* of an embedded braided annulus S( x)in S* (though a calculation of
m1(D* — §( b)), along the lines of [Rudolph T], yields Z and so does not rule
out the possibility). Since 8 is an unknot, certainly Theorem 5.18 says that
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there is an embedded k-punctured disk S(x) C S with boundary 8% for
some k > 1; but the difficulties of putting the theorem on a constructive, prac-
tical, footing seem insurmountable.

In [Rudolph 1], Example 4.3 is a braided annulus of degree 4 which is the
decapitation of a knotted 2-sphere (the 2-twist spun trefoil). The reader is urged
to find a band representation of some 0o’ which yields this annulus with k — 2
more punctures.

6.15. There is an interesting consequence of Proposition 6.11. To state it con-
veniently, we recall that a braid in By is quasipositive [Rudolph 1, 2, 3, 5] if
it is a product of positive bands. The quasipositive braids in B, form a
subsemigroup, strictly larger (for » > 3) than the subsemigroup of positive
braids (a braid is positive if it is a product of standard generators). The pro-
perty of being (quasi)positive is preserved by the usual injections. A par-
ticularly important positive braid in B, is (6102 . . . 0n—1)"; it is usually called
A? (cf. [Birman]), but I will call it V here, or V,, for greater precision. It is easy
to prove the following.

Lemma. (1) For every n, for every (3 € By, there is an integer Q > 0 such that
the product 8V ¢ is quasipositive, and an integer P > Q such that the product
BVE is positive. (2) For every n, for every quasipositive = € By, there is an in-
teger k = 0 and a factorization Vs x = 7® in By 4 x With x quasipositive. (3)
The closure ¥, is the link of n consistently oriented fibres of the Hopf fibra-
tion S>> S, e.g., the intersection of S° C C? with {(z, w): z¥ = w"}. O

6.16 Proposition. The slice-Bennequin Conjecture 6.7 is true if (and only if)
the Slice-Bennequin inequality sIB(3) holds for every quasipositive braid 3, if
(and only if) sIB(V,) holds for all sufficiently large n.

Proor. We show that, starting from any counterexample to the conjecture,

one can produce n such that V, is a counterexample.
Thus, assume sIB(B) fails for some 8 € By, that is, Xs(8) > n — |e(8)|. Then

also sIB(B3 ") fails, so we can assume that e(3) is non-negative. Let S be a slice
surface for 3, oriented, with x(S) = X;(8). By Proposition 6.11, there is some
g > 0 and a band representation b of 8 in B, ., with S(b) isotopic to S,
By Lemma 6.14, there is Q > 0 ‘with Bv¢ e B, quasipositi_ve. Let ¢ be the
band representation of (3V$)@ which is b followed by Qn repetitions of the
braid word (band representation with each band a standard generator) (o1, 02,

.., 0n-1)@. Then S(¢) is S(b) with n(n — 1)Q extra 1-handles attached.
Also, S(c¢) is isotopic to F@ for some F, a slice surface with boundary the
closure of BVZ. 1 claim that sIB(BVY) fails: for we have Xi((3V2)) = x(F) =
= g + X(S(c)) = g + X(5(b)) — n(n — 1)Q = X(S) — n(n — 1)Q = S:(B) — n(n -
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-DO>n—le)| —nn-1)Q=n-e@B) —nn—1)Q=n-—eBVY =
=n-— |e(BV,?)|. We have shown that if there is a counterexample in B,, then
there is a quasipositive counterexample in B,.

But using (2) of Lemma 6.15, we see that if there is a quasipositive
counterexample 7 € By, then for some k there is a factorization V, . x = 7®x
in B, .k with x quasipositive. The same trick as was just used (attaching
positive bands —in this case, those of a quasipositive band representation of
k in B,+x— to a counterexamplifying slice surface for #) shows that
SIB(Vn+ k) doesn’t hold.

Of course, the «only if» statements are trivial. [

6.17 Corollary. If the slice-Bennequin conjecture is false, then so is the
«Thom Conjecture».

Proor. The so-called «Thom Conjecture» asserts that a non-singular com-
plex algebraic curve in CIP* has the minimal possible genus among all
smoothly embedded 2-manifolds in its homology class in Hx(CP?; Z). (Cf.
[Boileau-Weber]). If the slice-Bennequin conjecture is false, let S C D* be a
slice surface of unexpectedly high Euler characteristic for the d-component
Hopf link V4. Using (3) of Lemma 6.15, one can replace, on an algebraic curve
{(z, w): 2% = w? — €}, e sufficiently small and nonzero, a piece bounded by
this link (and having the expected Euler characteristic) by S. The resulting
smooth «surgered» surface is homologous to the curve and has smaller
genus. [

6.18 Remark. The corollary (and its proof) may be summarized in the slogan,
«If you can’t slice Bennequin, you can surger Thom».

