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1. Introduction

This paper is devoted to an exposition of cohomology theories on categories
of spaces where the cohomology theories satisfy the type of axiom system con-
sidered in [1, 12, 16, 17, 18]. The categories considered are C,,y,, the category
of all compact Hausdorff spaces and continuous functions between them, and
Cloccomp» the category of all locally compact Hausdorff spaces and proper
continuous functions between them. The fundamental uniqueness theorem
for cohomology theories on a finite dimensional space implies a correspon-
ding uniqueness theorem for cohomology theories on either of these two
categories. The proof involves an extension of the uniqueness theorem for
finite dimensional spaces to compact spaces which contrasts with the usual
type of proof which involves a uniqueness proof for polyhedra and an exten-
sion to compact spaces.

A spectrum of ANR defines a cohomology theory on Cy, comp- Applications
of the uniqueness theorem to such cohomology theories gives a proof of the
known result that the Chern character is an isomorphism of K(X) ® Q with
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H,,(X; Q) for every locally compact X. The uniqueness theorem is also used
to give another proof of the duality theorem in stable homotopy theory for
compact subsets of R”.

The results of this paper are not new. The objective of the paper is to give
a reasonably self-contained expository account of the uniqueness theorem for
cohomology theories on €y, omp and how it can be applied to give theorems
such as the one concerning the Chern character and the duality theorem refer-
red to above. v

The rest of the paper is divided into six sections. Section 2 is devoted to
preliminaries including a review of the definitions of cohomology theory on
a space and of an ES theory on a space (the latter satisfying some of the
Eilenberg-Steenrod axioms). In Section 3 we consider cohomology theories on
Ceomp and Cyo.comp and a uniqueness theorem for each. We also show that
cohomology theories on €.,y correspond injectively to compactly supported
cohomology theories on €y, comp-

Section 4 is devoted to ES theories on C,,,. There is a uniqueness theorem
for these and a proof of the equivalence of cohomology theories and ES
theories on C,pp,.

In Section 5 it is shown how a spectrum of ANR determines a compactly
supported ES theory on C,g.comp- As a consequence the theorem concerning
the Chern character is deduced. Section 6 coniains definitions of the func-
tional spectrum and of a spectrum approximating the complement of a com-
pact pair in R”. In Section 7 these two spectra are compared to obtain a proof
of the duality theorem in stable homotopy theory.

2. Preliminaries

In this section we recall the definitions of a cohomology theory and of an ES
theory on a space X [16, 17, 18] and some related concepts.

All topological spaces will be assumed to be normal Hausdorff spaces. If
H is a contravariant functor from a category of subsets (and inclusion maps
between them) of such a space to the category of graded abelian groups (and
homomorphisms of degree zero between them) we use the following notation.
If H is defined for an inclusion map i: B C 4 and u € H(A) then u|B.€ H(B)
is defined by u|B = H(i)(u). The statement that H is a contravariant functor
is equivalent to the two conditions:

@) for ueH(A), ulA = u.
(ii) for CC BC A and ue H(A) then (u|B)|C = u|C.

In general p will be used to denote a homomorphism induced by an inclu-
sion map or a family of inclusion maps (i.e. p = H(i): H(A)— H(B) for
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i: B C A). Similar notation will be used for contravariant functors H from a
category of pairs of X to the category of graded abelian groups. Given a
topological space X let cl(X) denote the category of all closed subsets of X
and all inclusion maps between them and let cl(X)? be the category of all pairs
of closed subsets of X and inclusion maps between them.

A cohomology theory H, 6 on X consists of:

(i) a contravariant functor H from cl(X) to the category of graded abelian
groups (H(A) = {H%A)} ez for A in cl(X)) such that H(Q) = 0, and

(ii) a natural transformation & assigning to every two closed subsets
A, B C X a homomorphism of degree 1

6: HY(ANB)— HI*Y(AUB)
such that the following are satisfied:

Continuity. For every closed A C X there is an isomorphism
p: lim {HY(N)|N a closed neighborhood of A in X} = HY(A)

where p{u} = u|A for ue HY(N).

MYV exactness. For every two closed sets A, B in X there is an exact
sequence

.5 HYA4UB) S HYA) @ HY(B) 5> HY(ANB) > HI*\(4UB) S ...

where a(u) = (u|A, u|B) for ue HY(A U B) and 8(u, v) = ulJANB — v|AN B for
ue Hi(A), ve HY(B).

The cohomology theory is nonnegative if H%(A) = 0 for g < 0 and all closed
A CX/C. It is compactly supported (or has compact supports) if given
u € HY(A) there is a decomposition 4 = BU C where B is closed, C is com-
pact, and u|B = 0. It is additive if given a discrete* family {A4;};; of closed
sets there is an isomorphism

o: HY UAj> ~ I H%4)

JjeJ Jej

where o(u) = {u|A;};e; for ue H(U e;4;).

*A family {4 j}j < Of subsets of a topological space X is discrete if every point of X has a
neighborhood meeting at most one member of the family. This implies the members of the fami-
ly are pairwise disjoint and, since a discrete family is obviously locally finite, if each is closed

in X, then UjEJAj is also closed in X.
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If H,6 and H', & are cohomology theories on the same space X, a
homomorphism ¢ from H, 6 to H’, ¢ is a natural transformation from H to
H' commuting up to sign with 6, §’.

Cohomology theories on X frequently arise from contravariant functors on
cl(X)? satisfying some of the Eilenberg-Steenrod axioms [5] as in the following.

An ES theory H, 6* on X consists of:

() a contravariant functor H from cl(X)? to the category of graded abelian
groups, and
(ii) a natural transformation of degree 1

6*: HYB, g)~ Hi* (A4, B)

for every (A4, B) in cl(X)?
such that the following are satisfied:

Continuity. For every closed A4 in X there is an isomorphism

p: lim {HYN, @)|N a closed neighborhood of A4 in X} = HY(A, &)

where p{u} = u|(A, @) for ue HYN, @),
Exactness. For every closed pair (4, B) in X the following sequence is exact

. 5 HY4,B) ™2 HY 4, ) T2 HYB, @) > HT*'(4,B) — - -

where i: (B, ) C(A4, D) and j: (4, ¥) C (A4, B).
Excision. For closed sets A, B in X there is an isomorphism

p: H(AUB,B) = H(A,ANB).

