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Abstract

The solution manifold 91 of the equation (J¢ + g¢> = 0 in Minkowski space
is studied from the standpoint of the establishment of differential-geometric
structures therein. It is shown that there is an almost Kéhler structure globally
defined on 9N that is Poincaré invariant. In the vanishing curvature case g = 0
the structure obtained coincides with the complex Hilbert structure in the
solution manifold of the real wave equation. The proofs are based on the
transfer of the equation to an ambient universal space-time.

1. Introduction

The solution manifolds of nonlinear wave equations such as (¢ + g¢> = 0
come equipped with natural invariant symplectic structures, in terms of which
they appear as infinite-dimensional Hamiltonian systems (cf. [8] and
references given there). In connection with quantum field theory and general
mathematical questions, Riemannian, Kéhler, and measure-theoretic struc-
tures in the solution manifold have been of interest. These are well known in
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the linear case, and already in this case it is clear that these structures are
inherently global in space-time, unlike the symplectic structure, which even in
the nonlinear case can be established locally, quite explicitly in fact. This
global feature involves the temporal asymptotics and thereby scattering
theory, which was used to establish an almost Kdhler structure in the solution
manifold near the zero solution for similar equations.

The requisite analysis involves connections with stability theory (cf. [4]),
and while the resulting structures are in principle explicit, their expression is
relatively complicated, in addition to being only local on the solution
manifold. The transfer of a conformally invariant wave equation from
Minkowski space 91, to the universal cosmos I has proved to be a powerful
method for its global treatment (cf. [3], [6], [7]). This method is here used to
treat the simplest nontrivial nonlinear such equation and derive an essentially
very simple Riemannian structure in the solution manifold and related
elements of structure.

2. The Banach and Symplectic Manifold Structures

These structures are much more simply and invariantly treated in 9 than in
M,. The natural, or «Einstein» energy in M, is slightly larger than the
natural, «Minkowski» energy in 9,, and in practice the limitation to solu-
tions of finite Einstein energy is an inessential constraint. Thus Cauchy data
for the cited equation will have finite Einstein energy if they have finite
Minkowski energy and if in addition their product with the euclidean distance
is such. All such solutions in 9, (having Cauchy data of finite Einstein energy
at one time) extend canonically and uniquely to 91, in the sense that there ex-
ists a unique solution ¢ of the equation

S VG +88° =0
on M, of finite Einstein energy
E= [ l(erad ) + ¢ + (1/43"d;sV,

such that ¢ = pg|9M,, where p is a fixed smooth function on 91, independent
of ¢, and [0’ is the operator in 9N that is covariantly related to the usual
D’Alembertian [ in 9,. For explicit expressions, cf. loc. cit. In more invariant
terms, ¢ is a section of the scalar bundle of conformal weight 1, and if smooth
is transformed by a conformal transformation g on 9N into another solution
of equation (*). The universal cover of the group of all conformal transforma-
tions on M will be denoted as G; more exactly, G will denote the connected
component of this group, which is locally isomorphic to SU(2, 2).
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The main presently relevant features are summarized in

Theorem 1. The manifold of all finite Einstein energy solutions of equation
(*) is a Banach manifold relative to the Einstein energy norm in the tangent
spaces, representable by the solution manifolds of the first-order variational
equations

**) O + 3gé*n = 0.

The conformal group G leaves this manifold invariant, acts smoothly on it,
and leaves invariant the symplectic structure defined by the equation

Q. n) = [, G’ = wi)ds U

(the latter integral being independent of the fixed Einstein time involved in the
integration).

The proof is part contained in and in part derives straightforwardly from
the given references.

3. The Riemannian Structure

I first recall the «flat» Riemannian structure in the «free» case in which g = 0.
If ;(i = 1, 2) are two solutions of the wave equation on 91, i.e. distributions
satisfying the equation [1'yp; = 0, there is a canonical inner product applicable
to sufficiently regular solutions: {7y, 7,), which is invariant under the group
G, which acts on solutions as sections of the scalar bundle of weight 1; of [5].
The precise expressions for this inner product will not be required explicitly,
but the following expression indicates the exact regularity requirement. Let C
denote (1 — A,)'%, where A. denotes the Laplace-Beltrami operator on S>.
Then {(5,1) = |Cn(t,, *)|3 + | C~ *0(t,, *) |3, where the time ¢, is arbitrary,
| +|, indicates the norm in L,(S%), and % = (3/8¢)y.

I recall also (cf. [7]) that the boundary of 91, as imbedded in I consists
of two cones C ., the respective limits as x; = +o of the space-like surfaces
X, = Xg, Where x, denotes the Minkowski time (in an arbitrary Lorentz frame).
These cones are conformally equivalent to ordinary light-cones in M,, apart
from their inclusion of a point at spatial infinity, essentially the antipode of
the chosen origin in S3, which constitutes their intersection.

