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Fourier Analysis in
Several Parameters

R. Fefferman
Dedicated to my dear friend and teacher, Professor Alberto P. Calderén

Clearly, one of the most basic contributions to the fields of real variables, par-
tial differential equations and Fourier analysis in recent times has been the
celebrated theorem of Calderén and Zygmund on the boundedness of singular
integrals on R” [1]. One way to state this result is as follows:

Theorem. Suppose T is a bounded linear operator on L>(R™). Suppose further
that whenever a(x) is a function supported on a cube Q satisfying j 0 a(x)dx =0,
then-T satisfies

[ 1T@w]|dx< Clal g,
Q

where Q denotes the double of Q. Then T is of weak type on L'(R"), i.e. for
each o > 0 and fe L'(R"),

c
(xR TU@] > )| <= 1] pagen

From here, as everyone knows, by interpolation, we may obtain L” results
when 1 < p < 2. The importance of this result goes beyond what is apparent
from the statement of the theorem. Rather, in the proof, we clearly see the
role of the Hardy-Littlewood Maximal operator, and how this operator con-
trols classical singular integrals. In a great number of problems in higher
dimensions, the Hardy-Littlewood operator no longer suffices to control the
operator at hand, and one is forced to deal with more complicated maximal
functions. Let us give some basic examples from the theory of Fourier integrals
in R". In each case, just as in the classical Calderén-Zygmund case, a particular
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maximal operator will be considered which controls the singular integral in
question. Somewhat later, we shall consider the question of how to prove
estimates on these maximal operators.

If f(x) is a function on R” with Fourier transform f(£), £ € R", then in some
sense the central concern of Fourier analysis should be to determine in which
sense we have

foy = [ F®e**at.

There are a number of ways in which we can form the partial sum operators
corresponding to this Fourier integral. First we can take «rectangular partial
sums» given by

S"l,fz ..... r, (x) = I f(E)eiE'XdE.

IS,I <r;

It is easy to see that for many purposes, just as in one dimension the partial
sum operators are controlled by the Hilbert transform, the rectangular partial
sums are best understood in terms of the multiple Hilbert transform,
H,H, - - H, given by

HH,-- 'an=f*m'

This singular integral, although bounded on all the spaces L?(R") for
1 < p < = is very different from the classical Calderén-Zygmund operators
on R”". The kernel of this multiparameter singular integral has singularities on
the coordinate hyperplanes, unlike the Calderén-Zygmund kernels, which are
smooth away from the origin. As a result, the singular integrals like the multi-
ple Hilbert transform are not weak type on L!(R"). The maximal operator
which is relevant to the study of operators like H,H, - - - H, is the Jessen-
Marcinkiewicz-Zygmund strong maximal function, My f, defined at a point
x€eR" by

1
My f(x) = sup—f | f)| dy,
xer |R| Jr

where the sup is taken over all rectangles R S R” whose sides are parallel to
the coordinate axes and contain x. As we would expect, My is not weak type
on L', but rather satisfies

n C
[{(xeR"| x| <1, Mf(x) > o} SE | f 1 Laogzyn- 1021 < 1y -
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We shall consider singular integrals and maximal functions like H,H, - - - H,
and M later in this article. They are important because in some sense they
are the simplest examples which commute with a multiple parameter family
of dilations, and hence are the best understood. Next, suppose we consider the
spherical partial sum operators:

n 172
SAf)x) = f(®e* *dt, where |¢] = <Z E?) -
&l <r i=1
Although one might be tempted to guess, from the presence of the single
parameter r, that the convergence of the S,f in L” should be a consequence
of the theory of the classical Calderén-Zygmund singular integrals and maxi-
mal functions, this is not at all the case. Rather the operator S, is much more
complicated. As Charles Fefferman [2] has shown, the operator S,, which in
one dimension is bounded on all L? for 1 < p < o, is unbounded on all L?(R")
whenever n > 1 and p # 2. The reason for the bad behavior of S, is that the
controlling maximal operator is the multiparameter «Kakeya maximal
operator», My defined by

X€R

1
Mg f(x) = sup R L |f(»)| dy,

where the supremum is taken over all rectangles (of arbitrary orientation) con-
taining x. This operator is unbounded on all L” spaces whenever p < «. In
order to have a theory of operators which resemble the multiplier 7 given by
TF (%) = Xigl <1 f(®, but which has interesting positive results about L7
boundedness, we may look in two directions.

