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Introduction

In this paper we show that the Euler equation for incompressible fluids in R?
is well posed in the (vector-valued) Lebesgue spaces

IP=(1 - A"’ [P(R*) with s>1+4+2/p, 1<p<o,

and that the same is true of the Navier-Stokes equation uniformly in the
viscosity ». The solutions obtained are classical since L? C C?. (The L? are also
called generalized Sobolev spaces, Liouville spaces, or spaces of Bessel poten-
tials; see Calderon [4], Stein [16], Bergh-Lofstrom [3]. We use the notation
L? indiscriminately for scalar and vector valued functions.)

In well-posedness we include existence, uniqueness and persistence. (Per-
sistence means that the state u(¢) of the fluid at time ¢ belongs to the same
function space X as does the initial state and describes a continuous curve in
X.) The continuity of the map u(0) — u(f) in L? is not considered here,
however.

The standard norm for ueL? is |(1 — A)*?u|,, which may admit dif-
ferent interpretations in the vector case. But any equivalent norms are accep-
table for our purposes.
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The initial value problem for the Navier-Stokes equation in space domain
R™, m=2,3,..., may be written

ou—vAu+w-u+dr=f (xeR", t>0),
divu =0, u(x, 0) = o(x),

where 9, = 3/9¢, 8 = grad = (8, ...,0,,) = (3/3xy,...,0/0x,,); u = u(x,t) =
= (uy(x, 1), . . ., u,(x, t)) is the velocity field; = = w(x, t) is the pressure; » > 0
is the kinematic viscosity; (« - 9)u has j-component u,0d,u; (with summation
convention); and f = f(x, t) is a given external force.

The initial value problem for the Euler equation is formally given by setting
v = 0 in the Navier-Stokes problem.

In these equations, it is convenient to eliminate the pressure 7 by applying
the projection operator P, which projects into solenoidal vectors and an-
nihilates gradients, to transform them into

(NS) du—vAu+Fu)=f, Pu=u, Pf=f  u(0)=6é.
(E) du+Fu)y=f, Pu=u, Pf=f, u0)=¢,

where
F(u) = F(u, u), F(u,v) = P(u - d)v.
The pressure can then be recovered by
or = —(1 — P)(u - d)u,

and by subsequent integration of d«. There is no difficulty in the integration
since d7 will be continuous and bounded in most cases we consider, but 7 will
be determined only up to an additive constant depending on ¢, and 7 may be
unbounded.

P is formally given by P= (1 — ajakA'l), and is a pseudo-differential
operator with a matrix symbol (6;, — &,/ |%); Pis a continuous operator on
L?into itself, as is seen by Mihlin’s theorem (see [13]). It is in fact a singular
integral operator with a matrix kernel of Calderén-Zygmund type (see [S])
except for some delta-function components in diagonal elements.

The existence and uniqueness for the Navier-Stokes equation in R? was pro-
ved by Leray [11]; here persistence holds with X = PL2. The existence and
uniqueness for the Euler equation in a domain @ C R? (interior or exterior)
was proved by Wolibner [18]; here it is assumed that the initial vorticity rot ¢
is Hélder continuous and bounded by const (1 + |x|) ™', and persistence
holds in the corresponding space for the velocity field. Analogous results were
proved by Golovkin [6] and McGrath [12], in which the Navier stokes equa-
tion was also studied together with the convergence problem as » — 0. The
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function spaces used by the latter authors where more restricted than
Wolibner’s, and the persistence property was not obious in their cases. See
also Yudovic [19] and Bardos [1] for related results in bounded domains in R2.

It is of some interest to find other function spaces X in which one has well-
posedness for the Euler equation as well as for the Navier-Stokes equation
with uniformity in ». It is shown in Kato [9] that X = PL? has this property
if s > 2. In [14] Ponce proves that X = PL?N L? has the property if 2 < p < «
and s > 2, except the case s = p = 2. In the present paper we shall extend these
results to all X = PL? with s > 1+ 2/p, 1 < p < . It may be noted that if
p > 2, the solution need not have a finite energy (= L?-norm squared).