It is standard [5] that if H, 6* is an ES theory on X there is a cohomology theo-
ry H', 8 on X such that H'(4) = H(A, @) and &': H'Y(ANB)— H'?*(4AUB)
is suitably defined. In general we do not know if there is a way of associating an
ES theory to a cohomology theory on X. With suitable definitions of cohomo-
logy theories and ES theories on larger categories we will show in Section 4 that
the two theories are equivalent on the category of all compact spaces.

The concepts of nonnegativity, compactly supported, and additivity are
defined for ES theories to correspond to the same properties of the associated
cohomology theories.

3. Cohomology theories on categories of spaces

In this section we consider cohomology theories defined on categories of
topological spaces and continuous functions. These consist of contravariant
functors and natural transformations on the category whose restriction to
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cl(X) is a cohomology theory on X for every object X in the category. The
categories of interest are the category of all compact spaces and continuous
functions and the category of all compact spaces and proper continuous func-
tions. We prove uniqueness theorems for cohomology theories on these two
categories. Finally, we show that cohomology theories on the category of
compact spaces correspond injectively to compactly supported cohomology
theories on the category of locally compact spaces.

We begin by considering cohomology theories on cubes. By a cube we mean
a product space [] je ;1 where I;is a closed interval of R for each j € J. Given
a cube C(J) = II ;c;7; and given a subset J' C J let C(J") =11 ;_, ;. There is
a canonical projection map p,.: C(J)— C(J).

Lemma 3.1. Let ¢: H— H' be a homomorphism of cohomology theories
on a cube C(J) and let neZ be such that ¢,: H(A)— H'(A) is an n-
equivalence* for every A of the form A = p_ Y(x) where F is a finite subset
of J and x e C(F). Then ¢, is an n-equivalence for every closed A C C(J).

Proor. 1) Let F be an arbitrary finite subset of J and let H, Ff;. be the
cohomology theories on C(F) which equal the direct images (in the sense of
Remark 2.6 of [18]) of the cohomology theories H, H' on C(J) under
pp: C(J)— C(F) (so H.(B) = H(p; '(B)) and H}.(B) = H'(p;. '(B)) for every
closed B C C(F)). The hypotheses on ¢ imply that ¢ induces a homomorphism
¢p: Hp— H of cohomology theories on C(F) which is an n-equivalence for
every x € C(F). Since C(F) is a finite dimensional compact metric space, it
follows from Theorem 4.2 of [18] that ¢ is an n-equivalence for every closed
B C C(F).

2) Let A be a closed subset of C(J) and for F a finite subset of J let
Ap=pp pp(A). If FCF' are finite subsets of J, there is a projection
p: C(F')— C(F) such that p. = p o p... It follows that p.(A) = pp.(A) so
Pp(A) Cp~ pp(A) and

Ag. =P (Pp(A) Crp (07 'Pe(A) = pp 'Pp(A) = A

Hence, the collection {A|F finite C J} is a family of closed subsets of C(J)
directed downward by inclusion. Clearly A C A for every Fso A C NpA.

We show A = NA. If ye C(J) — A there is a nbhd of y disjoint from A
(because A is closed). Every nbhd of y contains a subset of the form p_ LN
where F'is a finite subset of J and N is a closed nbhd of p.(») in C(F). Clearly
Py 1(N) is disjoint from A if and only if NV is disjoint from Pr(A). This implies
P(¥) €Pp(A) and so y € py. 'pp(A) = A. Therefore, NpAp=A.

* A homomorphism ¢: G — G’ of degree 0 between graded abelian groups is an n-equivalence if
¢: G7— G is an isomorphism for all g < n and a monomorphism for g = n.
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It follows from Proposition 2.7 part 2) of [18] that lim { H(A4 )|F finite C
CJ}=H(A) and lim {H'(AD|F finiteC J} = H'(4). By 1) above,
¢ Ho(pp(A)) > Hz(pp(A)) is an n-equivalence for every finite F C J. This
is equivalent to the assertion that ¢: H(Ay) = H'(Ap) is an n-equivalence for
every finite F C J. Passing to the direct limit we see that ¢: H(A) — H'(A) is
an n-equivalence for an arbitrary closed A C C(J). O

Let C be a category of topological spaces and continuous functions such
that if X is an object of C then cl(X) is a subcategory of C. A cohomology
theory H, § on consists of:

(i) A contravariant functor H from C to the category of graded abelian
groups such that H(¢) = 0, and

(i) A natural transformation é: H%ANB)— H?* (4 UB) for every triad
(X; A, B) in C (by such a triad we mean X is an object of C and 4, B
are closed subsets of X).

such that for every object X in C the restriction of H,6 to cl(X) is a
cohomology theory on X.

A cohomology theory on C is nonnegative, compactly supported or
additive, respectively, if its restriction to cl(X) has the corresponding property
for every object X in C. A cohomology theory H, 4 is invariant under
homotopy if for every f,, fi: X — Y which are homotopic in C (i.e. there is
a continuous map F: X X I— Y in C such that F(x, 0) = fy(x), F(x, 1) = f;(x)
for all x e X) then H(fy) = H(f;): H(Y)—~ H(X).

Of primary interest are the categories C,,, of all compact spaces and
continuous functions and Cycomp Of all locally compact spaces and proper
continuous functions.

Proposition 3.2. Every cohomology theory on C.,, is invariant under
homotopy.

PrOOF. It is shown in [10] that every contravariant functor H on C.yp,
whose restriction to cl(X) is continuous for every compact space X is invariant
under homotopy. [

A homomorphism ¢: H, é— H’', 8 between two cohomology theories on the
same category C is a natural transformation of degree 0 from H to H' com-
muting up to sign with 8, 8’ for every triad (X; A, B) in C. We have the follow-
ing extension of the uniqueness theorem.

Theorem 3.3. Let ¢: H,6— H', & be a homomorphism between cohomology
theories on C_ ., such that for some one-point space P, ¢,: H(P)— H'(P) is
an n-equivalence for some n € Z. Then ¢,: H(X)— H'(X) is an n-equivalence
for every compact space X.
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Proor. Because H, H' are contravariant functors on €y, it follows that
for every one-point space Q, ¢o: H(Q) — H'(Q) is an n-equivalence. Consider
a cube C(J) =11 jeslj and let y e C(F) for F a finite subset of J. Since the
projection map p,.: pp 1(y) » y is a homotopy equivalence, there is a com-
mutative square whose vertical maps are isomorphisms by Proposition 3.2

H(») ——— H()
H (pF)l = ~ IH (PP
H(p;'(0)— H(p; '(»)

It follows that ¢: H(p.™'(»)) = H'(p; (») is an n-equivalence for every
finite ' C J and every y € C(F). By Lemma 3.1, ¢, is an n-equivalence for
every A C C(J). Since every compact X is homomorphic to a closed subset of
some cube, ¢,: H(X)— H'(X) is an n-equivalence for every X. [

Corollary 3.4. Let o: H,6— H', 5 be a homomorphism between compactly
supported cohomology theories on Ci,. comp SUCh that for some one-point
space P, ¢,: H(P)— H'(P) is an n-equivalence for some neZ. Then
¢y H(X) = H'(X) is an n-equivalence for every locally compact space X.