First, we may view the negative results about 7 to be a consequence of the
lack of smoothness of the multiplier x|; < ;. We may ask what happens when
we replace Xz <, by its smooth analogue Xz <; - (1 — |£[)% = m,(§), to get
the Bochner-Riesz operator of order «, T, given by

T.f(® = mo(®) - 7O,

when a > 0.

Now, these operators, at least in R?, are controlled by a maximal function
of the Kakeya type, but somewhat more tame. According to the work of
Carleson-Sjolin, [3] C. Fefferman [4] and Cordoba [5], T, is a bounded
operator on L”(R?) when 4/3 < p <4 and a > 0. Fefferman and Cérdoba
explain this by introducing real variable machinery centered around the max-
imal operators

1
MySf(x) = sup

xeReR, |R|

j | f(»)] dy
R
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where R, denotes the set of all rectangles whose eccentricity does not exceed
N. Thus, as N — o, in some sense M — My and so of course the M could
not be uniformly bounded. However, for p > 2, in R? the operator norm of
M, grows only like a power of log N as N becomes large, while if p < 2 its
norm grows like a power of N. It turns out that the behavior of 91, on L3(R?)
controls that of 7, on L*(R?). Below, we shall see that the properties of My
on the critical space L"(R") for n > 3 are not at this time understood, and so
we also do not know the L” boundedness of certain of the 7, in higher dimen-
sions. This is one of the important open questions of the multiple parameter
theory.

There is also another way of recapturing a set of positive results analogous
to the negative ones for the disk multiplier. Since X}, < ; is not a multiplier on
LP(R?) except when p = 2, it is natural to ask for a characterization of those
sets S < R? for which xg(¢) is a multiplier. Charles Fefferman’s counter-
example to the disk conjecture shows that for a «nice» open set S whose bounda-
ry is curved, there are no non-trivial multiplier results on L” for xg. This leads
to the remaining case in which the boundary of S consists of line segments
oriented in certain directions 6, K =1,2,... . Cérdoba and the author [6]
have proven roughly that if one considers the maximal operator M, cor-
responding to the class of rectangles oriented in one of the directions 6, then
Xs is bounded on LP(R?) if and only if 917, is bounded on L¥"?'(R?) (here
p >2). Notice that under the correspondence p — (p/2)' the L* result for
multipliers corresponds to an L? result for maximal functions, which suggests
that the pattern of dependence discussed above of T, on My is valid in more
general contexts. The theme of Calderén and Zygmund that the boundedness
properties of multipliers and singular integrals are governed by those of maxi-
mal operators hast thus been extended in may cases to the multi-parameter
setting. Naturally, it becomes very important, in light of this, to prove maxi-
mal theorems. Although as recently as about ten years ago very little was
known about maximal functions, today there are two basic approaches known
which allow us to solve these problems. These are the «Fourier transform
approach» and «covering lemma approach» which have been discussed in
detail on many occasions (see Stein-Wainger [7], and Cérdoba [8], R. Feffer-
man [9]). Rather than repeating already familiar themes, perhaps it would be
more enlightening to mention the main unsolved problem in the area, and why
the two techniques, as they stand, seem inadequate to settle this problem.
Quite simply, we are unable to obtain results so far about maximal operators
which are aunbounded on L%(R"™). (The main examples are Kakeya type maxi-
mal functions when # > 3 and the Stein spherical maximal function on R?).
It is clear that the obvious application of Fourier transform techniques will
not work in such a context, because on the L” spaces we must deal with, the
Plancherel theorem is not available. On the other hand, to prove an L? maxi-
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mal theorem via the covering lemma approach, we must consider estimating,
for appropriate sets {Ry}._ , .. ., the quantity

1
[

where —1—+ =1
p b

7

e’

We usually only know how to do this when p’ is an integer m, since then we
may expand (Z ka)"’, and finish by estimating quantities like leI NR,N---N
ﬂkal (see Cérdoba-R. Fefferman [10]). Unfortunately, when 2 < p < o,
1 < p’ <2, hence p’ will be non-integral, and this technique cannot be applied.
Whether a third, totally different approach will be required to solve such
problems, or just a clever twist of the existing machinery, only time will tell.