The plan of this paper is as follows. In section 1 we prove that (NS) is local-
ly (in time) well-posed in PLAR™) with 1 < p < o, s > 1 + m/p (Theorem I).
In the remainder of the paper we assume m =2, s> 1+ 2/p, and f= 0 for
simplicity. In section 2 we prepare some lemmas on linearized vorticity equa-
tion derived from (NS), with a view to obtaining uniform estimates in ». Using
these results, we prove in section 3 that (NS) is globally well-posed in PL?,
 with uniform estimates for » > 0 (Theorem II). In section 4, we prove the
main theorem on the global well-posedness of (E) (Theorem III), together
with a convergente theorem as v — 0 (Theorem IV). In Appendix we prove
some of the lemmas used in the proofs.

1. Local theory for the N-S equation

In this section we prove that the Navier-Stokes equation in R™ is locally (in
time) well posed in the Lebesgue spaces PL? (see introduction for the defini-
tion). In what follows we simply denote by L? either LE(R™) or LAR™; R™)
(vector-valued functions), and by PL? the subspace of the latter restricted by
the divergence condition 9 - # = d;u; = 0 (with summation convention). We
denote the norm in L% (scalar or vector-valued) by | | ,.

The main result of this section is given by

Theorem 1. Let
(1.1 s>1+m/p, l1<p<co,

Let ¢ € PLE and fe C([0, Tyl; PLY). Then thereis T > 0, T < Ty, and a unique
solution to (NS) such that

(1.2) ue C([0, T1; PL)NC((0, T1; PL?, )N C'((0, T1; PL?_ ).
Moreover, we have

(1.3) [u@) 511, <KV [Ou@)]sy,, <KtV
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T and K depend on m, s, p, v > 0, | ¢| , and the norm of f in C([0, To]; LY).
In particular if f= 0, then ue C((0, T); L?).

Remark 1.1. (a) The assumptions on ¢ and f can be considerably weakened
if u(t) e L? is not required to be continuous up to ¢ = 0.

(b) In this theorem only a single value of p is involved. If p > 2, the solu-
tion u(¢) need not have a finite energy (= L*-norm).

For the proof of Theorem I, we shall use the method of integral equation
as in previous publications [7,10] (cf. also [8]). Since the proof is almost iden-
tical with (and simpler than) those given in these papers, it will suffice to
indicate only the main points.

In this section we frequently write | |, for | |5, ,, since p will be fixed
throughout. The operator norm from Z# into L%, will be denoted by | |-
Also we assume that » = 1 without loss of generality, since we keep » >0
fixed.

First we convert (NS) into the integral equation

(1.9) u(®) = u(t) + [, Ut — DF@(n)dr,
where
(1.5) U@ =exp (i),  ut) = UO$ + [, UG - D) dr.

Lemma 1.2. (U(?); ¢ > 0) forms a contractive and analytic Cy-semigroup on
L% as well as on PLZ Moreover, U(f) is bounded for ¢ > 0 from PLZ into
PILZ%, with s’ > s, with the operator norm

(1.6) [U®) |50 ScU+17C79%) (>0,

where ¢ depends on s’ — s (in addition to m and p, which are fixed), but it may
be taken as a constant as long as s and s’ vary on a finite interval.

Proor. The semigroup properties of U(¢) in L? are well known. The same
properties hold in L” and PL? because U(f) commutes with (1 — A)*? and with
P. For the same reason, we have

“ u@) " 58 = "(1 - A)(SI_S)/ZU(t) ”0;0'

If (s’ — 5)/2 is an integer, (1.6) follows immediately from this. The general
case can be dealt with by interpolation. (Or one may apply Mihlin’s theorem
directly to the symbol (1 + |£[>)" =92 exp (—¢|£>).) O

The basic property of the nonlinear operator F(u, v) is given by
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Lemma 1.3. IfueL?_, and ve L? with s> 1+ m/p, then F(u,v)e PL?_,
with

