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Let 2 be a bounded convex domain in R” with smooth, strictly convex bounda-
ry 89, i.e. the principal curvatures of dQ are all positive. We study the problem
of finding a convex function u# in Q such that

0)) det(u;) =0 in Q
2 u=¢ given on 99Q.

Here u; = 0u/ox;, u; = azu/ax,.ax, etc. The existence of a smooth solution
in Q satisfying (2) of the corresponding elliptic problem

ay det() =¢>0 in Q

has been shown recently by N. V. Krylov [5] and the authors [3] in case ¥ and
¢ are sufficiently smooth. It is of interest to treat the degenerate problem (1),
(2). The corresponding question for degenerate complex Monge-Ampere
equations is also of interest: find a plurisubharmonic function w in a bounded
strictly pseudoconvex domain Q in C" satisfying

3) det (Wz,zk) =0 in Q
and (2). In fact in [4], with J.J. Kohn, we treated the equation
A3) det (szz,) =¢y>0 in Q

and showed that there is a plurisubharmonic solution w belonging to C*-1(Q)
provided ¢ # 0, ¢ satisfies some other conditions, and ¢ and ¢ are sufficiently
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smooth. See [4] for further references on (3), (2). E. Bedford and J. E. For-
naess [1] presented an example with y satisfying all our conditions and for
which the (unique) solution of (1)’ is not in C*(Q).

Several authors have studied the Dirichlet problem (1), (2): J. Rauch and
B. A. Taylor [6], Bedford and Taylor [2] as well as [1], and, most recently,
N.S. Trudinger and J.I.F. Urbas [7]. The unique solution of (1), (2) is
given by

“) u(x) = max {v(x) |lve C(Q), vconvexand v<é on 940},

and the papers cited study the regularity of #. The best regularity result is that
in [7] where it is shown that if 92 € C!'! and ¢ € C':1(3Q) then the function
u belongs to C%(Q) and to C*'! in every compact subset of Q. In this paper
we prove an extension up to the boundary of this regularity in case ¢ is suffi-
ciently smooth.

Theorem. Assume 8Q is in C*'', and ¢ € C**1(3Q); then the function u defined
by (4) is of class C**1(Q).

We do not know if a corresponding estimate holds for the solution w of (3),
(2) —which is characterized by

(4) W(z) = max {v(z) | ve C(@), v plurisubharmonic in @ and v < ¢ on 9Q}.
The following examples show that the theorem is optimal; here @ is the unit
disc centred at the origin in the (x, y) plane.
Ex. 1. The function
u=(1+yP>"¢ 0<e small
satisfies (1) and (2) with
deC>'~*(60).

The function u is of class C**! ¢ but not C*! in Q.

The same u shows that if we flatten dQ at (0, — 1) to make the curvature of
dQ vanish here to high order, ¢ may be very smooth while  is not in C**(@)
for6>1—ce.

Ex. 2. (This is due to John Urbas). Let

(.21 2
d>(y)=<y 4>
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this is convex in y > % It is easily verified that the function # defined by (4)
satisfies the conditions in Q: # = 0 in the inscribed rectangle in Q bounded on
top and bottom by |y| = 1/2, and u = ¢(y) above the rectangle.

Here ¢ € C*(39) but u is not in C? near (0, 3).

In [5], [3], a priori estimates are established for the C? norms of solutions
of (1)’, (2). It seems natural to try to establish such estimates (independent of
€ for 0 < e < 1) of convex solutions of, say,

(1) det(u) =¢ in Q

satisfying (2). However we have not done this. Instead we work directly with
the characterization (4), and this paper is quite independent of [3].

Section 1. Beginning of proof

To prove the theorem we will establish the following estimate: there is con-
stant A depending on Q and the C*! norm of ¢ such that

5) [u(y) — u(¥) — (¥ — %) - Vux)| < Alx — y|?

holds for every pair of points x, y in Q. It is easy to see that (5) then yields
the conclusion of the Theorem. We have, namely, to show that for some cons-
tant B depending only on Q and on A4,

6) [Vu(x) — Vu(y)| < Blx —y| forall x,yeQ.

Observe first that there are fixed positive numbers ¢, 6 depending only on Q
such that for every y €2, Q contains a truncated cone

K(y) = {z#y||y — z| <e¢, and the angle (z — y) makes
with some unit vector &(y) is less than 6}.

It follows that there is a positive number o depending only on 6 (and so only
on Q) such that for any vector n # 0 there is a point z in K(y) such that

(@=») -] = alz—y|- |l

Clearly there is such a z in K(y) with |z — y| = any positive number # < e.