Theorem 2. Let M denote the manifold of all infinitely differentiable solu-
tions of equation (*). For any solution ¢ € M. Let G, denote the following real
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symmetric form on the tangent space T, at ¢:
Gy, m) = {M_wes o) + 38 L‘?q’)znn'd‘; U,

where 1 and n' are C* tangent vectors and

(1) 5 _. denotes the solution of the free wave equation in M having the
same restriction to C_ as y;

(2) d,U denotes the invariant volume element on S, multiplied by dt,
t = Einstein time.

Then G, is a Riemannian structure on M that is invariant under the action
of the Poincaré group, including scaling.

ProoOF. The restriction to C_ of 5 provides C* Goursat data for the free
wave equation, for which the solution is given in [1], showing its existence and
regularity. Under a transformation 7 in the (scaling-inclusive) Poincaré group
P, ¢ is carried into a solution 79, and the differential of the transformation
on ¢ carries 7 into another tangent vector 7, to M. The cone C_ is invariant
under P, and (7%) _, is simply the transform of u _, under the action of 7,
since this is true of their respective Goursat data. Thus the form (9 _ ., 7"~ )
on Ty is P-invariant, under the action induced from the action of P on the
weight 1 scalar bundle.

The integral j M¢2nn’d4U is unchanged by Poincaré transformation, as
shown in [5] (which deals with integrals of the form { ¢*d, U where ¢ is
an arbitrary section of the same bundle, from which by polarization the
presently relevant invariance follows). Thus the entire form G, is Poincaré
invariant.

In order to express the results most simply in terms of classical solutions,
only C® solutions were considered in Theorem 2, but the result is readily
extended to the full Banach manifold, inclusive of generalized solutions, by
completion.

Corollary 2.1. Let M’ denote the manifold of all finite-energy solutions of
equation (*). For any solution ¢ € M', let G, denote the following real sym-
metric form on the (full) tangent space T', to M' at ¢:

G:;b(ﬂ, 77, = <n—coy n,—co> + 3g JM¢2777I'd4Us

where n and n' are tangent vectors at ¢, and 1 _ ., is the solution of the wave
equation obtained by completion from the mapping 1 — 1 _,, defined on C~
solutions, as a map from tangent vector in the finite-energy topology to free
solutions in their conformally-invariant norm. Then the analogous conclusion
to that of Theorem a holds.
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Proor. The differential equation for the tangent vector guarantees that their
Cauchy data remain in the finite-energy space earlier indicated and that temporal
evolution is continuous in this norm. Combining results in [2] on the regularity
of restrictions to submanifolds of functions of specified regularity with the
explicit expression [1] for the conformally invariant norm of free solutions
in terms of their Goursat data on C_, it follows that the map 5 = 5_, is
continuous from tangent vectors in the energy norm to free solutions in the
conformally invariant norm. Accordingly the map extends by continuity from
the dense subset of C* solutions of the tangent equation to all those of finite-
energy Cauchy data.

By conservation of energy in the case of ¢, and its boundedness for |#| < =
in the case of 4, ¢ and 7 are in L¢(S>) at each fixed time (having L, gradients
in $%), with Ls norms bounded as a function of z. The same is true of their
norms in L,(S%), so that _[ M¢2nn’d4 U depends continuously on ¢, 7, and %’ in
the energy norms appropriate to the Banach manifold under consideration.
Thus the entire metric G4(n, #) extends uniquely and continuously from the
case of smooth ¢, 7, and %', to a metric G ;(n, ') defined for arbitrary ¢ e M’
and arbitrary tangent vectors  and 7’ at ¢.

4. Discussion

The conjunction of the Riemannian with the symplectic structure gives rise
canonically to an associated almost complex structure, which is symplectic
and positive, thereby giving rise to an almost Kédhler structure with modified
Riemannian structure but identical symplectic structure. Thus the symplectic
structure  on M’ can be extended to a Poincaré-invariant almost Kahler
structure. For the free wave equation this is the linear structure, constituting
a complex Hilbert space, left invariant by a known positive-energy unitary
representation of G. In the nonlinear case it is not known whether the almost
Kaéhler structure established here is infinitesimally integrable.

The Poincaré invariance of the map from Goursat data on C_ to solutions
of the nonlinear equation provides a Poincaré-invariant map from measures
on the Goursat data space to measures on the solution manifold M’. Suitable
Gaussian measures will thereby be mapped into non-Gaussian measures enjoying
non-trivial, invariance and quasi-invariance properties, which may be inter-
preted as generalized stochastic solutions of the nonlinear equation.

In the language of theoretical physics, the integral expression involved
in G, may be correlated with the Hessian of the interaction Lagrangian,

(1/4)8 17 6*ds U.
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