Revista Matemática Iberoamericana Vol. 2, n.ºs 1 y 2, 1986

The Dirichlet Problem for the Degenerate Monge-Ampère Equation

L. Caffarelli L. Nirenberg J. Spruck Dedicated to Alberto Calderón on his 65th birthday

Let Ω be a bounded convex domain in \mathbb{R}^n with smooth, strictly convex boundary $\partial\Omega$, i.e. the principal curvatures of $\partial\Omega$ are all positive. We study the problem of finding a convex function u in Ω such that

(1)
$$\det (u_{ij}) = 0 \quad \text{in} \quad \Omega$$

(2)
$$u = \phi$$
 given on $\partial \Omega$

Here $u_i = \partial u / \partial x_i$, $u_{ij} = \partial^2 u / \partial x_i \partial x_j$ etc. The existence of a smooth solution in $\overline{\Omega}$ satisfying (2) of the corresponding elliptic problem

(1)'
$$\det(u_{ij}) = \psi > 0 \quad \text{in} \quad \overline{\Omega}$$

has been shown recently by N. V. Krylov [5] and the authors [3] in case ψ and ϕ are sufficiently smooth. It is of interest to treat the degenerate problem (1), (2). The corresponding question for degenerate complex Monge-Ampère equations is also of interest: find a plurisubharmonic function w in a bounded strictly pseudoconvex domain Ω in \mathbb{C}^n satisfying

(3)
$$\det(w_{z_i\bar{z}_i}) = 0 \quad \text{in} \quad \Omega$$

and (2). In fact in [4], with J. J. Kohn, we treated the equation

(3)'
$$\det(w_{z_i\bar{z}_k}) = \psi \ge 0 \quad \text{in} \quad \Omega$$

and showed that there is a plurisubharmonic solution w belonging to $C^{1,1}(\overline{\Omega})$ provided $\psi \neq 0$, ψ satisfies some other conditions, and ψ and ϕ are sufficiently

smooth. See [4] for further references on (3)', (2). E. Bedford and J. E. Fornaess [1] presented an example with ψ satisfying all our conditions and for which the (unique) solution of (1)' is not in $C^2(\Omega)$.

Several authors have studied the Dirichlet problem (1), (2): J. Rauch and B. A. Taylor [6], Bedford and Taylor [2] as well as [1], and, most recently, N. S. Trudinger and J. I. F. Urbas [7]. The unique solution of (1), (2) is given by

(4)
$$u(x) = \max \{ v(x) \mid v \in C(\overline{\Omega}), v \text{ convex and } v \leq \phi \text{ on } \partial\Omega \},\$$

and the papers cited study the regularity of u. The best regularity result is that in [7] where it is shown that if $\partial \Omega \in C^{1,1}$ and $\phi \in C^{1,1}(\partial \Omega)$ then the function u belongs to $C^{0,1}(\overline{\Omega})$ and to $C^{1,1}$ in every compact subset of Ω . In this paper we prove an extension up to the boundary of this regularity in case ϕ is sufficiently smooth.

Theorem. Assume $\partial\Omega$ is in $C^{3,1}$, and $\phi \in C^{3,1}(\partial\Omega)$; then the function u defined by (4) is of class $C^{1,1}(\overline{\Omega})$.

We do not know if a corresponding estimate holds for the solution w of (3), (2) —which is characterized by

(4)' $w(z) = \max \{ v(z) \mid v \in C(\overline{\Omega}), v \text{ plurisubharmonic in } \Omega \text{ and } v \leq \phi \text{ on } \partial \Omega \}.$

The following examples show that the theorem is optimal; here Ω is the unit disc centred at the origin in the (x, y) plane.

Ex. 1. The function

$$u = (1 + y)^{2-\epsilon}, \quad 0 < \epsilon \text{ small}$$

satisfies (1) and (2) with

$$\phi \in C^{3, 1-2\epsilon}(\partial \Omega).$$

The function u is of class $C^{1,1-\epsilon}$ but not $C^{1,1}$ in $\overline{\Omega}$.

The same *u* shows that if we flatten $\partial\Omega$ at (0, -1) to make the curvature of $\partial\Omega$ vanish here to high order, ϕ may be very smooth while *u* is not in $C^{1,\delta}(\overline{\Omega})$ for $\delta > 1 - \epsilon$.