Let us now retreat a little, and go back to the simplest case of a
multiparameter problem, the case of product spaces. Before doing this we
shall remind the reader of two theorems of enormous importance from the
classical theory.

(1) (H'(R"))* = BMO(R'). This theorem of C. Fefferman characterizes
those functions ¢(x) which act, by integration, continously on H!(R') =
= {fe L'(R"|H(f) e L'(R")}. Such ¢ are characterized by the estimate

1
TIT LI‘#(X) - ¢]*dx<C

for all intervals 7, and C independent of I. (Here ¢, is the mean value of ¢(x)
over I) [11].

(2) The Atomic Decomposition of HP(R'), p < 1. Coifman [12] showed
that every function fe H?(R') could be written in the form f= X, _; \es
where \, are scalars satisfying 2 |\¢|” < C| f |&»s&1) and the g, are functions
known as H” atoms. An atom is a function @(x) supported on an interval /
such that a certain number, N(p), of its moments vanish,

La(x)xkdx =0 vk <N(p) and |a|,,< |[I|"*""7.

(We shall not be concerned here about the exact value of N(p), except to
remark that as p — 0, N(p) = « and for p close enough to 1, we may take
N(p) = 0).

Using these theorems, as we all know, enables us to obtain trivially results
which, prior to their discovery, were either unproven or else most difficult to
prove.

What we shall consider here is the theory, on R?, of operators like the dou-
ble Hilbert transform H,H, f = f*(1/x,x,), which are singular integrals with
kernels having one dimensional singularity sets. It is trivial to observe that
H, H, is a bounded operator on IP(R*) when 1 < p < o, by an iteration argu-
ment. We might ask whether there is an H? theory for p <1 which cor-
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responds to the double Hilbert transform in the same way that classical H”
theory on R! corresponds to the ordinary Hilbert transform. Thanks to the
efforts of Gundy and Stein [13], there is such a theory, which we shall now
describe. Let us, in analogy to classical Hardy space theory set H(R' x R') =
= {fe L (R*»|H,f, H,f, and H,H,feL'(R%}. Then if S(f) denotes the
Lusin area integral of the biharmonic extension, u, of fto R% x R? , and f*
denotes the non-tangential maximal function of u, then according to the
Gundy-Stein theorem fe H}(R! x R') < S(f)eLY(R*) & f*eL'(R®. Ac-
cording to this theorem, S(f) e L”(R?) is equivalent to f* e L?(R?) for all
p >0, so that we may define H?(R' x R') as the set of all f so that f* or
S(f) € LP(R?), p > 0. At this point we come to a very important question. Do
we have simple analogues, in this product space setting, of the two theorems
above on H'-BMO duality and on the atomic decomposition of H” spaces?

There is an obvious guess as to what the BMO space and atoms should look
like. Take the case of an H'(R! x R?') atom. The simplest example of such an
object should be functions of the form a,(x;)a,(x,) where each g; is an H'(R")
classical atom. Of course such functions satisfy:

(1) a(x;,x,) is supported in a rectangle R = I x J with a2, < |R| ™"
and
V) La(xl,xz) de,=0 VxeJ

La(xl,xz) dx,=0 vV x el

Such a function (for reasons which we shall mention shortly) will be called
an H'(R! x RY) rectangle atom. To define H? rectangle atom, we simply
change |R| ~?in (1) above to |R|*/>~ /7, and require an appropriate number
of moments of @ in each variable separately to vanish. (If p is sufficiently close
to 1 the vanishing of the mean value in (2) is sufficient).