PROOF. Since C oy, is a subcategory of Cyoc comp, We can apply Theorem 3.3
to deduce that ¢,: H(X)— H'(X) is an n-equivalence for every compact X.
The Corollary follows from this and Proposition 2.8 of [18]. [

In the above Corollary we used the fact that C.,y, is a subcategory of
Cloccomp- Therefore, every cohomology theory on €y, comp defines by restric-
tion a cohomology theory on C,,,. We now present a way of obtaining a
compactly supported cohomology theory on Ciocomp from a cohomology
theory on C ..

For a subset A C X we say A is cobounded in X if X — A is compact. We
need de following lemma.

Lemma 3.5. Let H be a contravariant functor from ci{X) to graded abelian
groups such that H((J) = 0 and such that for every A C X

*) p: lim (H(N)|N a closed cobounded nbhd of 4 in X'} = H(A).

Then H is continuous and compactly supported.

Proor. This follows immediately from Proposition 2.6 of [17] applied to the
family of supports consisting of all compact subsets of X. [J
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Given an arbitrary locally compact space X let X * be the compact space
consisting of X together with exactly one more point o« such that
X* — {0} = X. In case X is compact, X * is the topological sum of X and
{o}. In case X is non-compact, X * is the one-point compactification of X.
Note that ACX=A"CX"*, %t ={x}, and ANB)* =A*NB™,
(AUB)" = A* UB" for A, B closed in X.

Proposition 3.6. Given a cohomology theory H, é on C.,,, there is a com-
pactly supported cohomology theory H,§ on Cicomp, where H(X) =
= ker[H(X ") % H(e)] for a locally compact space X.

Proor. H is defined by the above. To define § note that if A is a closed subset
of X and ¢: A* — = is the constant map, then the composite

H() XS H(A*) 5 H(w)

is the identity. Therefore, in the following commutative diagram with exact
rows the vertical maps are epimorphisms

5 HTYAY NBY) S HYAT UB*) S HYA*) @ HUB*) 5 HY4* nB*)S ...
p p P 14
.5 HI~ l(oo) 5 H() 5 H9(e0) @ H(co) B H9() LA
It follows that there is an exact sequence of the kernels of p
o B g4 By S BraUB) S AU @ HUB) B> AU4anB) S -

This defines the natural transformation § and shows that H,§ satisfy MV
exactness.

Clearly H(Q) = ker[H ()2 H()] = 0 and the closed nbhds of A* in
X* are precisely the sets N* where N is a closed cobounded nbhd of A4 in
X. Hence, the continuity of H on X * implies

p: lim { H(N)|N a closed cobounded nbhd of 4 in X} = H(A)

It follows from Lemma 3.5 that A is continuous and compactly supported
on X. [

Theorem 3.7. The map H,8 to H,§ is an injection from cohomology
theories on C. ., to compactly supported cohomology theories on Cy comp-

Proor. Given H,5 on C., let H,§ be the compactly supported
cohomology theory on €y, comp defined by it as in Proposition 3.6. If X is any
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compact space, the exactness of 0= H(J)— H(X*)S H(X) ® H(w) —
— H({) = 0 implies that H(X) = ker[H(X *) 5 H(w)] = H(X). This shows
that A when restricted to Cop, is isomorphic to H. Similarly § restricted to

compact triads is isomorphic to 8. Thus, the restriction of H,§ to € pp, is
isomorphic to H,6. [

If H', &' is a compactly supported cohomology theory on Cio. comp, let H, &
be its restriction to C,,, and H,§ the compactly supported cohomology
theory on €y comp determined by H, 6 as in Proposition 3.6. In general we do
not know what relation there is between H’, & and H, § both compactly sup-
ported cohomology theories on €y, comp-

4. ES theories on categories of spaces

We consider ES theories on a category of topological spaces and continuous
mappings. Since ES theories define cohomology theories, the uniqueness
theorem is valid for ES theories. We also show that there is an equivalence
between ES theories and cohomology theories on the category of all compact
spaces and continuous functions. Thus, cohomology theories are «single
space» equivalents to ES theories. Other single space equivalents to ES
theories have been given in [2, 3, 7, 11].

Let C be a category of topological spaces and continuous functions such
that if X is an object of C then cl(X) is a subcategory of C. An ES theory
H, 6* on C consists of:

(i) A contravariant functor H from @? (the category of closed pairs in @)

to the category of graded abelian groups, and

(ii) A natural transformation 6*: H%B, @) > H?* (A4, B) for every (A4, B)

in @2
such that for every object X in @ the restriction of H, &* to cl(X)? is an ES
theory on X.

Since ES theories are continuous, the result in [10] implies they are invariant
under homotopy. Therefore, they are continuous extraordinary cohomology
theories because they satisfy all of the Eilenberg-Steenrod axioms [5] except
the dimension axiom and are continuous.

As in Section 2 every ES theory on € determines a cohomology theory on
C. The concepts of nonnegativity, compactly supported, and additivity for ES
theories on € are defined to correspond to the same properties of the
associated cohomology theories.

A homomorphism ¢: H, 6* = H’, §'* between ES theories on C is a natural
transformation of degree 0 from H to H' commuting up to sign with 6*, 6'*
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for every pair (X, A) in @2. The following uniqueness theorem for ES theories
is valid.

Theorem 4.1. Let ¢: H,6* > H',6'* be a homomorphism between two
compactly supported ES theories on Cioccomp SUCh that for some one-point
space P, ¢,: H(P, )~ H'(P, (J) is an n-equivalence for some neZ. Then
¢: H(X, A) > H'(X, A) is an n-equivalence for every locally compact pair.