Ex. 2. (This is due to John Urbas). Let

$$\phi(y) \equiv \left(y^2 - \frac{1}{4}\right)^2$$

this is convex in $y > \frac{1}{2}$. It is easily verified that the function u defined by (4) satisfies the conditions in Ω : $u \equiv 0$ in the inscribed rectangle in Ω bounded on top and bottom by |y| = 1/2, and $u \equiv \phi(y)$ above the rectangle.

Here $\phi \in C^{\infty}(\partial \Omega)$ but *u* is not in C^2 near $(0, \frac{1}{2})$.

In [5], [3], a priori estimates are established for the C^2 norms of solutions of (1)', (2). It seems natural to try to establish such estimates (independent of ϵ for $0 < \epsilon \le 1$) of convex solutions of, say,

(1)_{$$\epsilon$$} det (u_{ii}) = ϵ in Ω

satisfying (2). However we have not done this. Instead we work directly with the characterization (4), and this paper is quite independent of [3].

Section 1. Beginning of proof

To prove the theorem we will establish the following estimate: there is constant A depending on Ω and the $C^{3,1}$ norm of ϕ such that

(5)
$$|u(y) - u(x) - (y - x) \cdot \nabla u(x)| \leq A|x - y|^2$$

holds for every pair of points x, y in Ω . It is easy to see that (5) then yields the conclusion of the Theorem. We have, namely, to show that for some constant B depending only on Ω and on A,

(6)
$$|\nabla u(x) - \nabla u(y)| \leq B|x - y|$$
 for all $x, y \in \Omega$.

Observe first that there are fixed positive numbers ϵ , δ depending only on Ω such that for every $y \in \Omega$, Ω contains a truncated cone

$$K(y) = \{z \neq y \mid |y - z| < \epsilon, \text{ and the angle } (z - y) \text{ makes} \\ \text{with some unit vector} \quad \xi(y) \text{ is less than } \delta \}.$$

It follows that there is a positive number α depending only on δ (and so only on Ω) such that for any vector $\eta \neq 0$ there is a point z in K(y) such that

$$|(z-y)\cdot\eta| \ge lpha |z-y|\cdot |\eta|.$$

Clearly there is such a z in K(y) with |z - y| = any positive number $t < \epsilon$.

To establish (6), since by [6] and [7] we have a bound $|\nabla u| \leq \text{constant}$, we may suppose $|x - y| < \epsilon$ (the ϵ determined above). After subtraction of an affine function we may assume

$$u(x)=|\nabla u(x)|=0,$$

and we have then to show

(6)'
$$|\nabla u(y)| \leq B|x-y|$$
 if $|x-y| < \epsilon$.

By (5), we have for every $z \in \Omega$,

$$|u(z)| \leq A|z-x|^2$$

and

$$|u(z) - u(y) - (z - y) \cdot \nabla u(y)| \leq A |z - y|^2$$

and of course

$$|u(y)| \leq A|y-x|^2.$$

Hence

(7)
$$|(z-y) \cdot \nabla u(y)| \leq A(|z-x|^2 + |z-y|^2 + |y-x|^2)$$

Using what we have asserted above, we may choose z in Ω with $|z - y| = |x - y| < \epsilon$ and such that

$$|(z-y)\cdot\nabla u(y)| \ge \alpha |z-y|\cdot |\nabla u(y)|.$$

(for we may suppose $\nabla u(y) \neq 0$). Combining this with (7) we obtain

$$\alpha |x-y| \cdot |\nabla u(y)| \leq 6A |x-y|^2,$$

i.e., (6)', with $B = 6A/\alpha$.