(17) "F(u’ v)”s—l,pSc"u"s—l,puv"s,p-

Proor. This is an immediate consequence of the fact that (the scalar-valued)
L?_, is a Banach algebra under pointwise multiplication (see Stein [16],
Strichartz [17]). O

Lemma 1.4. Let Gu,v)= (1 — P)u-d)v. If u,ve PLEY with s> 1+ m/p,
then G(u, v) = G(v, u) € L with

(1.8) |G, )|, p < cluls,plv]s,p-

Proor. Since (u - d)v — (v - d)u has divergence zero, it is annihilated by 1 — P,
showing that G(u, v) = G(v, u). This vector is a gradient, being in the range
of 1 — P. Writing G(u, v) = dw, wehave Ar = 9 - (u - d)v = du - dv (= (9;0,) *
- (0¢vy) € LY _ , again due to LY _ ; being an algebra. Since d= and Ar are both
in LZ_,, it follows that a7 € L?, with the desired inequality (1.8). [

Lemma 1.5. The free term uy(t) on the right of (1.4) belongs to the class (1.2)
with T replaced with T,, and satisfies (1.3).

Proor. This follows easily from (1.5), (1.6); note that u, is the solution of the
heat equation d,u, = Ay, + f with the initial condition u,(0) = ¢. I

Lemma 1.6. Under the assumptions of Theorem I, there is T > 0 and a uni-
que solution of the integral equation (1.4) in the class

(1.9) u € C([0, T); PLY).

Proor. (1.4)is a regular integral equation of Volterra type, and can be solved
by successive approximation, starting with u#,(¢) as the first approximation.
Note that F maps u(7) € PL? into PL?_,, which is mapped back into PL? by
U(t — 7); the associated operator norm does not exceed c(f — 7) ~ /2 by (1.6),
which is integrable. The successive approximation converges on a certain
interval [0, T'] and gives a unique solution to (1.4) in the class (1.9). For details
cf. [10]. O

Lemma 1.7. A solution u of the integral equation (1.4) in the class (1.9) is a
solution of the differential equation (NS) in the class (1.2). The converse is
also true.
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Proor. The converse is easily proved by integrating
(0/07)(U(t — Tu(n)) = Ut — 7)(F () + f(1)

in 7€]0, ¢].

To prove the first part, let # be a solution of (1.4) considered and let v(¢)
denote the second term on the right of (1.4). Then |F(u(¢))|;-; < K = const
and 50 |v(t)] ;412 < Kt¥* < K because |U(t — 7)|5- 1,54 1,2 < ¢t~ >"*. Since
luo®) |5+ 1/2 < Kt™14, as is seen from (1.5) and (1.6), the same is true for
u(t) and therefore |Fu(t))|s—1, <Kt Y* by (1.7). Hence |v(t)];,; <
<Kfy(t -1V dr <K, so that |u()|,., <Kt™V2. With a little
argument about continuity, this shows that v, and hence u too, belongs to
C((0, T]: PL%, ). Since the validity of the differential equation (NS) in a
lower level, say in PL?_, is obvious, it follows that d,u € C((0, T']; L?_)),
completing the proof of Lemma 1.7. [

Proor oF THEOREM I. The main part of Theorem I follows from Lemmas 1.6
and 1.7. To prove the last assertion for f = 0, we repeat the bootstrap argu-
ment given above to show that u e C([0, T']; PLZ) N C((0, T); LE). The dif-
ferentiability of u(¢) in £ > O then follows by repeated differentiation of (NS)
in ¢.

2. The litearized vorticity equation in R>

From now on we assume m = 2. We use the following notations. | |, , for
the Li-norm; | [,for | o ;1 |5 p;r 4 for the operator norm from L to
L‘,I; “ "p;q for " \IO,p;O,q'

In this section we prove some lemmas on the linearized vorticity equation
(2.1) 9, —vAf +a(t,x) -3¢ =0, $0) = w,
where a is a given vector function such that

2.2) a and daeC(0,T];L™), d-a=0.