Proor. The homomorphism ¢ determines a homomorphism @: H, 86— H', '
between the cohomology theories on €y, comp defined by the ES theories H, 6*
and H', §'* respectively. Since these are compactly supported and ¢ is an
n-equivalence for the one-point space P, it follows from Corollary 3.4 that
@ is an n-equivalence for every locally compact space X. This is equivalent
to the assertion that ¢: H(X, ¢J) = H'(X, ¢J) is an n-equivalence for every
locally compact space X. Then the «five-lemma» shows that ¢: H(X, 4) —
— H'(X, A) is an n-equivalence for every locally compact pair. [l

The next result asserts the equivalence between cohomology theories and ES
theories on Cg -

Theorem 4.2. The assigment of a cohomology theory to an ES theory is an
equivalence on C,p),.

ProoF. We have already seen that for an ES theory H, 6* on C,,,, there is
associated a cohomology theory H’, &' on C,p, With H'(X) = H(X, () for
every compact space X.

For the converse we consider for every compact space X the cone CX over
X with vertex v (so CX is the join of X with a point v not in X). Given a
cohomology theory H’, &’ on €.y, define a contravariant functor H on Ggomp
by

H(X, A) = ker[p: H'(XUCA)~— H'(CA)]
(in case A = J, CA = {v}). Then
H(X, @) = ker[p: H'(XU {v}) > H'()]
and by the exactness of
H(@) > H'(XU {v}) > H'(X) ® H'(v) > H'(Q),

there is an isomorphism o': H(X, @) = H'(X). Therefore, continuity of H’
implies continuity of H.
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To define 6* and verify exactness for H, 6* note that
6t H'(A)— H'(XUCA)
for the triad (CX; X, CA) has image lying in
ker [p: H'(XUCA)— H'(CA)]
by exactness of the MV sequence of X, CA. Therefore,
im[6": H'(A)—~ H'(XUCA)] C ker[p: H'(XUCA)—~> H'(CA)] = H(X, A).

Thus, there is a unique homomorphism &: H(A4, @) = H(X, A) such that
there is a commutative square

H(A, ) —=> H'(A4)
6*l 16’
H(X,4A) CH(XUCA)
Then 6* is a natural transformation of degree 1 defined for every (X, A) in
Gg‘,mp. Furthermore, if ¢: XU CA - v is the constant map, the composite
H'(c)

H'(v)—> H'(XUCA) % H'(CA)

is an isomorphism (by Proposition 3.2 since ¢|CA: CA — v is a homotopy
equivalence). Therefore, in the commutative diagram with exact rows all ver-
tical maps are epimorphisms

. —)-H'(A)-‘L-H'(XUCA)____)H;(X)(BH,(CA)_)H,(A)—E;

L g

= 0 — H(CA) = O0®HCA4A) — 0 — .-
hence, there is an exact sequence of kernels
- — H'(A) — HX,A)— H'(X)— H'(A) — ---

Replacing H'(4) by H(A, @) and H'(X) by H(X, J) we obtain the exact
sequence

. — H(A,0) *> HX, "B HX, )" H A, 0) > - -
where i: (4, Q) C (X, @) and j: (X, @) C (X, A). Therefore, H, 6* satisfy
exactness.
To prove the excision property let (X; 4, B) be a triad in C_,p, and consider
the commutative diagram with exact rows
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HA)@®H(CB) SHMUNBS H@AUCB 5 HWA@HCB 5 HMAUNB)
p|= p|= p =|p =|p

H'(A)® H'(C(A ﬂB))E'H’(A N B) El'H’(A NCANB) > H'(A)® H'(C(ANB)) —B>H’(A NB)

From the «five lemma» the middle vertical map is an isomorphism and
there is a commutative square

H'(AUCB) % H'(CB)
pl|= p|=
H'(AUC(ANB)) % H'(C(ANB))

Therefore, H(AUB, B) = ker[p: H'(AUCB)— H'(CB)] is isomorphic to
H(A,ANB) =ker[p: H'(AUC(ANB))— H'(C(ANB))] by the restriction
map.

Thus, H, 6* is an ES theory on C,,,,. It is clear that o’ induces an isomor-
phism of H(A, () with H'(A) so the cohomology theory induced on C gy, by
the ES theory H, 6* is isomorphic to the original cohomology theory H', 8’ on

ecomp'

Conversely, if H, 6* is an ES theory on C_,,, and H"’, &' is the corresponding
cohomology theory on C,,, let H"”, §" be the ES theory on C,,,, constructed
as above from H’, §'. Then

H"(X,A) = ker [H'(XUCA) — H'(CA)]
= ker [H(XUCA, @) — H(CA, Q)]

From the exact sequence
2, H(XUCA, CA) — HXVUCA, ) — H(CA, @) N

we see that ker [H(XU CA, @) — H(CA, )] = H(XU CA, CA). Since there
is an excision isomorphism

H(XUCA, CA) = H(X, A)

we finally obtain H"'(X, A) = H(X, A). This isomorphism carries §” to 6* and
completes the proof. [J

-5. Cohomology defined by spectra

In this section we show that a spectrum of ANR defines an ES theory on the
category Cioccomp- In particular, K-theory, which is defined by such a spec-
trum, is an ES theory. The uniqueness theorem of the preceeding section
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yields another proof of the fact that the Chern character is an isomorphism
of K® Q with H,, (rational Céch cohomology with compact supports) on
eloccomp'

For a pointed space X we let C,X denote the reduced cone over X (so
C,X = I X where 0 € I is the base point of I) and Yo X = S' A X the reduced
suspension of X. If (X, A) is a compact pair with base point x,e A and Y is
a pointed space there is an exact sequence of based homotopy classes [15]

#

lm

o i—# l-#
"(Z—O;[ZoA;Y] XUGA; Y]~ [X; Y]~ [4; Y]

wherei: ACX,i: XCXUCyAand k: XUC,A— >, A is the map collaps-
ing X to the base point. In case Y is an ANR (absolute neighborhood retract
for normal spaces) the contractibility of Cy,A implies that the quotient
map q: XUCyA — X/A induces, for every n=0, a bijection (ZSQ)#:
[20(X/A); Y] = [X§(XUCA); Y].Since goi = k: X — X/A where k is the
quotient map, there is an exact sequence

B A4 Y] D x4 V]S G Y] 4 Y]
where §: [ZS“A; Y] — [20(X/A); Y] is defined to equal the composite
Eia) (e R)": [Z671A Y] = [ZE(XUGCA); Y] = [X5(X/A); Y]

Now suppose @ = { Y, & 20 Yx— Yy, 1} is a spectrum of pointed ANR’s.
Define

{X,A4; ® J9= liTl;,n {[20(X/A); Y,. 4]}

where the direct limit is with respect to the maps

en+o?