We will derive (5) from the following local form, the heart of our proof:

Proposition. There is a constant C depending only on Ω and the $C^{3,1}$ norm of ϕ , such that for every point x^0 in Ω , $\exists \epsilon(x^0) > 0$ so that for every x in Ω with $|x - x^0| \leq \epsilon(x^0)$, we have

(8)
$$|u(x) - u(x^0) - (x - x^0) \cdot \nabla u(x^0)| \leq C|x - x^0|^2.$$

We claim that the proposition yields (5) with any constant A greater than C (and hence in the limit for A = C). Fix a constant A > C. If (5) does not hold, there are points x, y in Ω such that

$$|u(y) - u(x) - (y - x) \cdot \nabla u(x)| > A|x - y|^2.$$

By (8) there is a closest point z in $\overline{\Omega}$ to x such that

$$|u(z) - u(x) - (z - x) \cdot \nabla u(x)| = A|z - x|^2.$$

On the closed segment L joining x to z consider the function

 $f(y) = A|y - x|^2 - [u(y) - u(x) - (y - x) \cdot \nabla u(x)].$

By (8), this is positive for y near x, $y \neq x$, but it is zero at x and z. So f achieves a positive maximum at some point w in the interior of L. At w the second difference quotient

(9)
$$\Delta_h^2 f = f(w + h(z - x)) + f(w - h(z - x)) - 2f(w) \le 0$$
 for $|h|$ small.

But

$$\Delta_h^2 f = 2Ah^2 |z - x|^2 - [u(w + h(z - x))] + u[w - h(z - x)) - 2u(w)]$$

and by (8) with x^0 replaced by w, the expression in the square bracket satisfies

$$|[]| \leq 2Ch^2|z-x|^2 \text{ for } |h| \text{ small.}$$

Thus

$$\Delta_h^2 f \ge 2(A-C)h^2|z-x|^2 \quad \text{for} \quad |h| \quad \text{small},$$

contradicting (9). \Box

To complete the proof of the theorem we have to prove the Proposition. First some preliminary simple lemmas.

Lemma 1. Let S be a straight segment with endpoints on $\partial\Omega$. Suppose one of these is the origin and that S makes an angle $\pi/2 - \alpha$ with the interior normal to $\partial\Omega$ there, $0 < \alpha$ small. Then length of $S = 0(\alpha)$.

PROOF. We may assume the positive x_n axis is interior normal to $\partial\Omega$ at the origin and that S is of the form

 $x_n = \beta x_1, \qquad 0 \leqslant x_1 \leqslant t, \qquad \beta = \tan \alpha, \qquad x_2 = \cdots = x_{n-1} = 0.$

At the other end point of S we have

$$x_n = c_0 t^2 + O(|t|^3) = \beta t$$
,

 $c \ge c_0$ a fixed positive constant. It follows that

$$t = O(\beta) = O(\alpha)$$

and also $x_n = O(\alpha^2)$. \Box

In the following lemma, u is the function defined by (4).

Lemma 2. Let x^0 be any point in Ω . Subtracting from u a linear plane of support there we may suppose

$$u \ge 0$$
, $u(x^0) = 0$.

Then x^0 is a convex combination of (n + 1) points x^1, \ldots, x^{n+1} in $\partial \Omega$ with $u(x^i) = 0$ for $i = 1, \ldots, n+1$.

PROOF. By Caratheodory's theorem it suffices to show that x^0 is in the convex hull of

$$S = \{x \in \partial \Omega \mid u(x) = 0\}.$$

If not, there is a hyperplane separating them; i.e. every point x in S satisfies (after rotation and traslation of coordinates)

$$x_n < -\epsilon < \epsilon < x_n^0.$$

Thus at points on $\partial\Omega$ where $x_n \ge 0$ we have $u \ge a > 0$ for some positive constant a. But then the function

$$v = \delta x_n$$
 for $0 < \delta$ small

satisfies

$$v \leq u$$
 on $\partial \Omega$.

Consequently, by (4), $u(x^0) \ge v(x^0) > \delta \epsilon$ —contradicting the fact that $u(x^0) = 0$. \Box

Section 2. Proof of the Proposition

We will say that a constant is under control if it depends only on Ω and the $C^{3,1}$ norm of ϕ . Fix $x^0 \in \Omega$. After subtraction of an affine function we may suppose $u \ge 0$, $u(x^0) = 0$. According to Lemma 2, x^0 lies in a *n*-dimensional simplex S with vertices on $\partial\Omega$, and on which $u \equiv 0$. It may be that x^0 lies in a lower, say k, dimensional simplex with this property. Using induction on k we will prove (8).

