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Abstract

A general notion of lifting properties for families of sesquilinear forms is for-
mulated. These lifting properties, which appear as particular cases in many
classical interpolation problems, are studied for the Toeplitz kernels in Z, and
applied for refining and extending the Nehari theorem and the Paley lacunary
inequality.

1. Introduction
There is a close connection between interpolation problems and lifting proper-

ties. Sarason [24] showed that classical interpolation results can be obtained as
corollaries of a theorem about commutators of the truncated shift operator
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operator, later extended by Nagy and Foias [14] into a general lifting theorem
for contractions. Furthermore, the theorem of Sarason was proved by Page
[9] and Nikolskii [18] as equivalent to the vector version of the interpolation
theorem of Nehari [17].

Questions concerning weighted inequalities and prediction theory lead the
authors to a lifting property of the so-called generalized Toeplitz kernels
(GTKs) [7], which can be considered as a generalization of the Nehari theorem
(see (IV) below). This lifting property, later proved equivalent to the Nagy-
Foias theorem [1], [13], is closely related to the study of subordinated
reproducing kernels, used by Aronszajn, Masani, Burbea and Beatrous [3],
[4], [51, [7] as a tool to solve interpolation problems.

The above-mentioned results are in fact (although generally in a implicit
form) lifting properties of families of sesquilinear forms with respect to a
given pair of hilbertian seminorms. This suggests a general notion of lifting
properties for families of forms with respect to pairs of seminorms, which is
formulated and exemplified in this section. This leads to new results in inter-
polation as well as to refinements of the known ones.

A summary of known results in terms of lifting properties follows as (I)-
(VII), after the introduction of the necessary notation.

Fix V a vector space, Vi, V, C V subspaces, and let A be a family of
sesquilinear forms S: V' x V— C. Given a pair ¢;, 0, of seminorms in V,
write

(1) S < (01» 02) (resp., s < (0'1, 62))
if
(1a) |S(a, b)| < 0,(@)a,(b)

for all (a,b)e V X V (resp. all (a,b) e V; X V).

Given V, V,, V,, a family of sesquilinear forms A satisfies the lifting pro-
perty with respect to gy, o, if for every A € A such that S << (gy, 0,) there is
a S’ € A such that §’ < (04, 0,) and S’|,,l xv, = S| v, x ¥y

In most of our examples the sesquilinear forms considered arise from
kernels. More precisely, fixing a set X, and X;, X, C X, and setting V =
= V(X) = {a: X~ C, functions of finite support}, V;= V(X)) = {aeV:
suppa C X;}, j = 1,2, each sesquilinear form S: V' X V= C is given by a
kernel K: X X X—C

) S(a, b) = Sx(a, b) = 2, K(x,»)a(x)b().

x,yeX

A kernel K is positive definite, p.d., if Sx(a,a) > 0 for allae V. To each p.d.
kernel corresponds a hilbertian seminorm in ¥V, defined by ox(a) = Sk(a, @)'/%.
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Given two p.d. kernels K, K,, write

3 K < (K, Ky) (resp., K < (K1, K5))
if
Ga) Sk < (UKI’ ) (resp., Sg < (UKI, UKZ))

For V=V(X), V,=V(X), V,=V(X,), fixed, a family A of kerneis
satisfies the lifting property with respect to X, K, if for every KX € A such
that X - (K}, K,) there is a K’ € A such that X' < (K, K,) and K']le,2 =
= K| lxl XX,

Let us illustrate this notion in the case of the theorem of Nehari, which
asserts that, for a given sequence s: Z — C, the following are equivalent:

(@) there exists a bounded function on the circle, f, such that | f(¢)| < 1 and
f(n) = s(n) for n > 0.

(b) };0 s(m — n)a(m)b(n)
n<o0

(3, ) (3 )

for all finite sequences (a(n)), (b(n)).

Take now X =27, X, =2,={neZ:n>20}, X,=2Z,={neZ: n<0},
V= {a: Z—C, finite sequences}, V;= {a finite sequence, suppa C Z;},
Jj=12, K\(m,n) = K,(m,n) =6,,_, If K(m,n)=s(m— n), condition (b)
becomes K ~. (K;, K,). On the other hand, setting f(n) = s'(n), K'(m, n) =
= s'(m — n), it is easy to verify that | f| < 1 is equivalent to K’ < (Kj, K3)-
Thus,

(I) (Nehari [17}) If X=27, X;=2Z;, V=V(Z), V;=V(Z), K;=6p_n
j=12, and A={K: ZXZ—~C,K(m,n)=s(m —n)} is the family of
Toeplitz kernels, then A has the lifting property with respect to Ky, K.