To establish (6), since by [6] and [7] we have a bound |Vu| < constant, we
may suppose |x — y| < e (the e determined above). After subtraction of an af-
fine function we may assume

u(x) = |[Vu(x)| = 0,
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and we have then to show
6y [Vu(y)| < Blx —y| if |x-y|<e
By (5), we have for every z€1Q,

|u@)| < Alz - x|?
and

@) - u() — 2 — ) - Vu()| < Alz - yI%,

and of course

lu)| < Aly - x|
Hence
@ (2= ») - Vu)| < A(z -~ x” + |z = 1> + |y = 1.

Using what we have asserted above, we may choose z in Q@ with |z — y| =
= |x — y| < e and such that

|z = ) - Vu(y)| = alz = y| - |[Yu()|.
(for we may suppose Vu(y) # 0). Combining this with (7) we obtain
alx — y| - |[Vu(y)| < 64|x - y|?,

i.e., (6)’, with B = 64/a.
We will derive (5) from the following local form, the heart of our proof:

Proposition. There is a constant C depending only on Q and the C*' norm
of ¢, such that for every point x° in Q, 3e(x®) > 0 so that for every x in Q with
|x — x° < e(x®), we have

® |u(x) — u(x®) — (x — x°) - Vu(x)| < Clx — x°|2.

We claim that the proposition yields (5) with any constant A greater than
C (and hence in the limit for A = C). Fix a constant A > C. If (5) does not
hold, there are points x, y in @ such that

|[u(y) — ulx) - (v = x) - Vux)| > Alx - y/°.
By (8) there is a closest point z in Q to x such that

|u(2) — u(x) — (z — %) - Vulx)| = Alz — x|
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On the closed segment L joining x to z consider the function

fO) =Aly = x> = [u(y) — u(x) - (y = ) - Vu)l.

By (8), this is positive for y near x, y # x, but it is zero at x and z. So fachieves
a positive maximum at some point w in the interior of L. At w the second dif-
ference quotient

) Aif=fw+h(z—x)+fw—hz—x)—2fW)<0 for |h| small.
But
AZf = 2AR% 7 — x|* — [u(w + h(z — X)] + ulw — h(z — X)) — 2u(w)]
and by (8) with x° replaced by w, the expression in the square bracket satisfies
Il 1| <2Ch?*|z—x|* for |h| small.
Thus
A2f>2(A — C)h*|z — x|* for |h| small,

contradicting (9). [
To complete the proof of the theorem we have to prove the Proposition.
First some preliminary simple lemmas.

Lemma 1. Let S be a straight segment with endpoints on 3. Suppose one of
these is the origin and that S makes an angle 7/2 — a with the interior normal
to 09 there, 0 < o small. Then length of S = 0(c).

Proor. We may assume the positive x, axis is interior normal to 99 at the
origin and that S is of the form

X, = Bxq, 0<x <1, B =tana, X,=-=X,_1=0.
At the other end point of S we have
x, = cot* + O(|t]*) = Bt,
¢ = ¢, a fixed positive constant. It follows that
t=0(8) =0

and also x, = O(a?). O

In the following lemma, u is the function defined by (4).



24 P.L. CAFrARELLI, L. NIRENBERG Y J. SPRUCK

Lemma 2. Let x° be any point in Q. Subtracting from u a linear plane of sup-
port there we may suppose

u=0, u(x® = 0.

Then x° is a convex combination of (n + 1) points x,...,x"* in 0Q with
ux)=0fori=1,...,n+ 1.

PRrROOF. By Caratheodory’s theorem it suffices to show that x° is in the convex
hull of

S = {xed|u(x)=0]}.

If not, there is a hyperplane separating them; i.e. every point x in S satisfies
(after rotation and traslation of coordinates)

X, < —e<e<x.

Thus at points on dQ2 where x,, > 0 we have u > a > 0 for some positive con-
stant ¢. But then the function

v=206x, for 0<é small
satisfies

v<u on 9.

Consequently, by (4), u(x° > v(x°) > 6e —contradicting the fact that
ux%=0. O

Section 2. Proof of the Proposition

We will say that a constant is under control if it depends only on Q and the
C>! norm of ¢. Fix x° € Q. After subtraction of an affine function we may
suppose u > 0, u(x®) = 0. According to Lemma 2, x° lies in a n-dimensional
simplex S with vertices on 8Q, and on which # = 0. It may be that x° lies in
a lower, say k, dimensional simplex with this property. Using induction on &
we will prove (8).