(S8 (X/AY Yy ] =3 [0+ X/A); S Vs o] =2 [0+ (X/A); Vs ga1]

Taking the direct limit of the exact sequences above we obtain an exact
sequence

B x4 @18 Xk @178 4,3 @15 (X4 @) - -

where i (A4, X,) C (X, Xg), Jj: (X, X)) C (X, A).

We consider the category Glzoccomp. As in Section 3 to every locally compact
space X there is asociated a compact space X * with base point c such
that X * — {eo} = X. Define a contravariant functor Hg on Glzoccomp
by HL(X,A)=(X",A%; (@)}? and define a natural transformation
&*: H%L(A, @)~ H% '(X, A) to be the homomorphism &* in the exact
sequence above for the pair of pointed spaces (X *,4%).



42 E. SPANIER

Theorem 5.1 For every spectrum @ of ANR there is a compactly sup-
ported ES theory Hg, 6* on Ciycomp-

Proor. From the exact sequence above for the pair (X *, A *) it is clear that
Hg, 6* satisfies the exactness property for the pair (X,A). It also
satisfies excision because if (X;A4,B) is a locally compact triad then
(X*;A*,B™") is a compact pointed triad with At UB* = (4UB)* and
A*NB* = (ANB)*. Therefore, there are isomorphisms

H%(AUB,B) = ((AUB)*,B*; @})7= (A" UB*,B*; ®)*
~ (A%, A" NB*; @)= (4*,ANnB)*; @ )7 = HY(4,ANB).

If (X, A) is a locally compact pair, then (X *,4%) and (X5 X", 254%)
are compact pairs for every n. Since Y, ., is an ANR it follows that

p: lim {[XGB; Y,.,] | Baclosed nbhd of A* in X*} = [X5A4%;7,, ]
Taking direct limits with respect to #» we obtain an isomorphism
p: lim {(B; Y)?|B a closed nbhd of A" in X"} = {A*;Y}4

Since the closed nbhds Bof A* in X * are exactly the sets of the form B = N*
where N is a closed cobounded nbhd of A in X, it follows that

p: lim {H%(N)|N a closed cobounded nbhd of 4 in X} = H(A).

Since Hg (J) = 0 it follows from Lemma 3.5 that Hg, is continuous and
compactly supported.

There is a spectrum of ANR that defines an ES theory known as K-theory
[9]. This ES theory is known to be periodic of order 2 (i.e. K?**(X, A) =
=~ K%X, A)) and for a one-point space P,

Z, q even

KB ~ {0 g odd

Let H,, be the FS theory defined in terms of rational Cech cohomology
with compact supports by
. ®  Hi(X,A4;0Q), gqeven
i even

ﬁguX,A= -~
*.4) l.g%d Hi{(X,A;Q), ¢ odd.

This is an ES Theory on €y, omp (by analogues of Remarks 2.3 and 2.4 of
[18] for ES theories). By an analogue of Remark 2.5 of [18] for ES theories
there is also an ES theory K ® @ on Coc comp-
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The Chern character [9] Ch: KQ Q—~H,, is a hombmorphism of ES
theories on Cio¢ comp-

Theorem 5.2. For every locally compact space X, Ch: K4(X)® Q = H%,(X).

Proor. Since X ® @ and H,, are both compactly supported ES theories on
Cioc comp and Ch is an isomorphism for a one-point space [9], the result follows
from Theorem 4.1. [

If @ = { Yy, €} is a spectrum its homotopy groups 1rq(®) are defined by
7(@) = lim {7, ,(¥,)}. If @ is an ANR spectrum, it is clear that if P is
a one-point "space, then H% (P, @) = 7r_q(®) for all q.

If @, @’ are spectra, a map g: @ - @’ between them is defined to be
a sequence of pointed continuous functions g;: Y, — Y for each k such that
the following square is homotopy commutative for every &

ZOYk - Yk+1

Zogk 8k +1
SoYe—— Y,

Such a map g induces a homomorphism g: 1rq(®) = 7g( @') and, in case
®, ®' are ANR spectra, it induces a homomorphism g«: Hg — Hg of the
corresponding ES theories.

Theorem 5.3. Let g: ® - @’ be a map between ANR spectra which
induces an isomorphism g 7rq(®) =~ 7rq(®’) for all q. Then for every
locally compact pair (X, A),

g« Hg(X, A) = Hg, (X, A).

Proor. Since g, is an isomorphism, it follows that if P is a one-point space,
then g« Hg (P, J) = Hg (P, @). Since Hg, Hg, are compactly supported
ES theories on Cjy.comp, the result follows from Theorem 4.1. [

6. The functional spectrum and the complementary spectrum
of a pair in R"

First we introduce the functional spectrum F(4, B) whose k™ term consists of
the space of continuous functions (4 *, B*)— (S¥, ») topologized with the
compact-open topology. The homotopy groups F* of F(A, B) are part of an
ES theory F*, 6* on Cjoccomp-
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We regard S¥ as (RF)* = R¥U {} with o as base point. Given a locally
compact pair (4, B) let F(A4, B; S*) be the space of all continuous functions
(A*,B*)—(S¥, ) in the compact-open topology with the constant map
A% — o as base point. Clearly F(A4, B; $¥) can also be regarded as the space
of pointed continuous functions A * /B* — S* in the compact-open topology.
It follows from the exponential theorem [4], the compactness of A* and the
fact that S* is an ANR that F(A, B; S¥) is an ANR (the proof of Theorem 4
on p. 38 of [14] applies to our case as well).

It is known [6] that if (4, B) is a locally compact pair the restriction map
F(A, g, 8% — F(B, ;S*) is a fibration with fiber F(A4, B; S*). Therefore,
there is an exact sequence of homotopy groups

- 7rq+k(F(A,B;S")) — 7, (F(A; @5 8%) — g+ k (F(B, ;S5 —
— Ty k- 1(F(A, B; ¥~ 1) — ..

Define €,: X F(A, B; S¥) = F(A, B; S¥*1) by (e, (¢t Af))@) = tAf(a) for
INfeXoF(A,B;S*) = S'AF(A,B;8%), ac A and 3, S* = S'ASk = SK+1.
Let F(4, B) be the spectrum {F(A, B; S%), € }. The direct limit over k of the
exact sequence (*) using the maps ¢, is an exact sequence

- > wy(F(A, B)) = (KA, @) = my(F(B, ) = w4 1(F(A, B)) = -

extending indefinitely on both ends.