Other examples are

(II) (Bergman-Schiffer [6].) If X = a domain in C, X; = X, = an open
subset of X, K; = K, = the Bergman kernel of X, and A = {F: X x X—C,
F holomorphic}, then A satisfies the lifting property with respect to K, K.

(III) (Beatrous-Burbea [4].) If X; = X,, K; = K, = p.d. kernel, A = {K:
Xx X—-C,K(x,y) = f(x)f(»)}, then A satisfies the lifting property with
respect to K, K, (cf. also [5]).

Next example is an equivalent version of the so-called lifting theorem for
p.d. GTKs (cf. [13]).

(IV) (Cotlar-Sadosky [8].) If X = Z, X; = Z;, j = 1,2, K;, K, p.d. Toeplitz
kernels, A = {K: Z x Z— C, K(m, n) = s(m — n)}, then A satisfies the lifting
property with respect to K, K,.

Clearly, the Nehari theorem (1) is a special case of (IV), which also provides
refinements to classical results of Helson, Szeg6, Sarason and others [8], [2].
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The following is a special case of the Nagy-Foias lifting theorem.

(V) (Nagy-Foias [16].) If V is a Hilbert space, U a unitary operator on
V, V), = V, = subspace of V semiinvariant with respect to U, o, = 0, = the
hilbertian norm in ¥V, and A is the family of sesquilinear forms commuting
with U, then A satisfies the lifting property with respect to oy, ;.

(VI) (Cotlar-Sadosky [13].) If X is an arbitrary set, X;, X, C X, {: X2 X
is a bijection such that {(X))C X, ¢ '(Xp))CX,, A={K: XX X—C,
K(¢x, ¢y) = K(x,»)}, Ky, K, € A p.d., then A satisfies the lifting property with
respect to K, K.

This generalization of (IV) was obtained combining (V) with the arguments
used to prove (III). Conversely, the operator-valued version of (IV) implies
(V) (cf. [1]). Thus, the framework in which the above results are presented
naturally includes the Nagy-Foias lifting theorem. A more general concept of
norm majoration allows a further inclusion. Writing K < g, (resp., K 0p)
if |Sx(a, b)| < ao(a, b) for all (a, b) € V X V (resp., (a, b) € V, X V,), where ay:
V x V= R™, the following result relates to (I) — (VI).

(VII) (Cotlar-Sadosky [10].) If X=27,X;=17;, j = 1,2, A = the Toeplitz
kernels, oy(a, b) = p(|d + b|?), where p is a seminorm in C(T) under certain
natural assumptions, and d(¢) = 23, a,,ei“‘, then A satisfies the lifting property
with respect to gy.

This is a special case of the so-called lifting theorem for majorized GTKs
[10], that yields L? versions of the Helson —Szegt and Nehari theorems. But
it is to be remarked that (VII) neither generalizes (IV) to the case when a; # o,
are non hilbertian, nor extends (I) for general g,, 0,. Some extensions can be
obtained from (VII) when o, = 0, is a non-deterministic seminorm (see (5)
below and Corollary 2). Extensions of (I) and (IV) for pairs o,, g, are given
in Section 2 and 3.

Section 2 deals with lifting properties of the family of Toeplitz kernels
in Z with respect to pairs of seminorms o,, 0,; Section 3, with several refi-
nements of the Nehari theorem, and Section 4, with generalizations of the
Paley lacunary inequality. Some of the results in Section 4 were announced
in [12].

2. Lifting properties of Toeplitz kernels in Z

FixX=27,X;=2;,V=V@,V;=V(Z),j=1,2.Let ® = {d(¢t) = > a(n)e™:
aeV} be the trigonometric polynomials, ®, = {d(¢): a € V;}, the analytic
polynomials, ®, = {d(t):ae V,}. If @ = fe ® then a(n) = f(n), n € Z. ® is dense
in C(T), the continuous functions in T. For 1 < p < «, H?(T) = { fe L?(T):
f(m)=0 for n<0}.In what follows, all integrals are taken over T.
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Consider the seminorms p defined in C(T) which satisfy

(4a) |fI < lg| implies p(f) < p(2), p(f) = p(| f])
(4b) p(f)<c|fle VfeC(T), c fixed constant
(4c) p'(f) =p(| F1H¥? is also a seminorm.