Lemma 2.1. Let 1 <p<ooand 0< k< 1. If we L%, then (2.1) has a unique
solution ¢ e C([0, T1; LH) N C((0, T1; LE . )N CY((0, T1; L _ ), with

2.3) [, < ol
2.3) [£ Ok < clolepexp () 1920 dr).

Here and in what follows c denotes various constants that may depend on s,
D, but not on v or w.
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ProoF. (2.1) is a simple linear scalar equation of parabolic type and is easily
solved. One may use the method of integral equation similar to the one used
in the proof of Theorem I, to establish existence and uniqueness of the solu-
tion required by the theorem. The proof is simpler than before inasmuch as
the equation is linear, the unknown ¢ is scalar-valued, and there is no projec-
tion P involved. Due to the linearity, on the other hand, the smoothness of
the solution depends on a. But a(¢) maps L{ into itself (from vectors to
scalars), and this suffices for the proof.

It remains to prove the estimates (2.3) and (2.3’). First we prove (2.3) for
2<p<oo. Let J& = ¢~ 1 = |¢|P~?¢ be the duality map on L to its dual L”,
normalized in such a way that [J¢|, = |57 " It is easy to see that J not
only maps L? into L? but also maps L? into L?’, continuously in both cases.
Since 9,¢(¢t) € L?. | for t > 0, we obtain

a1 s®5 = p<IE @), 3,5()>
< —wpCAs()P 1, 85(@)y — pLE)P T al) - 95 ()
< —p(p - Dy [ 5OPP?05)]? dx <0,
where integrations by parts have been made using the property d - @ = 0. Thus
| ()], is monotone decreasing, proving (2.3) for 2 < p < .

This result may be conveniently expressed by using the evolution operator
U,(t, 7) associated with the linear equation (2.1). Thus

(2.4) ” Uu(t’ 7) ”p;p <L

Then we obtain |U,(t, 7) |, ,» < 1 by duality; indeed, the adjoint equation
to (2.1) has the same form, with the sign of a reversed, due to the condition
0 -a = 0. This proves (2.4) and (2.3) for 1 < p < co.

We note in passing that (2.3) had been proved in [12] using the fundamental
solution of (2.1).

Next we prove (2.3') for k = 1. On differentiating (2.1) in x, we obtain a
system of equations for d¢:

3,0¢ — vAd¢ + a- 30§ + da- 35 =0, 9¢(0) = dw.
Application of Duhamel’s formula then leads to the integral equation
@.5) 35(0) = U(t, 03w — [ U(t, 1)da - 3() dr.
Using (2.4), We thus obtain the integral inequality

2.6) 1951, < 18wl + ¢ [ 18a()| |35, dr.
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Combined with the previous estimate for & = 0, this leads to the estimate (2.3’)
for k = 1. The constant c in (2.3') depends on the way | {|,,, depends on | ¢,
and [a¢],.
Finally the case 0 < k < 1 can be dealt with by interpolation (see [3]).
The result can again be expressed in terms of the evolution operator:

@6a) U6 DIk prp <cowp (¢ [ [da()|adp), 0<k<1. O

Lemma 2.2. In Lemma 2.1 assume that ae C([0, T]; LY, 1<g< o, r>
>1+2/q.Letl1 <p<q,0<k<[r]. If we Lk, then the solution ¢ given by
Lemma 2.1 belongs to C([0, T1; L) with

@.7) 0]

t
o < clolipexp (¢ [} 1a@],.qdr).
Proor. For k = 0, this is contained in Lemma 2.1; note that the assumption
implies (2.2). Next consider the case when k = [r]. We differentiate (2.1)
k-times, obtaining

k
3,0 — vA*¢ + a-00%¢ = — 3] ¢;0da- ¥t ¢
Jj=1

with 8%¢(0) = 8%w. Corresponding to (2.5) and (2.6) in the proof of Lemma
2.1, this leads to

t k
*¢c(t) = Ut, 0)d%w — j U/t 7) 2 c;0’a(r) - ¥ 7+ 1¢(n) dr
0 Jj=1

and
t k . .
1% ¢@)], < [8%w|, + ¢ .21 |87a(r) - 8%~/ ¢ ()|, dr
0J=
t
@.8) < ol + cj 1], o| ¢ e dr.
0

Here the Sobolev embedding theorem is used at the last stage (for details see
Appendix). Since the same estimate holds if 8%¢ on the left is replaced by
lower derivatives, we have a linear integral inequality for | {(?)|, , and obtain
the desired result (2.7).