If we define a contravariant functor F* on G2, comp DY FYA,B) =
= n_,(F(A, B)) and a natural transformation &*: F/(B, @)~ F?*'(4, B) to
correspond to 9 in the exact sequence above, we see that [*, 6* satisfy the
exactness property of ES theories. We shall prove that F*, §* is an ES theory
on Cyy.comp, but first we establish the following.

Lemma 6.1. Let (K',K) be a compact pair, N a closed cobounded nbhd of
A in X, and \: K— F(N, J; §%), e K= F(A @, S*) continuous functions
such that p|K is the composite K RN F(N, ; S*) 5 F(A, ¢; 8%). Then there is
a closed cobounded nbhd N' of A in N and a map N: K' = F(N', @; 8%) such
that N'|K i zs the composzte K—):> F(N', §; %) F(N, @; S*) and u is the com-
posite K’ > F(N', @; S5 2 F(A, g); §%).

Proor. By the exponential theorem the functions A and u correspond to con-
tinuous functions A: (K X N*,K x o) — (8%, 0)and i: (K’ X A*,K’' X )~
— (S*, o) such that A\|K x A* = |K x A ™. Therefore, there is a continuous
function

F (KXN*UK' X A" ,K' x o)~ (8%, )
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such that f[Kx N* =X and f|[K'x A" = ji. Since K’ Xx N* is compact,
KxN*UK'x A% isclosed in K’ x N* and S* is an ANR there is a mbhd
Uof KXN'UK' X A" in K’ x N* and an extension f: U—~S* of . U
contains a subset of the form K’ X N'* where N'* is a closed cobounded
nbhd of A in N and f’|K’ X N'* corresponds by the exponential theorem to
amap \: K'—= F(N', @; 8% having all the requisite properties. [

Theorem 6.2. The pair F*,6* is a compactly supported ES theory on

eloc comp*

ProoOF. We have already seen that exactness is satisfied. The excision pro-
perty is also satisfied because if (X; 4, B) is a locally compact triad then there
are homeomorphisms for each k&

F(AUB,B;S*)= F(A* UB*)/B*;S8% =
=~FA*/(A* NB*); 8% = F(4, AN B; §%)

so the map of spectra F(AUB, B) — F(A, AN B) induces an isomorphism
of homotopy groups. Therefore, F/(AUB,B)=n_,(F(AUB,B))=
= 7_4(F(4,ANB)) = F(A, ANB) for all q. To complete the proof it suf-
fices to show that for every locally compact space X the restriction of the
functor F*(-, @) to cl(X) satisfies Lemma 3.5. Clearly F*(JJ, @) = 0 so we
need only verify that the following homomorphism is an isomorphism

p: Lim {F*(N, @)|N a closed cobounded nbhd of 4 in X} = F*(4, J)

To show p is an epimorphism let p: S¥*9— F(A4, J; S*) represent an
element {[u]} € 7, (F(4, @) = F~ %A, &) where A C X. By Lemma 6.1 with
K'=8%*9 K=o, N=X, \: ©— F(X, J;S™ the unique pointed map,
p: St FA, g S¥) we obtain a closed cobounded nbhd N’ of 4 in X and
amap \: S¥*9—> F(N', ¢J; S*) representing an element {[\]} € 7, (F(N', @)
whose restriction to F(4, @) equals {[x]}. This implies p is an epimorphism.

To show p is a monomorphism let \: $¥*7— F(N, @J; S¥) represent an
element {[A]} € w,(F(V, @)) whose restriction to F(A4, &) is 0 (where N is a
closed cobounded nbhd of 4 in X). Then there is a map u: CyS k+q_,
— F(A, @; S¥) for some k > k' such that u|S**7 = p o (X§~*\). By Lemma
6.1 with K'=Co,Sk*9, K=Y k-Kgk+a_ gk+a and the maps 25 ¥\
Sk+a— F(N, @; 8%), u: CoS*¥*9— F(A, J; S*) there is a closed cobounded
nbhd N’ of A in N and a map N': Co8** 97— F(N', ; §¥) such that N'|S**2 =
= p' 0 X k=K'\. Therefore, {[\]} maps to 0 in F(N’, ) proving p is a mono-
morphism. [J
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Next, for (4, B) a closed pair. in -R” we define a spectrum C(A4, B) which
stably aproximates (R” — B, R” — A). The homotopy groups C* of this spec-
trum are part of an ET theory C*, * on cl(R").

Let T be an arbitrary but fixed triangulation of S” with oo as vertex and let
T® be the k™ barycentric subdivision of 7 for k > 0. For a closed subset
ACR"=S8"— {oo} let T, (A) be the compact polyhedron equal to the union
of all closed simplexes of 7® disjoint from A* = AU {«}. Clearly T (4) C
C Ty, 1(A) for all £k > 0. We also have:

Lemma 6.3. (1) ACBCR"= T,(B) C T (A) for all k > 0.

2) A, BCR"= T (AUB) = T, (A)N T (B) for all k > 0.

B) A,BC R" = for every k >0 there is N, such that if k' > N, then
T,(ANB) C T (A)U T, (B).

(4) ACNCR" where N is a closed cobounded nbhd of A in R" = for
every k = 0 there is a closed cobounded nbhd N' of A in R” such that N' C N
and T, (N') = T;(N).

Proor. (1) If A C B and s is a closed simplex of 7% disjoint from B, s is
disjoint from 4. Hence, T, (B) C T,(4). O

2) By (1) Tx(AUB)C T} (A) and T,(AUB)C T, (B) so T (AUB)C
C T,(A) N T,(B). Given x let s be the unique closed simplex of 7® containing
x in its interior. Then x € T} (4) N T} (B) if and only if s C T (4) N T (B), but
this implies s is disjoint from A4 and from B so is disjoint from A UB.
Therefore, T,(A)NT, (B) C T,(AUB).