Seminorm p is said to be absolutely continuous if f, 1 1,, |A| = 0, implies

p(fn) = 0.

Seminorm p is said to be norn deterministic if there is a fixed constant ¢ such
that, if p’ is given by (4¢),

&) p'(f) + o' () <co'(f1 + 12)s V(f1,/) € Py X @,.

Examples of non-deterministic norms are p,(f) = ({17 df)"?, 1 <p < o,
and also p,,(f) = (f | 1P d,u)”‘” for u € A,, since the Hilbert transform is then
bounded in the corresponding spaces.

To each seminorm p in C(T) that satisfies (4a) — (4¢) it is associated a
seminorm o in V by

(6) o ~p whenever o(a) = p'(@ = p(|d|*)">.

For a pair of such seminorms, o, 0,, and a kernel K: Z X Z — C, consistently
with the notations of Section 1, K < (0,, 03) (resp., K < (o0y, 0,)) means that

(1b) |Sk(@, bl < p1(1d1)'p,(15])'2
for all (a,b)e V X V (resp., all (a, b) e (V; X V3)).

Lemma 1. For every sesquilinear form S: V X V — C the following conditions
are equivalent:
(l) S S (O'Is 02) (resp., S ‘< (01, 02));
(ii) S(a, b) + S(a, b) = 2Re S(a, b) < 0,(a)* + 05(b)*, ¥ (a,b)e V X V (resp.,
(a,b)eV; x Vy);
(iii) 2|S(a, b)| < 01(@)* + 0,(b)* for all such (a, b).

Proor. It is enough to observe that (i) holds iff the quadratic form in A,
N2» 01(@)* M\, — S(a, D)\ h, — S(a, )N\, + 0,(b)*\, ), is nonnegative for all
As A\, € C (for all pertinent (a, b)), and that (i) expresses that the determinant
of this form is nonnegative. []

Lemma 2. If 6 ~ p as in (6), p(1) = 1 and K(m, n) = s(m — n), then

(i) K < (0,0) is equivalent to
(i) |2, s(ma(n)| <o'(a), vaeV.
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Proor. If K < (o, 0), setting b(n) = §,, or b =1, in (1b), it becomes (ii).
Conversely, if (i) holds, then |[Sk(a,bd)| =|X,,,s(m — n)a(m)Hn_)L =
= | 2. (Zmalm)b(m — n))s(n)| < p@ - B) < 1/2(o(|d1?) + p(1B]?) = 1/2(0(a)* +
+ a(b)?), and (i) follows from Lemma 1. [

A kernel K: Z x Z — C is Toeplitz if K(m, n) = s(im — n) for some s: Z — C.

Theorem 1. For X =17, X;=17;, V= V(2), V; = V(Z)), seminorms o; ~ p; as
in(6),j = 1,2, the family A of Toeplitz kernels in Z satisfies the lifting proper-
ty with respect to oy, 0,.

More precisely, if K € A, K(m, n) = s(m — n), K < (0,, 0,), then there exists
K'e A, K'(m,n) = s'(m — n), such that K' < (0,, 0,) and K’|Z1 xz, = Kz xz,
Moreover, s'(n) = p(n), where p is a finite complex measure in T.

If in addition p, = p, is an absolutely continuous seminorm or s(n) = &(n)
for we L', then dy = 0dt for some e L.

Proor. The main difficulty of this proof appears where o, # 0,. Therefore it
is divided in two cases.

(Case o, = g, ~ p). Define in ®@ a linear functional by I(f) = 2., a(n)s(n) if
f=4d, aeV, so that if g =5 then [I(fg)| = | 2m, nS(m — ma(m)b(n))| <
< p'(f)p'(e). Taking f(t) = |g|l«, it follows from (4b) that |g[.l/(2)| <
<¢|glw-clg|o Thus, |I(8)] < c*|g|w YE€e”®; = ®,,, and there exists a
finite complex measure » in T such that /(f) = f fdv, ¥fe®,,and s(n) = ¥(n)
for n > 0. Thus

@) |[72dv| <ohp@,  V@e@ X @,

and from (4b) follows that (7) holds also for (f,g)e®, x ®,, ®,, ®, the
closures in C(T) of ®,, ®,. Since every analytic polynomial F € e“®, can be
written as F = fg with (f,g) € ®; X ®,, | f|> = |g|* = |F|, then

|[Fav| =|[fgar| <o'(No'(® < 1/20°17 + 0'(@)")
=1/2(0(| 1)) + o(|&|*) = p(IF)).