Since the same result holds for £ = 0, the required result for 0 < k < [r]
follows by interpolation. The result may again be expressed in terms of the
evolution operator:

2.7a) 106 Dk < coxp ([ a0 . do).-
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3. Global theory for space domain R>

In this section we prove that (NS) is globally well-posed, uniformly for » > 0,
with persistence in PL? = PL?(R?). For simplicity we assume that f = 0, but
the general case can be handled similarly.

Theorem II. If m = 2, the solution u given by Theorem I can be continued
to all t > 0, with the estimate

G.1) [4®)]s,, < K@)

Here and in what follows K(t) denotes a real-valued continuous function
defined for 0 < t < =, depending on s, p, and |¢|, , but not on v > 0.

For the proof we need a lemma, which partially generalizes analogous
results given in [2, 6, 9, 15]. (All these results contain a logarithmic function.)

Lemma 3.1. LetuePL:, 1<p<oo,s>1+2/p. Let { =rotu=0d,u, — d,u;.
Then

(3.2&) "au“s—l,psc";‘"s—l,p’
(3.2b) loule <cl$l,+cl$lwlog, (I$1s-1,5/ 18 ])

with ¢ depending only on s and p. (Here we use the notation log, (\) =
=max {1,log(\)} = 1, slightly deviating from the commons usage.)

The proof of this lemma will be given in Appendix, in a generalized from
valid in R™.

Proor oF THEOREM II. First we assume that 2/p<s—1<1. As is well
known, ¢ = rotu satisfies the vorticity equation (2.1) in which a = u; note
that u(¢) and du(¢) are in L™ because u(t) € L? with s > 1 + 2/p. Thus we have
by Lemma 2.1

(3.3) [6O]s-1.p < clol-poxp (¢ [} |ouD)]adr).

Now we apply (3.2b) to the solution u = u(¢), { = {(¢) = rot u(t). Here we
may replace |{(#)], and |{(#)| respectively by their majorants |w], and
|wlo <c|w|s-1,, since plog, (\/p) is monotone increasing in u.
(£ ]« € || follows from (2.3) in the limit p = «.) Thus

"au(t)"w S c"w"p + C"w"s—l,p10g+(n g-(t)"s—l,p/"w"s—l,p)-
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Substitution from (3.3) then gives

|out)]« < clol, + clols-1,p (1 + [; 8u)] o dr).

In view of the fact that |w], and |w|,_,, are dominated by c| ¢|;, ,, aplica-
tion of the Gronwall inequality then shows that

(3.4 |ou(®) ] < K(@).

Another application of (3.3) then shows that | {(?)|;-;,, < K(?). Then, using
(3.2a) we conclude that

(35) “au(t)”s—l,p SK(t)

In order to deduce (3.1) from (3.5), we need a uniform estimate for |u(z)| .
This may be obtained from (1.4) by noting that (see (2.4)) |[U, ()|, <1,
where we have restored the parameter », writing U,(¢) = exp (vfA). Since
|Fu@)|, < clu@)|,|0u() |« < K(7)|u(7)|, by (3.4), we obtain

)|, < 11, + [ K@ |u@)],dr,
which gives
(3-6) @], < K@)

Now (3.1) follows from (3.5) and (3.6) by virtue of the following lemma,
which will be proved in Appendix in the general case of R™.