(i) Postponing the case k = 1, suppose we have proved the result for all x°
lying in any (k — 1)-dimensional simplex with the stated properties, and with
constant C = Cy_, under control. We wish to prove it for x° in such a k-
dimensional simplex S with some constant C; also under control. Let x* be
the closest point to x° on any (k — 1)-dimensional face of S. Then y° = 2x° —
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— x!lies in S. By induction, in the ball B (around x! with radius e(x!), we have
[u()| < Ce_1lx — x>

It follows by convexity of u (recall #(»°) = 0) that in the ball around x° with
radius e(x%): = L¢(x?)

()| < 2C;_1|x - x°1%.

Thus we have established (8) with a constant C, = 2C; _;.
Consequently (8) holds for any x° in Q with

C= 2n—]cl

and the proof is finished —once we have treated the case k = 1.

(ii) Turning to that case, we suppose x° lies in a segment S with end points
x!, x? on 89, on which u = 0, and that # > 0 in Q. Of the two end points, sup-
pose that x? is the closer to x°. We may suppose x = 0 and that the positive
X,-axis is interior normal to dQ there. In addition we may suppose x° =
=x},0,...,0,x9) withx{ >0, x = x{tane, 0 < @ <7, i.e., S makes angle
3 — a with the interior normal to dQ at 0.

By Lemma 1,

(10) x!| = O@).
We will distinguish two cases

a < oy, a positive small constant to be chosen,
a > .

Consider first the case o < ap small. We have x! = (x1,0,...,0,x!tana).
The orthogonal projection on the plane x, = 0 of the segment joining the
origin to x' is the segment L on the x, axis from the origin to (x},0,...,0).
If we think of the boundary values ¢ near 0 as a nonnegative function of
(x15...,X,_1), then at the end points of the segment L we have ¢ = 0 and
hence ¢; = 0, and ¢,; > 0 there. It follows that

(11) JL¢11 dx1 = 0.

Hence ¢,; has an interior minimum in L, where necessarily ¢,;; = 0. Conse-
quently on L, |¢;4;| < constant - x}; here, at last, is where we use the fact that
the C*! norm of ¢ is finite. By (10), we have || < constant - , and since
¢,; necessarily vanishes somewhere on L, see (11), it follows that

(12) 611(0)] < Aa?

with A under control.
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For other second derivatives of ¢ at the origin we have
(13) |65(0)] <A
while from (12) it follows that
(14) |61500)] S A, 1<B<<n-1,

since ¢ > 0 and, hence, 2. ¢;;(0)x;x; = 0.

Consider now a ball B in Q with centre x° and radius ¢ < a>. Let T be the
cone with vertex x! generated by B and set K = 82 NT'; recall that |x! — x°| >
> |x%|. For a < o sufficiently small, depending only on €, it is not difficult
to verify that for e sufficiently small (depending possibly on the point x°), the
orthogonal projection of K onto the plane x, = 0 is contained in an ellipsoid
with axes

€ . . . ..
C— in the x,-direction, Ce in the other directions,
o

for a fixed constant C depending only on Q. Let us now fix such «.
For any point x in the e-ball B let X represent the point on 0Q where the ray
from x! to x strikes 8Q. Since u(x!) = 0 it follows from convexity that

1s5) u(x) < ¢(x).

Set & = |x — x°|. As described above, (¥, ...,X,_) lies in the ellipsoid
(16) x4+ xi4+ -+ X2, <CW

Consequently

n-1
6@ = Zlqs,-,-(O)fifj + O(|x]*).
i,j=

Using (12), (13), (14), and (16) it follows that

3
#(¥) < CA8* + C%—

with C a (different) constant under control. By (15), and the relations
|x — x°| = 6 < e < &?, we find
u(x) < Cy|x — x°

We have proved (8) for a < aj.
The other case to consider is a > ay; this case is simple. There is a positive
e such that if |x — x| < ¢, then the point ¥ on dQ where the ray from x' to
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x strikes 09 satisfies

1% < Clx — x|
with C depending only on Q. Here we use also the fact that |x! — x°| > |x°|.
Since ¢ > 0 and ¢(0) = 0 we have ¢(¥) < A|¥|> where A depends on the C?
norm of ¢. By convexity of u, and the fact that u(x!) = 0 we conclude that

u(x) < (%) < Alx> < AC?|x — x°?

i.e. (8) holds again in this case.
The proofs of the Proposition and of the Theorem are complete.
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