Thus, ldevl < p(F), YFee'®,, and since p(G) < ¢|G|», YGeC(T), it
follows easily that there exists a finite measure in T such that [ Fdp = [Fdv
for Fee'®, and “Ga’u’ < p(G), vG e C(T). Hence

| [Aif2de| <o) S 1260 AP) + 005D, VS e® X 6.

Setting s'(n) = j(n), and using Lemma 1, the assertion on s’ follows. The last
part of the thesis is proved as Proposition 3 in [23].
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(Case o, # 0,). As in the previous case, there exists a measure » such that
s(n) = #(n) for n =20, so that Sg(a, b) = jfgdv for f=de®,, g=be®,,
i.e., for (a, b) € V; X V,. Thus, by hypothesis and Lemma 1,

2| [rzav| <o /1) + pallel),
or
Ta)  [fedv+ [fedv <p(l /1) +palleP),  V(f8)e® X O

Again we want to prove that there is a measure p such that j Fdy = j Fdv
for F e e”®,, and such that (7a) holds for all (f, g) € ® x ® when d» is replaced
by du. We use an argument from [9].

Let 9N be the dual of C(T), and set £ =M X M X M X M, E’' = C(T) X
X ® o X ®, X C(T), where the closures are taken in C(T). For each quadruple
of measures (u11, f12, H215 H22) € E and (11, b12, D215 $22) EE, set

8) (mjn)s (D)) = ; kgl’ , j D ix Apjc-

Endow the space E with the topology given by this coupling, so that E’ is the
dual of E, and E the dual of E’. Let II C E be the set of all quadruples

(”’11’ v, I_/, [.4.22) where

©) Hfd#ﬁ <pi(f), vfeC), j=1,2.

and let I' C E be the set of all quadruples (A;;6; M26s A\216; M226,), Where 6,
is the Dirac measure at te T and (\;) is a positive definite 2 X 2 numerical
matrix. In particular, all (\j = \;A);, k=1, 2 are such matrices, ITis a compact
convex set in E, and I'; = convex hull of I', is a cone in E. Let us show that
II intersects the closure of I';. Assuming the contrary there will be, by the
polar theorem (cf. [21] p. 168) an element (¢;) € E’ such that Re{(Ay9d,),
(®%)> =0, Y(\ydy) €T, while Re{(njp), (dj)) < @ <0, V(py) €Il. It is easily
seen that since p;, = py; for all elements in both IT and I', we can modify (¢ )
as to have

((\jx0), (dj)> = 0, V(b)) €T

(10)
((rjn)s (D)) <a <O, V(pr) €11

Taking A\ = ijk in (10), it follows that (¢;(¢)) is a positive definite matrix
for all teT. Hence

(1) =0,  én®) =0, |60 <)o), VvieT.
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By the Corollary of the Hahn-Banach theorem, we can take
[ ;5dm; = p,(®;), j = 1,2 and by (10),

(12) p1(91) + [b1dv + [ 210 + po($20) <@ < 0.

By (11) we can take (¢y) so that

(13) 11 =0,0., b0=0_6_, [6]’< 9,0 _6.0_,0,€C, ¢_€®,

Since ¢, and ¢, é_ both belong to ®,,, (13) gives

(13a) $2=79:¢, |VI<1, €@

Thus, (¢3) = (F\F, + G, F\F,, F\F,, F,F,), where

(3) Fi=v$,€C, F=¢_€C, GCG=¢,6,01-)=0.
Hence, by (13b), (7a) we get

pi(d11) + j¢12 dv + jd’zxa + py(d22)
> 01(FFY) + po(FoFy) + [FiFydv + [FiFydv 20>a

which contradicts (12).
Therefore, there is some quadruple (u,;, », 7, py,) € Il which is in the closure
of I';, hence there is a net of elements (v}) €T'; such that

(14) [fsdy= [fyduy  F=12,  [fudvly= [fidv

for every (f) € E' such that f, = f5; € ® .
From (11) it follows easily that, for each «,

|[Joart]? < (Joarn)([edn).  veecm.