Lemma 3.2. Let ve L? withdve Lf_,, wheres 21,1 < p < . Then ve L%,
with [v]s,, < c(Jv]p + [00]s-1,p)-

Of course the various estimates given above hold only in the interval on
which u is known to exist. But the K(¢) are functions defined for 0 < ¢ < oo,
depending on s, p, ||, , but not on »; in fact they can be given explicitly in
terms of an exponential function exponentiated again and again. Thus a stan-
dard argument based on the local existence theorem shows that u(#) can be
extended step by step to all ¢ > 0 satisfying (3.1). This proves Theorem II
when 2/p<s—1<1.

Next we consider the case 2 <s<3,5> 1+ 2/p. Let g be a number such
that ¢ >2 and 0<2/p—2/g<s—2. (We may set g =p if p>2; and
2/q=2/p— (s —2)if p<2and s < 3; in the exceptional case p =2, s = 3,
any g > 2 will do.) Then we have ¢ € LZ C L by the Sobolev embedding
theorem. Since 2/g <2 — 1 =1, the preceding result shows that u(t) e L
exists for all time, with |u(?)|,,, < K(¢). Application of Lemma 2.2 with
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a=u,r=2,k=s-1<r,q > pshowsthat | {(#)|,-,,, < K(#), which leads
to (3.5) by (3.2a). Using Lemma 3.2 again, we obtain (3.1).

Next consider the case 3 < s < 4. Then ¢ € LY C L with 3 > 1 + 2/p. Hence
the preceding result shows that |u(#)|;,, < K(¢). Application of Lemma 2.2 with
a=u,q=p,r=3, k=s5—1<r shows that |{|,_; , <K(?), which again
leads to (3.5), and then to (3.1) in the same way as above. The case with larger
s can be dealt with similarly. This completes the proof of Theorem II. []

4. Vanishing viscosity and the Euler equation in R*

We now prove the main theorem for the Euler equation in R?, together with
the convergence of viscous solutions to the ideal one. As before we assume
that f= 0 for simplicity.

Theorem III. Lets> 1+ 2/p, 1 < p < . If ¢ € PL?, the Euler equation (E)
has a unique solution u € C([0, «); PLY) with u(0) = ¢.

Theorem IV. Let ¢ be as in Theorem III. Let u® be the solution of (NS) given
by Theorem II. As v — 0, u” converges to the solution u given by Theorem IIT
in the following sense: u’(t)— u(t) weakly in PL% for all t >0, locally
uniformly in t.

Remark 4.1. Theorem IV is rather weak inasmuch as it gives only weak
convergence. A stronger result could be proved, but we shall not pursue the
problem here. Note, however, that weak convergence of a sequence u, in
LAR™) implies (spatially pointwise) local uniform convergence of d*u, for
k<s—m/p.

We prove these theorems in several steps.

Lemma 4.2. As v— 0, u’(t) converges along a subsequence weakly in L7,
(locally) uniformly in t, to a solution u(t) of (E) such that

(4.0) u € ([0, ); L),

which means that u(t) is weakly continuous in L% and strongly continuous in

L% for all s’ < s.

Proor. The proof is standard, and will be only sketched. It depends on the
fact that the map F is weakly continuous from L¥ into LZ_,, as is easily
verified.
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Since by Theorem II the #”(¢) are locally (in time) uniformly bounded in L?,
which is reflexive, we can pick a subsequence of u” that converges weakly on
a countable dense subset of .

Since 9,u"(¢) = vAu® — F(u*(¢)) is (locally) uniformly bounded in L?_,,
3,{u"(t), ¢) is uniformly bounded for each test function ¢ € D(R?). Hence
(u’(t), ¢) is (locally) equicontinuous, so that it converges for all ¢ (locally)
uniformly. In view of the (local) uniform boundedness of #”(¢) in L%, it
follows that u”(¢) converges weakly in L?, (locally) uniformly in ¢. The limit
u(t) e L? is weakly continuous, and it is easy to see that u is a weak solution
of (E).

Then 3,u(t) = —F(u(t)) is weakly continuous in L?_ by the remark given
above. It follows that u(¢) is strongly continuous in L?_ ;, hence strongly con-
tinuous in each L? with s’ <s.