Now a very important conjecture was that every fe H*(R' x R") could be
written as an absolutely convergent sum of such rectangle atoms. Along with
this conjecture, was the companion which asked whether the dual space of
H'(R' X RY) (call it BMO(R! x RY)) could be characterized as those functions
é € L}, (R?) such that for each rectangle R, there exist functions #X(x,) and
$X(x,) so that

1
W JR |¢(x1, X;) — ¢f(x1) - ¢§(x2)|2 dxl dxz <C.

These conjectures where both disproven by Lennart Carleson [14] in 1974,
and for some time it appeared that there could be no simple A? and BMO
theory for product spaces.

Somewhat later, Alice Chang and R. Fefferman [15] gave an atomic decom-
position of HP(R' x RY), for 0 < p <1, and a characterization of BMO in
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which the role of rectangie was, to some extent replaced by arbitrary open sets
of finite measure. Let us be specific and give the precise definition of an
HY(R' x R') atom a. Suppose Q is an open set of finite measure in R* and
®R(Q) denotes the family of all maximal dyadic subrectangles of Q. An H'
atom « is a function supported in Q satisfying |a|,, < [2| ~'/* and a can be
written as @ = 2} re®(a) @R Where ap where ag is supported in the double of
R, satisfies f,aR(xl,xz) dx; = LaR(xl,xz) dx, = 0 where the double of R is
IxJ, and (Xg |egl?.)"? < 19172 Chang-Fefferman [15] also gave a
characterization of BMO(R' x R?) corresponding to this atomic decomposi-
tion, and proved interpolation results [16] between these H? spaces for p < 1
and the spaces L? for p > 1. These results have a number of applications, and
we just mention briefly that as one of them, we have a real variable proof that
if for some f, S(f) e L?, p < 1, then f* € L?, which Gundy and Stein proved
using the theory of analytic functions of a complex variable or Brownian mo-
tion probabilistic arguments.

The main applications of this A” and BMO theory were discovered quite
recently by J. L. Journé [17], whose work we shall describe below. Journé was
interested in two types of product singular integral results. The first was the
problem of obtaining L? estimates for bi-commutator integrals. Here, we shall
state a special case of his result. Suppose that (324 /dx,8x,)(x;, X,) € L*(R?).
Suppose we set A(Xy, Xp, 1, ¥2) = A(V1,¥2) — A1, ¥2) — A1, %) + A(Xy, Xp)
and

_ [A'(xls x2: }’1,)’2)]kf(y1s&2_
TS 30) = HRz G~ ) — )L 1P

Then the bicommutator 7T}, is bounded on L?(R?) for k > 1. This is proved
via a «T1-theorem» which is stated in terms of the space BMO(R' x R') as
discussed above.

The second result Journé considers is the generalization to two dimensions
of J.L. Rubio de Francia’s theorem on Littlewood-Paley theory. Suppose
that p, is a sequence of disjoint rectangles in R> and for each k let
$f()) = X, (§17(®). Then Journé shows that |(31Se/1?)"* | < Gl f1 1o
for all p > 2.

The reader familiar with the one parameter analogues of the two theorems
above realizes that they are both phrased in terms of L? or L” estimates, but they
are really theorems about operators which map L* into BMO. It is not surpris-
ing then, that in order to show these results, Journé proves a general theorem
about operators mapping Z* boundedly to BMO(R' x R"). To state his theorem
precisely we require some notation. Suppose that K(x, y) is a kernel with x, y € R*
and that the associated integral operator Sf(x) = le K(x,y)f(»)dy is bounded
on L*(R"). Suppose that for some 6 > 0 and for all y > 2,
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™ [ Ky - K&, ldy <Oy

[y = x| >ylx—x|

Then define the norm | |, by | S|, = |82, ;2 + inf {C|*holds}. Now sup-
pose K(x;, X,, ¥1, ¥,) is defined for x;, y; € R'. Set K'(x;, ;) to be the operator on
R whose kernel is K'(x;, y1)(X, ¥5) = K(X;, X, ¥1, V), and define K? similarly.
The theorem in [17] is then: Let

Tf(1, %) = [[ o, KCeay X2, 91,720 (01, 92) dyy
and suppose 7T is bounded on L?(R?). Suppose further that

“Izl(xlayl) - Izl(xllayl) "czdyl < C'Y_B

[y = x> vlx; — x4l

and similarly for K2. Then 7 maps L*(R*) boundedly to BMO(R! x R%).