Since the »}; are positive measures converging to u;, all the »} are in a bounded
set of M. Hence, passing to a subnet, there are measures (v;) such that
[®dv} — [ b dv for all ¢ € C(T). From (14) follows that »; = p;;, j = 1,2, and
that [ ¢ dv,, = [ ¢ dpy, for ¢ € e“®,. Now (10) implies that 33; x [ fifx dv} =0
whenever (f1,/,) € ® X ®. Hence, also

j’zk_ffjf_‘kdﬂjk = jfﬂ_c;duu + fflf_zdu + jf_lfzﬁﬁ + jfzfzd#zz >0

for all (f1,/») €® X @®. Since u; >0 and |[£,f;dw;| < p;(f;+ f)) by (9), and
since u = » on e”®,, the thesis follows. [J

It i(n) = s'(n) and f(n) = a(n) for ae V, then 3. ,s'(n)a(n) = j fdu. From
Lemma 2 and Theorem 1 for o, = o, follows
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Corollary 1. Let K(m,n) = s(m — n), o ~p as in (6). Then K< (o,0) is a
necesary and sufficient condition for the existence of a measure v such that
»(n) = s(n) for n > 0, and

(15) |[7av| <o), vrecm).

Remark 1. When o; ~ p;non deterministic seminorms, j = 1, 2, a transference
property to vector-valued sequences, or Grothendieck type inequality similar
to that for GTKs majorized in the sense of (VII), proved in [11], is valid for
the relation K< (g, 0,). This will be developed elsewhere.

Let us introduce now a weaker notion of majoration. Write K < (o4, 05) if
16) |Sk(a, b)| < 01(@)ar(b), V(@ b)eV,xV,,  a(n)=b(—n)

i.e.: for all (a,b) e ®, x ®, such that b(?) = a(?).
If K(m, n) = p(m — n), p a finite measure in T, then K < (0y, 0,) means

(160) |[72du| < 0iDoxF) = 0103, WSeet®,.
In the case g, = 0,, this reduces to

(16b) |[r2de| <ols), wreet®,.

Theorem 2. For X = Z, X; = Z;, seminorms d;~ p; as in (6), j=1,2, let
K(m, n) = ji(m — n) where p is a finite complex measurein T. If K < (oy, 0),
then there exists an analytic function he H'(T) such that dv = dy + hdt
satisfies

a7 |72 <ostoi0. vsme@ x @,

where p; = p; + p,.
Therefore, if p; = p,, then K'(m, n) = #(m — n) satisfies K’'| x xx, =K | X, %X,
and 3K' < (04, 0y).

Prook. By condition (4b) on p,, p,, the hypothesis (16a) holds also for fe ®,, =
= the closure of e”®; in C(T). Again, every F € e”®, can be decomposed as
F=fg with (f,8)€®, x ®,, and | f|> = |g|® = |F|, so that 4F = (f + g)* +

+ (if — i8)?, where f+ g and if — ig are in ®,. By (16a),

4[Fdup=[(f+8 du+ [(f - ig)dp
< o[ f+ 8D %0 f + 8DV + 01| f — 81D %0( f — 8D
< 80,(F)*0,(F)* < 4py(F),  VFe @,
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since | f+ &|* = | f|* + |g|* + fg + fe <4|F| and|f- g|> <4|F]|.
As K(m, n) = p(m — n), it follows as in Theorem 1 that there is a measure
dv = dp + hdt satisfying (17). O

3. Refinements of the Theorem of Nehari

The theorem of Nehari ((I) of Section 1) gives a condition for the existence
of a function 6 belonging to the dual of L!(d?) and having prescribed moments
(n) for n > 0. The theorems of Section 2 give the following refinements of
that theorem, where 6 is required to belong to the «dual of a more general
space».

Corollary 2. Lets: Z— C be a given sequence, K(m,n) = s(m — n)and o ~ p
as in (6). If p is absolutely continuous or if s(n) = &(n), w € L, then K< (o, 0)
is a necessary and suficient condition for the existence of a function € L'
such that

(18) |[r@ewar| <o), v recm

(i.e., for 0 to belong to the «dual of L(p)») and 8(n) = s(n) for n > 0. Another
necessary and sufficient condition (up to multiplicative constant 2) is
K<L (0,0). If p is non deterministic, as in (5), then (18) can be replaced by
the stronger inequality

6|
Re (1)

(18a) J O] dt<ceo(f), v feC()

with Red > 0.