(3) T,(ANB) is the union of a finite number of closed simplexes, say
Ty(ANB) =s,U---Us,. For each j,s; is disjoint from 4 NB so s;N A and
s;N B are disjoint compact sets. Let d; > 0 be the distance between them (in
some metric on S”) and let d = min{d,,...,d,}, choose N so that k' > N,
implies that the diameter of every closed simplex of 7% in less than d. If s’
is any closed simplex of T%” contained in s; for some 1 <j < r, then diam s’ <
<d<djso s' cannot meet both A and B. Therefore, either s’ € T}.(A) or
s’ € T(B). Hence, for k' 2 Ny T, (ANB) C TR (A)UT(B). O

(4) For A C R",S" — T,(A) is an open nbhd of 4A¥. Let M be a closed
nbhd of A* contained in S” — T (A). Then M — {} is a closed cobounded
nbhd of 4 in R". Since T, (4) C S" - M =S"— (M — {o})*, it follows that
T, (A) C T, (M — {=}). If N is any closed cobounded nbhd of 4 in R", then
N' = NN(M — {=})is aclosed cobounded nbhd of 4 in R"” such that N' C N
and since N' C M — {o}, it follows from (1) that

T (A) C TH(M — {}) C TH(N') C T(A)

so that T,(N') = T, (4). O
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Given a closed pair (4, B) in R" we define a spectrum C(A4, B) whose k™
term is 2K (T (B)* /T(A)*) with continuous maps

20 (X5 (T B)* /Ti(A) "))
=20 N (TB) /T ) = Z6 (Tie s 1B) / Tie 51 (A )

where the last map is the (k + 1)st reduced suspension of the map
(TeB)" /T (A ") C (T 1B)* /Ty s 1(A)T)

induced by the inclusion (T (B)*, Tp(A)*) C (T 1 B)F, Ti 1 1(A) ).
We define a contravariant functor C* on cl(R")? by

CUA, B) = m1_4(C(4, B)) = h_i’n {W_q_k(zg(Tk(B)+/Tk(A)+))}.

To define the natural transformation §*: C%(B, ¢) = C?* (A, B) recall [15,
Corollary 9.3.6 on p. 487] that the collapsing map

(E6TeB)*, T Te(AD ) = (Z6(Tu(B) T /T (A) ), )
induces isomorphisms
(26 Tk B) ", g Te(A) ") = m(X5 (Te(B) " /Ti(A) 1))

for i <2k — 2 (because the k™ reduced suspension of a space, or pair, is
(k — 1)-connected). Hence, the connecting homomorphisms

3 Tk (Z (@), ZETeB) ) = T gk - 1(ZETB) T, D Te(AD )
for various k correspond to a homomorphism
6% w_o(C(B, ) = m_,_1(C(A4, B))

This is a natural transformation of degree 1 from C*(B, ¢J) to C*(A, B) for
(A4, B) € cl(R™)? such that C*, 6* satisfy the exactness property of ES theories.

Theorem 6.4. C*,6* is a compactly supported ES theory on R".

Proor. We have seen above that C*, 6* satisfy exactness. To verify excision
assume A, B are closed subsets of R”. By (2) of Lemma 6.3
lim {me—o(Z6(Te® ™ /(T NTL(B*)}
~ lim {rk_q(Z’o‘(Tk(B)*/Tk(A UB*)))} = CY(AUB,B).
K

From (3) of Lemma (6.3) for given k if k' > N, there are homomorphisms
induced by inclusion
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Te— o (SE (T UT(B) )/ Ti(A) ) = T _ o(ZE(T(ANB)* /Ti(A) )
= T o(SE (T (A Y U T (B) )/ Ti(A) )

implying that
lim {(Tk_ (b (Tr(A) Y UT(BY)/T(A)Y))}

~ lim {7 o(Z5(TeANB)/TelA) )} = CUA4, ANB).

Since
T, (B)" /(Te(A)* NT(B)*) = (T (A) T UT(B¥))/T(A) ",
it follows that

lim {7k g CE(TeB)* /(T NT(B)*)) )
= 1'1_;13 {7 g(ZE(T(A) T UT(B))/Ti(A) 1))}

so that CY(4UB, B) = C%(A, ANB) and excision is satisfied.
To complete the proof we show that the functor C*(-, ¢J) satisfies Lemma
3.5. Clearly C*((, @) = 0. Hence, we only need verify that

p: lim {C*(N, @)|N a closed cobounded nbhd of 4 in R"} = C*(4, @)

To show p is an epimorphism let
pe 8571 = B5(T(@)* /T(A))

represent an element we 7_,(C(4, &) = CYA4, @) for some A C R". By
(4) of Lemma 6.3 with N = [R” there is a closed cobounded nbhd N’ of A4
in R” such that T (N') = Ti(A). Then p is also a map from S*~7 into
S6(T(D)* /Te(N)*) so determines an element o' € 7_,(C(N', ) whose
restriction to C(A4, @) equals w. Thus, p is an epimorphism.

To show p is a monomorphism let \: $*~7— (T (@) /T (N)")
represent an element w € 7_ ,(C(V, (J)) whose restriction to C(A4, J) = 0 (where
Nis a closed cobounded nbhd of 4 in R"). Then there is a map p: CoS¥ =7
- 2K (T (@)t /Ti(A) ™) for some k' > k such that u|S* =7 =p’ 0 2E %))
where p": 36 (To(2)* /T (N) ") = 2§ (T (D) /Tir(A) ). By (4) of Lem-
ma 6.3 there is a closed cobounded nbhd N’ of 4 in R” such that N’ C N and
Ty (N') = Ty(A). Then p is also a map from C,S* =7 to XK' (T.(@)*/
/T (N")") implying that w restricts to 0 in C(N’, &). Thus, p is a monomor-
phism. [
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7. Duality in R"

In the last section C*, 6* was defined as a compactly supported ES theory on
R”. By Theorem 6.2 the restriction of F*, §* to R” is also a compactly sup-
ported ES theory on R”. This implies that ¢"F*, 6* is also an ES theory on R"
(where ¢” is defined as in Remark 2.3 of [18] so that

(6"F*)%(A4, B) = F** (4, B)).

Since F*(A, B) is the ES theory defined by the spectrum F(A4, B), ¢"F*(A, B)
is the ES theory defined by the spectrum X5 F*(4, B) whose m™ term is the
(n + m)® term of F(A, B). We shall define a map of spectra

u: C(A, B) = 25 F(A, B)
for (4, B) € cl(R®?. This will induce a homomorphism

CYA, B) = 7_ ,(C(A4, B)) = 7_ (34 F(A, B)) = 7_,_ ,(F(A4, B))
= F""(4, B) = (¢"F*)%(4, B)

and p4 will be a homomorphism from C*, 6* to o"[F*, 6*.
Given a closed pair (A4, B) in R” for every k > 0 there is a continuous map

et RE X (Th(B), T((A)) X (4, B) — (R¥ x R" = R"*¥ R"+¥ _ (0})

defined by A\, (x, 7,2) = (x,y — 2) for xe R¥, y € T,(B), z€ A. Since T, (B) is
a compact subset of R*,\; is a proper map so extends to a continuous map

Mt [RE X (T(B), Te(A) X (A, B)]* — (R** 4, R** ¥ — (o™
There is a canonical homeomorphism
[RC X (Ti(B), Te(A)) X (A, B)]* = S“A(T(B)*, Ti(A)*)A(A™,BY)
Therefore, A can also be regarded as a map
M SEA(TeB)*, Te(A))NAT, BY) = (S, 8"+ — {0)).
This map N/ has the following two properties.