(i) Postponing the case k = 1, suppose we have proved the result for all x^0 lying in any (k - 1)-dimensional simplex with the stated properties, and with constant $C = C_{k-1}$ under control. We wish to prove it for x^0 in such a k-dimensional simplex S with some constant C_k also under control. Let x^1 be the closest point to x^0 on any (k - 1)-dimensional face of S. Then $y^0 = 2x^0 - 1$

 $-x^1$ lies in S. By induction, in the ball B (around x^1 with radius $\epsilon(x^1)$, we have

$$|u(x)| \leq C_{k-1}|x-x^1|^2$$

It follows by convexity of u (recall $u(y^0) = 0$) that in the ball around x^0 with radius $\epsilon(x^0) := \frac{1}{2}\epsilon(x^1)$

$$|u(x)| \leq 2C_{k-1}|x-x^0|^2.$$

Thus we have established (8) with a constant $C_k = 2C_{k-1}$.

Consequently (8) holds for any x^0 in Ω with

$$C = 2^{n-1}C_1$$

and the proof is finished —once we have treated the case k = 1.

(ii) Turning to that case, we suppose x^0 lies in a segment S with end points x^1, x^2 on $\partial\Omega$, on which u = 0, and that $u \ge 0$ in Ω . Of the two end points, suppose that x^2 is the closer to x^0 . We may suppose $x^2 = 0$ and that the positive x_n -axis is interior normal to $\partial\Omega$ there. In addition we may suppose $x^0 = (x_1^0, 0, \ldots, 0, x_n^0)$ with $x_1^0 \ge 0, x_n^0 = x_1^0 \tan \alpha, 0 < \alpha \le \frac{\pi}{2}$, i.e., S makes angle $\frac{\pi}{2} - \alpha$ with the interior normal to $\partial\Omega$ at 0.

By Lemma 1,

$$(10) |x1| = O(\alpha).$$

We will distinguish two cases

 $\alpha \leq \alpha_0$, a positive small constant to be chosen, $\alpha > \alpha_0$.

Consider first the case $\alpha \leq \alpha_0$ small. We have $x^1 = (x_1^1, 0, \dots, 0, x_1^1 \tan \alpha)$. The orthogonal projection on the plane $x_n = 0$ of the segment joining the origin to x^1 is the segment L on the x_1 axis from the origin to $(x_1^1, 0, \dots, 0)$. If we think of the boundary values ϕ near 0 as a nonnegative function of (x_1, \dots, x_{n-1}) , then at the end points of the segment L we have $\phi = 0$ and hence $\phi_1 = 0$, and $\phi_{11} \ge 0$ there. It follows that

(11)
$$\int_L \phi_{11} \, dx_1 = 0.$$

Hence ϕ_{11} has an interior minimum in *L*, where necessarily $\phi_{111} = 0$. Consequently on *L*, $|\phi_{111}| \leq \text{constant} \cdot x_1^1$; here, at last, is where we use the fact that the $C^{3,1}$ norm of ϕ is finite. By (10), we have $|\phi_{111}| \leq \text{constant} \cdot \alpha$, and since ϕ_{11} necessarily vanishes somewhere on *L*, see (11), it follows that

$$|\phi_{11}(0)| \leqslant A\alpha^2$$

with A under control.

For other second derivatives of ϕ at the origin we have

$$(13) |\phi_{ij}(0)| \leq A$$

while from (12) it follows that

(14)
$$|\phi_{1\beta}(0)| \leq A\alpha, \quad 1 < \beta \leq n-1,$$

since $\phi \ge 0$ and, hence, $\sum \phi_{ij}(0)x_ix_j \ge 0$.

Consider now a ball B in Ω with centre x^0 and radius $\epsilon \leq \alpha^3$. Let Γ be the cone with vertex x^1 generated by B and set $K = \partial \Omega \cap \Gamma$; recall that $|x^1 - x^0| \geq |x^0|$. For $\alpha \leq \alpha_0$ sufficiently small, depending only on Ω , it is not difficult to verify that for ϵ sufficiently small (depending possibly on the point x^0), the orthogonal projection of K onto the plane $x_n = 0$ is contained in an ellipsoid with axes

$$C\frac{\epsilon}{\alpha}$$
 in the x_1 -direction, $C\epsilon$ in the other directions,

for a fixed constant C depending only on Ω . Let us now fix such α_0 .