Proor. The first two assertions follow from Theorem 1, Corollary 1 and
Theorem 2. To deduce (18a), observe first that if f(n) = a(n), §(n) = b(n),
(a,b) € V; X V), and s(n) = fi(n) for n > 0, then 3, s(m — n) a(m)b(n) = [ fg dp,
so that K< (o, 0) is equivalent to |jfgdu| o' ('@, Y (f,8)e®y X ®@,. If
p is non deterministic then p'(f)p'(2) < 1/2(0'(f)* + p'(8)*) < 2/20(| f + &]?).
Thus |[f2de| < c*/20(f+ gl>) for (f,8)e®; x ®,, which is K< g, for
0o(a, b) = p(|a + b|?) in the sense of (VII). Now (18a) follows as a special case
of Theorem 3 in [23]. O

Remark 2. For p(f) = [|f]dt, p'(f) = (J | f|* d¢)"?, Corollary 2 implies the
Nehari theorem. Nevertheless, even in this case, conditions K<< (o, 0) and
(18a) provide stronger versions of the Nehari theorem.
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It &(n) = s(n), then O(n) = s(n) for n>0 is equivalent to 6 = w + A,
h e HY(T). Thus, from Corollary 2 and the remark in its proof,

Corollary 3. If we€ L, then the condition

(19) |[fawat| <@, V9e® x @,

is necessary and sufficient for the existence of § € L' such that 6 = w + h,
he H\(T), and

(18) l [ro dt' <olf),  VfeC().

Let us finally observe that (VI) of Section 1 also leads, in the case X = Z
considered here, to a refinement of the Nehari theorem of the following type.

Fix pez,, take X=7, X, =pZ,={0,p,2p,...}, X, =pZ,={—-p,
, =2p,...}, 7(n)=n+ p, and let K;(m, n) = s;(m — n) be two fixed p.d.
kernels, clearly r-invariant. In this case, theorem (VI) asserts that if

|Sk(a, b)| < Sk (a, )" *Sk (b, b)'"*

for all finitely supported a, b such that supp a C pZ,, supp b C pZ,, then there
exists another r-invariant kernel X', such that K'(m, n) = s(m — n) for
(m,n)epZ, X pZ, and K' < (K, K5).

Since K’ is 7-invariant, X'(m,n) = K'(m — n,0) forne pZ, i.e., K'(m, n) =
=s'(m—n) for nepZ. Set I(f) = I(Z,,a(n)ei"‘) = >a(n)s'(n) for fe@®,

f=a.If g = 3,z b(n)e™, then
i(f3)] = 1< 2 a(m)B(rz—)e“'”"”’) = ‘Zs’(m - n)a(m)Tn)|
nepZ

= | ZKm, ma(mbe| < ([ 1/ du ) [ I8l dia) .

Hence, |(g1")| < ([ lel* du)"*([ lel* dio )" for all g € @) = { Zinepz b(r)
e,

Taking K; = K, and letting L'(p) be the closed cone in L'(dy) generated by
®(p), we have that {eL“’(p) = {the linear functionals in L' bounded in
LY(p)}. Moreover, l(e™) = s'(n), and s'(m — n) = s(m — n) if n € pZ, so that
1(e'™~™" = s(m — n) = s'(m — n) if (m, n) € pZ, X pZ,. Thus we have proved

Corollary 4. If , Sis(m — n)a(m)m‘ < |a|,|b|, for all sequences a, b finitely
supported on pZ,, pZ, respectively, then there exists |€ L™(p) such that
s(n) = l(n) = I(e™) for all nepZ,.

Since L'(1) = L' and L®(1) = L™, for p =1 Corollary 4 reduces to the
Nehari theorem.
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4. Some Generalizations of Paley Inequality

A sequence {n;} of integers in N-lacunary if n,, , /1, =\ > 1 for all k. A classi-
cal theorem of Paley asserts that a lacunary sequence of coefficients of an H'
function belongs to /? [20]. More precisely, for every A-lacunary sequence {7, }
there is a constant ¢ = c(\) such that if f= },.,c,e™ € HY(T),

20) (Dlen )2 <11 at

We say that {n,] is a p-g-Paley sequence with constant c,, where p is a
seminorm as in Section 1, and 2 < g < o, if for every f = 3,5 ¢ c,e™ € C(T),

@1) (2 len i) e < cuol)

holds.
Following the notation of Section 2, given a sequence a = {a,}, we write
a(t) = X a(n)e™ and o(a) = p(|d|»)'?, ¢ ~ p, for a fixed seminorm p.