Lemma 4.3. The solution (4.0) of (E) is unique. (Hence the original sequence
u’ converges to u weakly, without going over to a subsequence.)

Proor. Suppose there are two solutions #, #’ to (E). On subtraction and set-
ting w = '’ — u, we obtain
ow+ Fu',w)+ F(w,u) =0.
Hence, suppressing the variable ¢ for simplicity,
“.1) 0, |w|p = —p<{Iw, F(u', wy + F(w, u));

here we use the norm |w[, = (|w; |5 + [ w,|5)"?, and Jw = (Jw,, Jw,) is the
vector-valued version of the duality map used in the proof of Lemma 2.1. In
(4.1) we have |F(w,u)|, < K|w|, because |du|, < K, contributing a term
K| w|5 to the right of (4.1). For the other term, we have

4.2) Fu',w)y=@W'-0w—-Gu',w)='-09)w— Gw,u),

by Lemma 1.4. The contribution of (1’ - 3)w to (4.1) is zero, as in seen by the
standard integration by parts using d - #’ = 0. On the other hand, G(w, u’) is
dominated in LP-norm by K| w|, because |du’|. < K. Altogether we obtain

o [wlp < K[wl5

from which w = 0 follows if w(0) = 0, completing the proof of uniqueness.

To complete the proof of the theorems, we have to strengthen C([0, T']; L?)
in (4.0) into C([0, T']; L?). For this purpose, we consider the linear vorticity
equation without viscosity:

4.3) 0, +a-9¢ =0, $0) = w.
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Lemma 4.4. Let ae C([0, T1; LY), where r>1+2/q, 1<g<o. If wel?
with 0 < k < [r] and p < q, then there is a unique solution to (4.3) such that

4.4) ¢eC(0, TY; LY).

PROOF. Since the assumption implies that a € C([0, T']; C*(R?)), the characteristic
curves for the first-order equation (4.3) are well defined. The uniqueness of
the solution of (4.3) follows immediately from this.

To prove the existence, we regard (4.3) as the limit of the vorticity equation
(2.1v), which is the equation (2.1) with a replaced by a function a” € C([0, T']; LY)
that depends on », in such a way that a” — @ in C([0, T']; L) (which means weak
convergence in L? and strong convergence in LZ% for ' < r). Such a sequence
a’ is easily constructed by regulazation of @ in time.

Let {” be the solution of (2.1»), with {*(0) = w € L{. Lemma 2.2 shows that
¢” belongs to C([0, T']; L?) and satisfies (2.7»), which is the inequality (2.7)
with a replaced by @”. Using the same argument given above to construct u
from u”, we obtain a solution

4.5 ¢ e (0, T1; LY

as the weak limit of {”. (Recall that a” — a strongly in L} _.)
Since ¢ satisfies (2.7»), ¢ satisfies an inequality of the form

(4.6) I¢

|k,p S Cloli, ,exp <C L’)O‘(T) dT),
where a(f) = limsup |a’(¢)|,, , is an L*-function.
v—0

It remains to replace C([0, T'1; L?) by C([0, T1; L?) in (4.5). To this end let £’
be a number such that k < k' < [r], and let w, € L}. be a sequence such that
w, = win L{. If ¢, is the solution of (4.3) with ¢,(0) = w,, (4.6) is true with { and
wreplaced by ¢, — ¢ and w, — w, respectively. It follows that {,(f) tends to {(¢)
strongly in L%, uniformly in z. Since ¢, belongs to &([0, T'1; L%) C C([0, T1; L})
by k' > k, it follows that € can be replaced by C in (4.5).

COMPLETION OF THE PROOF OF THE THEOREMS. We have to show that in (4.0),
€ can be replaced by C. Since u is a solution of (E), ¢ = rot u satifies the vorticity
equation (4.3) in which @ = u, w = rot¢ € LZ_ . In view of (4.0), we can set
r=s,q=p, k=s—1in Lemma 4.2, obtaining the result that { € C([0, );
L?_)). As in the proof of Theorem II, this implies du € C([0, «); Lf_,) and,
using the known fact that u e C([0, «); L?), we obtain the desired result
u € C([0, o©); L?) by Lemma 3.2.