For any point x in the ϵ -ball B let \bar{x} represent the point on $\partial\Omega$ where the ray from x^1 to x strikes $\partial\Omega$. Since $u(x^1) = 0$ it follows from convexity that

(15)
$$u(x) \leq \phi(\bar{x}).$$

Set $\delta = |x - x^0|$. As described above, $(\bar{x}_1, \dots, \bar{x}_{n-1})$ lies in the ellipsoid

(16)
$$\alpha^2 x_1^2 + x_2^2 + \cdots + x_{n-1}^2 \leqslant C^2 \delta^2.$$

Consequently

$$\phi(\bar{x}) = \sum_{i,j=1}^{n-1} \phi_{ij}(0) \bar{x}_i \bar{x}_j + O(|\bar{x}|^3).$$

Using (12), (13), (14), and (16) it follows that

$$\phi(\bar{x}) \leqslant CA\delta^2 + C\frac{\delta^3}{\alpha^3}$$

with C a (different) constant under control. By (15), and the relations $|x - x^0| = \delta \le \epsilon \le \alpha^3$, we find

$$u(x) \leqslant C_1 |x - x^0|^2.$$

We have proved (8) for $\alpha \leq \alpha_0$.

The other case to consider is $\alpha \ge \alpha_0$; this case is simple. There is a positive ϵ such that if $|x - x^0| < \epsilon$, then the point \bar{x} on $\partial\Omega$ where the ray from x^1 to

THE DIRICHLET PROBLEM FOR THE DEGENERATE MONGE-AMPÈRE EQUATION 27

x strikes $\partial \Omega$ satisfies

$$|\bar{x}| \leq C|x - x^0|$$

with C depending only on Ω . Here we use also the fact that $|x^1 - x^0| \ge |x^0|$. Since $\phi \ge 0$ and $\phi(0) = 0$ we have $\phi(\bar{x}) \le A |\bar{x}|^2$ where A depends on the C^2 norm of ϕ . By convexity of u, and the fact that $u(x^1) = 0$ we conclude that

$$u(x) \leqslant \phi(\bar{x}) \leqslant A |\bar{x}|^2 \leqslant A C^2 |x - x^0|^2$$

i.e. (8) holds again in this case.

The proofs of the Proposition and of the Theorem are complete.

Acknowledgment. The work of the first author was supported by NSF DMS-84-03756, that of the second by NSF MCS-82-01599 and ONR N00014-85-K-0195, and that of the third by NSF DMS 83-00101.

References

- [1] Bedford, E., Fornaess, J.E. Counterexamples to regularity for the complex Monge-Ampère equation. *Invent. Math.* 50 (1979), 129-134.
- [2] Bedford, E., Taylor, B. A. Variational properties of the complex Monge-Ampère equation II. Intrinsic norms. *Amer. J. Math.* **101** (1979), 1131-1166.
- [3] Caffarelli, L., Nirenberg, L., Spruck, J. The Dirichlet problem for nonlinear second order elliptic equations I. Monge-Ampère equations. Comm. Pure Appl. Math. 37 (1984), 369-402.
- [4] Caffarelli, L., Kohn, J. J., Nirenberg, L., Spruck, J. The Dirichlet problem for nonlinear second order elliptic equations II. Complex Monge-Ampère, and uniformly elliptic, equations. *Comm. Pure Appl. Math.* 38 (1985), 209-252.
- [5] Krylov, N.V. Boundedly inhomogeneous elliptic and parabolic equations in domains. *Izv. Akad. Nauk. SSSR*, 47 (1983), 75-108.
- [6] Rauch, J., Taylor, B.A. The Dirichlet problem for the multidimensional Monge-Ampère equation. Rocky Mountain J. Math. 7 (1977), 345-364.
- [7] Trudinger, N. S., Urbas, J. I. E. On second derivative estimates for equations of Monge-Ampère type. *Preprint*.

L. Caffarelli	L. Nirenberg	J. Spruck
University of Chicago	Courant Institute	Univ. of Massachusetts
Chicago, IL 60637	New York Univ.	Amherst, MA 01003
U.S.A.	251 Mercer Street	U.S.A.
	New York,	
	NY 10012,	
	U.S.A.	