Lemma 3. Let p be an absolutely continuous seminorm satisfying (4a) — (4¢),
0~p,2< qg<xand {n,} agiven sequence. For {n;} to be a p — q —Paley
sequence it is sufficient that, whenever ¢ = 3, o U e™* € HX(T), s(n) defined
for n> 0 as v, if n = ny and zero if n # ny, and K(m, n) = s(m — n),

(22) K< (ro, ro)
is satisfied for

2 2 ' - _ ’
(23) rP=rl= cq<; |0 7ng =2/ 1)>1/q'

PrOOF. Given f=2,.0¢,e™eC(T), consider ¢ =3|c, | 'ni~ %™
Then by the hypothesis on K and Corollary 3, there exists § € L' such that
“fﬁ dt| < rp(f), with 8(n) = s(n) for n > 0. Thus we can write § = ¢ + & for
some ke H'. Now,

A= ; |Ca 9nz = = qu-ﬁdt = jf(& + h)dt

and

A1 < 100 = €, il ong =00 njg=2/a=0 ) )

= C,|A|Yp(/).
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Therefore,
14117 < Cpo(f)

which is (21). O

Paley’s theorem follows as a corollary of the Lifting Theorem 1, since it is
not difficult to check that condition (22) holds for {n;} A-lacunary, q = 2,
o(f) = j | £| dt, for a suitable constant C. This is part of a more general pro-
perty of lacunary sequences proved in Lemma 4 below.

Lemma 3 suggests that the lifting theorems of Section 2 provide generaliza-
tions of Paley theorem. The connection between these two types of results is
not surprising, since Theorem 1 provides refinements of Nehari theorem, and
Paley inequality is equivalent by duality to a theorem of Rudin [22] (which
says that if {7, } is -lacunary and {v,} € /? then there exists a g € L* such that
8(n) = vy for n = n; and zero for n # ny, n > 0, and such that | g|. < c|v],)
that can be derived from that of Nehari.

Given a A\-lacunary sequence {#,}, setting the block B, = {[n;/2], ..., n},
1
24 bl < 1+—)|b;
( ) ;]EXB;’(I Jl ;( logz)\>| Jl

for every sequence {b;}.
This suggests to call a sequence {n;} (y)-lacunary if v; is the number of
blocks B, containing the index j, so that

2 2 bal < 23v51b)
k B Jj

JELB,
for every sequence {b;}.
Lemma 4. Let {n,} be a (y)-lacunary sequence, 2 < q < , {v,} a given

sequence. If s(n) = v, if n=ny, 0 if n # ny, n> 0 and K(m, n) = s(m — n),
then K< (ro, ro), for o ~ p, with

25) o) = (119221~ dr)

and

(23a) rt=rl = Cq(Z 097~ 2/@=D | max q'>1/q'_
k JEB,

Proor. By definition
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SK(a; b) = Z S(m - n)amb_n = Z vn(aob—n,; + albnk—l +---+ ankb_()

m=0 k>0
n<o0
[ne/2] [nx/2] o
< Z Uk Z ambn -m T Z Ug Z a, —mbm
k>0 m=0 k K>0  m=0 ¥
=A + B.
Al < 25 |ogl(agl? + -+ + |@tn, /2| )by |7+ -+ B, /211"
k>0

where 1/q + 1/q’ = 1. By applying again Hélder’s inequality with exponents
r=g/q'21and r' =(qg-1)/(g-2),

|A| S kZJo |vk’(la0iq + .-+ Ia[nk/zﬂt])l/qngl—2)/q(’b"k]q + -+ Ib[nk/2]lq)1/q
< lalg 2 |Uk[”/(cq_2)/q<max7j>(|bnk|q/7nk tet Ib[nk/Z]fq/‘Y[nk/z])l/q
k>0 JEB;

. —2y
Writing w = {wy}, wy = vnfd ™2 ‘(max;ep, ),

A1 < lalgbwle| 33 (b1, + - + byl Ym0 )
<lalglwly( 3 16,7)
n>0

since each b,,k appears in at most Vn, blocks.
By repeating the argument for B,

ISk, b)| <2[wlg lal, 100,
Since q > 2, by Hardy-Littlewood-Paley weighted inequality,
Sx(a, D)l < Gy wl,( [1al]ele=>dr) ([ 1B1o)e|2 > dr) e =
= r*o(|d]*)"*p(16]*)"* = r*o(@)o(b)

where p is as in (25) and ¢ ~ p, for all finite sequences a, b, suppa C Z;,
supp b C Z,, i.e., K < (ro, ro).