Remark 4.5. Lemma 4.4 could be proved by integrating the vector field a
to yield a family of diffeomorphisms ®, such that ®, — id is in the class
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C([0, T1; LY), and then showing that the composition w o ®, is in C([0, T1; LY).
It seems to the authors that such results are not readily available in the literature.

Appendix

1. Proof of Lemma 3.1.

We prove Lemma 3.1 in R™, assuming that s > 1 + m/p. In this case { = rotu
is a skew-symmetric tensor given by {; = d;u — 9, u;. If u € PLY, du can be
recovered from ¢ e L?_, formally by

(A1) Qi = 9;0,A ¢y

Here 9;0,A~ !is a pseudo-differential operator with symbol &g 2, so that the
operation { — du is continuous in L?, hence in L?_,, foranysand 1 < p < e
(Mihlin’s theorem). This proves (3.2a).

Incidentally, the operator considered here is formally identical with G (see
Lemma 1.4), with the only difference that it acts on tensors to tensors, while
G acts on vector to vectors.

The proof of (3.2b) requires a deeper analysis. We can write (Al) in the
form

(A2) djup =m~'{y + g*Sae  (* = convolution),

where the g = |x| ~™Q;, are Kernels of Calderén-Zygmund type (see [4]),
with 2, (x) homogeneous of degree zero, smooth in x and having zero average
on the unit sphere. Thus it suffices to prove (3.25) for

(A3) v = gxs ) =lim [ e»Sx -y,

where g is one of the g and ¢ is one of the {j. To this end we split the integral
into three parts, according to (i) |¥| > 1, (i) 6 < |y| <1, (i) e < |y| < 6.

The contribution to the integral from (i) is estimated by c|{|,, since
lg(»)] < c|y| ™™ and p < «. Using the same estimate for g, the contribution
from (ii) is seen to be dominated y c| { |, log (5 ). To deal with the part (iii),
we replace {(x — y) with ¢{(x — y) — ¢{(x) without affecting the integral, since
2(») has average zero on any sphere. But { € L?_, implies that ¢ is Holder
continuous:

56 =) = s < ey’ I 5 lsmry  0<O<I.
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Therefore the contribution from (iii) does not exceed ¢8°| ¢ |, _ ,- Altogether
we obtain

(Ad) vle <c(IE], +1og @™ M| ¢]w+ 8 Els-1,)

for any 6 € (0,1]. The desired result (3.2b) then follows on setting 6% =
=max(1, | ¢|s-1,,/|$]«). This proves (3.2b). O

2. Proof of Lemma 3.2

dv e Lf_, implies that d*ve LFC LP, r=s — k, for 1 < k < [s]. Since v e L?
too by hypothesis, we have v e Lf; C L{_,. Thus v and dv are both in Lf_,
from which v € L? follows together with the required estimate.

3. Proof of (2.8)

We have to show that

(AS) @)@ 7t iel”,  1<j<k<I[

under the assumptions

(A6) aelL? telf, where r>1+2/q, I<p<g<g<oo.
First we note that (A6) implies

(A7) YaeLl_;, Ftlrel .

(@) If j < r —2/q, then (A7) implies that 3’a € L® and 8* ~/*!¢ € L?, from
which (AS5) follows immediately.

() If j=r—2/q, then j> 1. Let ¢ >0 be such that r— 1= (2 + €)/q.
Then

(A8) Upz21l/g=0-/)/C+e+(-1/2+e.
Thus (A7) implies

daeLl™ with 1/r=1/q—( —j)/2+¢€>0,
¥ I*le e’ with 1/o=1/p— (G - 1)/Q + € >0,
except when p = g, j = r = k. Since 1/7 + 1/0 = 1/p by (A8), we obtain (A5)

in the nonexceptional case. In the exceptional case we have 8’z e L? and
d¥—J*tlr e [P | eL” because r — 1 >2/q = 2/p. Thus we again obtain (AS).
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