In proving this result, Journé introduces a beautiful covering lemma for
rectangles, and we can state this in one of its forms as follows. Suppose
Q < R? is an open set of finite measure.

Denote by ®,(2) those dyadic subrectangles of 2 which are maximal in the
x, direction. Let @ = {My(x,) > 1/2} where M is the strong maximal
operator. For R = I X J e ®,(Q), suppose 8 is the biggest dyadic interval con-
taining 7 so that 8 x J S (1. Finally, set y,(R) = |$/I|. Then

2 [Rm®° <l
Re&®,(2)

A similar estimate holds reversing the roles of the x; and x, variables.

Also quite recently, R. Fefferman [18] has proven a theorem along these
lines which states that in order to know the action of an operator on L?, H?,
or LlogL, all we have to do is to check the action of that operator on a rec-
tangle atom. In other words it is almost as if Carleson’s counterexaple did not
exist:

Theorem [18], [19]: Suppose that an operator T is bounded on L3(R?). Sup-
pose further that if a is a rectangle H” atom, p < 1, supported on a rectangle
R we have

L |T(@)| dx,dx, < Cy~® forall ~>2.
Ry

(Here R'., is the dilation of R by a factor y concentric with R.) Then 7 maps
HP(R' x R") boundedly to LP(R! x R') and in the case p = 1 we have

C
l{(xpxz)l x| <1, |Tf(xlax2)| > o} S; “f"LlogL'
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The proof is totally trivial once we have both the H” atomic decomposition
and the Journé covering lemma. (For L log L there is one extra twist. One uses
an atomic decomposition for L log L see [19].) Let us give a rough outline of
the proof to show that if p = 1, Tmaps H' boundedly to L. We take an atom
a with associated open set  and decomposition @ = >, _gq) % To each
R =1XxJ, associate the largest dyadic S D7 so that § XxJ< Q. Let
R, =8 X J. Then R, € ®,(Q), and let § be maximal containing J so that
8§ x g = Q. Let R be the tenfold dilation of $ X g. Since R < @ it is enough
to show that

X[ ITeg)ldxdx, <C,
R YCR

since
[ e | T@| dx;dx, <|UR|V?| T(@)] . < ClQ]*0) = = C.
We estimate each LR_ | T(ceg)|dx, dx, in the most simple way. For instance
Ji, o5 1T@Rdx 22 S TR *latel 12 |RI?

by the hypothesis of the theorem (here § is the tenfold dilate of 8). If we sum
on R and use Cauchy-Schwarz, we get

2 j‘ 'T(O‘R)i dx, dx, < 3 | 57 ] ”L2|R|l/271(R)ﬂS
R Jx; ¢8R R

< (B legls:) (S IR @)
< 'QI -1/2 Clﬂil/z =C.
The estimate of 2, x, £3 | T(ceg)| dx; dx, is only a little bit trickier (see
[18]), and finishes the proof.
Before finishing we should remark that there are a number of applications
of the theorem above, and here we content ourselves with the statement of just

one of them. This is joint work of R. Fefferman with K. C. Lin [20].
Let a bounded function m(&, 7) be given on R” X R™ satisfying

&1/ |q] ¥ 9ga8m(E, )| < C

for all multi-indices o, 8 with |a| < [n/2] + 1, |B]| < [m/2] + 1. Let Tf(¢, ) =
= m(Sa 77) f(gs 7’) Then

l{(x’y)ER" X le le’ Iyl < 1’ ‘Tf(x!y)l > a}i < C/a "f"LlogL"‘(]x],]stl)'

While there can be little doubt that much progress has been made in the area
of multiple parameter Fourier analysis, it is also clear that most of the work
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is yet to come. Perhaps it can be said that this is the most central area of
modern Fourier Analysis where our knowledge is at such a primitive level.
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