Note that the Thom Conjecture might be false, but not by surgery; then
there would be no reason to conclude that the slice-Bennequin conjecture is
false too.

Index of notations

Ak, Ak, A% Double arcs of a ribbon immersion (Def. 2.10).

Bu(n = 0) Braid group on # strings (Bo = {0}) (Def. 1.3).

b; b(j) A band representation; the j™ band in b (Def. 1.12).
5_(2); 5’(2) The braid of b; the closed braid of b fDef. 1.12).

Bg®; g The usual injection of 3 € B, into By + «; the closure of 3%,

which is the split sum of 8 and 6% (Def. 5.14, Notation
5.15).



er
h; h(9:D)

ns
I 11

i(b); (x)

N

Nj; N

0]

0;0® k>0
P

pip P

@,

Qj

R(7,1)

rF
p(x);6(x)

S+
S(2):S(x)

SpECIAL POSITIONS FOR SURFACES BOUNDED BY CLOSED Braips 131

The unit bidisk; the bidisk of biradius (1, 7); the round ball
of radius v2, all in C* (Def. 1.1).

The unit disk in C; the disk of radius 7 in C; the disk {exp
it} x D? (Definitions 1.1, 5.2).

The discriminant locus in E, (Ao = J); any A, (Def. 1.1).
Half the boundary of D (a solid torus) (Def. 1.1).
Complex affine space of monic polynomials in 7 of degree
n (Eo = {0}), identified with the n-fold symmetric product
of C (Def. 1.1).

Exponent sum of a braid (Rmk. 6.4).

The prebraid group, a free group of rank » — 1 (Fp and
F_; are distinct trivial groups) (Def. 3.0).

Graph (of a multi-valued function) (Def. 1.5).

A fixed smoothing of the bidisk boundary; a fixed solid
torus in S> (Definitions 1.1, 5.2)

A height for the tongue T (Construction 4.5).

An arc used to define a standard generator of the prebraid
group (Def. 3.0); a related arc (after Ex. 3.3); the union of
the 7;.

Any arc (the end-to-end union of Jy,...,J,-1) in C used
to define a set of «standard generators» of the braid group
B, (for example, I) (Def. 3.4).

Length of a band representation b or preband representa-
tion x (Defs. 1.12, 4.7). -

The sauared-norm function (Def. 1.1)

Certain 2-cells containing 7; and ; (Def. 3.0).

The unknot (passim).

The identity of Bo; the identity of Bx (Convention 1.4).
A certain simple branched cover 3 — §3 (Def. 4.9).

A certain simple branched cover of C by C, given by a com-
plex polynomial of degree »; the inverse of p, as an n-valued
map, or a map C — E,; an approximation to p which is a
monomial near o (Props. 3.1 and 3.8, Construction 4.5).
The surjection of F, — ; onto B, induced by p~ ! (Prop. 3.8).
A certain 2-cell containing J; C J (Def. 3.4).

A geometric preband (Construction 4.5).

Radii related to p, p (Construction 4.9).

The prebraid, resp., closed prebraid, of a preband
representation x (Def. 4.7).

A Markov surface with its negative disks removed.

The braided surface in D or D* constructed from a band
representation b (Prop. 1.13); the braided surface in s3
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constructed from a preband representation x (Construc-
tion 4.14). B

The round sphere of radius V2 (Def. 1.1).

The symmetric group on n letters (Def. 1.1).

The prebraided disk in S constructed from a preband
representation x (Def. 4.13).

The standard _g_enerators G=1,...,n—=1) of B, (Def.
3.4); the embedded bands (1 Su <v<n-1)in B, (Rmk.
5.13).

The tongue (Construction 4.5).

A tadpole (Def. 4.2).

The head of the tadpole 7 (Def. 4.2).

The usual injection of F,, -, into F,_-1, or of B,, into B,
(m = n) (Def. 5.14).

The critical values of p (Prop. 3.1).

The basepoint of F,—1; the elements of V (Def. 3.0).
The maximal Euler characteristic of a Seifert surface for
the link L (Notation 5.2).

the ribbon and slice analogues of X (Def. 6.5).

The standard generators of F,_; (Def. 3.0).

A preband representation; the i preband in x (Def. 4.7).
The elementary embedded prebands (Thm. 5712).

The angular coordinate in 4(3.D) (Notation 5.2).

The angular coordinate in A(d1D); its restriction to the part
of a surface S in A(3.D).

Operation of closure applied to a braid or prebraid (Defs.
1.12, 4.7).

When applied to a braid, shorthand for a usual injection;
when applied to a link, split sum with a trivial link of k&
unknotted components (Notation 5.15).

An element of B, usually denoted A2 (Def. 6.14).

When a space is given explicitly as a Cartesian product of two or more fac-
tors, the notation pr; denotes projection onto the i*" factor. The restriction of
a mapping f to a subset M of its domain is denoted f|M.
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