(1) If (A4, B)C(A4,B), then (T, (B),Ti(4)) C (T (B"), Tp(A")) and
N ISEA(T(B)*, T(A)HANA ™, B )] = N\ |ISKATB) F, Te(A) )
AA'T B ).

(2) For any k>0, (Ty(B),Tx(A) C(Ty41(B), Tr,1(A)) and
M lIS* I A(T(B) Y, T(A))AA™,BY)] = T (A).
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Since o is a deformation retract of S"** — (0} if it (Sn+k, ©)C
C (S"*k,8"** — {0}) is the inclusion map, there is a map

M SEAT(B)Y, T(A)IAAT,BY) > (S"*F, )

such that \; = i o)X/ and this condition determines \; up to homotopy. We
may also consider \; as a pointed map Az S¥A(T,(B)* /T (AT )NA™"/
/B*)— S"+* By the exponential theorem [4] N4 corresponds to a continuous
function

Pics Z’J(Tk(B)+/Tk(A)+) — F(A, B; Sn+k)
By (2) above the following square commutes up to homotopy

Yo S (TeB) /T (A) ) —> St (Tie . 1 B), Ty 1 (A )
Zo#k Pr+1
SoF(A, B; S"+ky =25 F(A, B; S"*k+1)

Therefore, {p,} is a map of spectra
p: C(A4, B) = 2i5F(4, B)
and it follows from (1) above that the map
pe: CUA, B) — (¢"F*)Y(A, B)

is a natural transformation from C* to ¢"F*. It is easy to verify that p,
commutes with 6* for the two ES theories so it is a homomorphism of ES
theories.

Theorem 7.1. The homomorphism py: C*,6* — o"F*, 6* is an isomorphism
of ES theories on R".

Proor. Using the «five-lemmay it suffices to prove that us is an isomor-
phism of the corresponding cohomology theories. Since each is compactly
supported and R” is finite dimensional, it suffices to prove pus is an isomor-
phism for (x, @) for every x € R". But F(x, @; §¥) = S¥ so 22 F(x, @) is the
spectrum S”, 8"*1, ... . Also the pair (T ({)), T (x)) for k large is an n-cell
together with the complement of an open #n-cell inside it and the map
bt 2E(T(@) T /Te() ) — S" ¥ is of degree 1. Therefore,

px: _o(Cx, @) = w_ (20 F(x, @)) for all gq. O
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Corollary 7.2. If (A, B), (C, D), are closed pairs in R" there is a duality
isomorphism

{A*/B*;C(C,D)}* = {C*/D*;C(A, B)}? forall gq.

Proor. If (C, D) € cl(R"? then by Theorem 7.1 there is a map p: C(C, D) —
- 20 F(C, D) such that

ps: my(C(C, D)) = 1, (L& F(C, D)) for all gq.

Since both C(C,D) and 2.jF(C,D) are ANR spectra, it follows from
Theorem 5.3 that for every locally compact pair (4, B)

Pose H%(C,D)(A!B)zH (AyB)

q
%5 F(C, D)
or equivalently,

{A*,B*;C(C,D)}*= {A*,B*; 24 F(C,D)}?

= lim ([Z&(A*/B*); F(C,D; S" ¥+ 9)])

By the exponential theorem the last limit is isomorphic to

li_r)n {[ZIOc(A+/B+)A(C+/D+);Sn+k+q]}
k

There are canonical homomorphisms
6T /BT)N(CT /DY) = S“N(AT /B*)AN(C* /D)
~ S“A(C*/D*)N(A*Y/BY) = L5(C*/D*)N(A™/BY)
so that
{(A47,B*,C(C, D)} = 11_k111 ([Z&(C*/DTYNAY/BY); 8" EH ]}
~ lim ([Z6(C*/D"); F(A, B; S"*** 9]}
~ {C",D*; 23HA, B)}?
In case (A4, B) is also a closed pair in R” there is also an isomorphism
(C*,D¥;C(A,B)}?% (C*,D*; T4 KA, B))?
Combining these isomorphisms gives the result. [J
Our final result is due to Lima [13]. In the proof we essentially show that

for a compact A C S”, the spectrum of S"— A and X5~ 'F(4, ) are
equivalent (compare with [8, Theorem 4.5]).
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Corollary 7.3. Let A, B be nonempty proper compact subsets of S". Then
{A;S" —B}?= {B;S"— A}? foral gq.

Proor. If ¢ is a homeomorphism of S” and the result is valid for A4, B it is
also valid for ¢(A), B and A, ¢(B) so, without loss of generality, we can
assume © € ANB. ThenA4 = (4")*, B = (B")* for closed subsets A’, B’ C R".
By Coroliary 7.2 there is a duality isomorphism

(A7 /2 CB', D} = (B /D CA, )}

For k large T,() is a closed n-cell containing 7,(B’) and, therefore,
T (@)t /T (B)* has the same homotopy type as >, T (B’), and we have

(A /@ CB, @)} = lim ([ZEA); 267 (Th s o (D) / Tk oBY])
~ lim ([Z6A); X619 Ty y o(BN] ]

(where in the above T (B') is given an arbitrary base point for & large enough
which is also the base point for T,.(B’) for k' > k and for S" — B). Since
{Tx(B)}, is an increasing sequence of subspaces of S” — B such that
Ugint 7, (B') = S" — B, it follows that for the compact space A4,

[4: 2§71 ("~ B)] ~ lim {[4; 287" Tu(®)])},
and this implies that
(4;8"~ B)** = lim ([Z60; Z6* 77 L@} ~ (4 /0, CB, §))".

Similarly {B;S" — A}?*' = (B'* /@ *; C(A’, ¥)}?. Combining these isomor-
phisms with the duality isomorphism gives the result. [
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