Since for a A-lacunary sequence, v; = (log, N ! + 1 for all j, Lemmas 1 and
2 immediately imply the following result, which reduces to the classical Paley
inequality when g = 2.

Theorem 3. Every N-lacunary sequence is a p,-q-Paley sequence with constant
depending only on \ and q, for p, as in (25) and 2 < g < . More generally,
the same holds for every (vj)-lacunary sequence with |v;| < cst. for all j.
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Let us consider now some non-lacunary sequences, for which the ;’s are
not uniformly bounded. With the same notation as before, it i easy to check
that

(@) for n, = k’, r fixed, v; (= # of blocks containing the index j) = ¢,j r
and max;cg (v;) = ck;

(b) for n; = 2V, v, = 2log,j, and max g, v; = 2 VK.

In both cases, Lemma 4 applies as before and, with it, the proof of Lemma

3, suitably modified, yields alternate inequealities to (21). Before stating

these, let us observe that for p, as in (25), p,(f) < o does not imply fe LY(T).
In order to give a meaning to {c,} ~ ffor all fsuch that p,(f) < o, we may

consider them as boundary values of analytic functions defined in the disc, in

the following way. Let D = {ze C: |z] < 1}, and the Hardy and Nevanlinna
classes in D be given by

HP(D) = {F holomorphic in D: supgy<,«; j |F(re")|Pdt = | F %, < co},
0<p<oo,
ND) = {F holomorphic in D: supg<,<; Jlog+ |F(re")| dt < oo}.

For N* = (FeN: lim,_ [log* |F(re")| dt = [log* |F(e")| dt}, the inclu-
sion NDN* D HP,0<p < o, holds. A function fe H?(T) can be identified
with F(e") for Fe H?(D), with | f|, = |F|u»-

Let 2<g<o and FeN*' with boundary values F(e")=f(t)e
€ LY?(|¢t|?"2dr). Then, by Hélder’s inequality, {|F(e")|'?>dt < o, which
together with FeN?*, imply Fe HY*(D) (cf. [14], p. 28). Thus
F@) = X3_ocz" and f(t) = 23_,c,e™. Form the previous remarks follows

Proposition 1. Let 2 < g < =, and let Fe N* be an holomorphic furnction in
the disc with boundary values F(e") = f(t) e LY*(|t|? % dt), F(x) = Yi5c,z".

(@) If {n;} is a Nlacunary sequence, then
(S lenlont=0)e <[ 171920172 ar )
(b) If {ny = k"}, r fixed,

(S lexdok?= e+ e < o [171221e[ 2 ).
k

© If (n,=2Y%},

(; |ca, |n% " (log, nk)‘q)"q < cq( [ |f11/2|z|«-2dt)2/q.
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The norm p, is non deterministic (see Section 2) since the Hilbert transform
in continuous on every LYwdt) for 1 < g< o, we€ A, (the Muckenhoupt
class), and, for 2<g< o, w= Ith'zeAq (cf. [15]). A result dual to
Theorem 3 and Proposition 1 is

Theorem 4. Let (n,} be a (y))-lacunary sequence, {v,} a given sequence,
2 < g < . There exists a function 6, Re 8 > 0, 6*/Re 0 € L9~ 2(dt/t?), such
that

b(n)=v, if n=n,=0 if n#ny, for n>0,
and

JEB,;

02
(26) l jfm dt

< cq(z |07 n@-2/@=D
k

)l

Jor all fe C(T), p, as in (25).

ProOF. As in previous proofs, define for n > 0, s(n) = vy if n = ny, s(n) =0
if n # ny, and K(m, n) = s(m — n). By Lemma 4, K< (ro, ro) with r, o as in
(23a), (25). By Corollary 3, there exists a function # defined on T, Ref > 0,
such that 6(n) = s(n) for n >0 and that (26) holds. From (26) it follows
that 6(¢)|¢|*>~ 7 belongs to the dual of L?*(|¢|? *dt), which is equivalent to
0e L9 Ddt/r*). O
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