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1. Introduction

The theory of singular integrals started by Calderéon and Zygmund [1] has
been extended in several different ways during the last three decades. One
such extension is the singular integral operator

0 Hf@=p-v | fe-To) Y

where I': R— R”, n > 2, is a curve passing through the origin: I'(0) = 0. This
object, called the Hilbert transform along the curve I', appears in the study
of parabolic differential operators as well as in the harmonic analysis of
homogeneous spaces. A great deal of effort has been dedicated, principally
under the influence of S. Wainger, to the understanding of their boundedness
properties. See [2] for a fairly complete presentation, together with a sum-
mary of results and applications.

These objects are also multipliers of the Fourier transform and, therefore,
can be defined by the formula

Hf(®) = f(Hm(E)
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where

o

exp (i - I‘(t))%-

m(£)=p-vJ

Similarly to the case of the ordinary Hilbert transform, where we have the
Hardy-Littlewood maximal function as the positive operator controlling its
behaviour, one can define maximal operators associated to these singular in-
tegrals
h

(i) Mfo) = sup— | |f(x— @) de
r>02h J_n
dt
(i) e =swp | - T
€> [t =€

The first natural question one may ask is which are the conditions to be im-
posed on the curve I" so that H, H* and M are bounded on some, or all,
spaces LP(R™). In a series of papers, A. Nagel, E. Stein, S. Wainger and others
have obtained positive results involving some kind of «positiveness» of the
curvature of T', taking advantage of the decay of the multiplier m(£) that it
implies. The proofs are completed by an ingeneous use of the method of com-
plex interpolation, together with arguments of a tauberian type involving cer-
tain square functions. In [3], it has been observed that, for convex curves in
R?, T'(¢) = (¢, ¥(t)), with ¥(0) = ¥'(0) = 0, there exist necessary and sufficient
conditions for H to be bounded in L2(R?): when v is even (resp. odd) the con-
dition is that v'(¢) (resp. A(z) = t¥'(¢) — v(¢)) must have the doubling time pro-
perty, i.e., ¥ (Ct) = 2v'(¢) (resp. h(Ct) = 2h(¢)) for some fixed constant C and
for every ¢ > 0. This condition has been analyzed in [4] in relation to the max-
imal function M. The range of L”-estimates has been extended from L* to L?,
4/3 < p < 4, in reference [5].

In this paper, we improve and extend the results mentioned above in the
following manner: we consider a C! curvein R34, T' = {(¢, Y(f)): — <t < +}
¥(0) = ¥'(0) = 0, with the following properties:

a) v is biconvex, i.e., |¥'(¢)| is decreasing in (—o0,0) and increasing in

(0, + ).

b) v has doubling time, i.e., there exists a constant C > 1 such that

lv'(C)| = 2|¥' @)

¢) v is balanced, by which we mean the following: there exists kK > 1 such

that |v(k™'0)| < |v(=1)] < |v(kt)| for every ¢ > 0.

Theorem. Under the assumptions a), b) and c) on the curve the singular in-
tegral H and the maximal functions M and H* are bounded operators in
LP(R?) for every p, 1 < p < .
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Immediate consequences of the boundedness of M and H* are:

Corollary. For every fe LP(R?), 1 < p < o,

limi JE Sfx-T@)dt =f(x) a.e.

=0 2¢

lim fe—-T@) it = Hf(x) a.e.
e~0J[t[>e 4

This theorem gives a fairly complete analysis of the properties of Hilbert
transforms along convex curves in the plane. For every fixed p, 1 < p < =,
the doubling time property is both necessary and sufficient for LP-
boundedness if the curve is even. Likewise, for a biconvex curve, the condi-
tion of being balanced is necessary for the L>-boundedness of H, as we show
in §6 below. The fact that for such curves one cannot obtain boundedness of
the Hilbert transform in some L”(R?) without obtaining the full range
1 < p < 0, explains, in retrospect, the success of the theory, in contrast with
the situation in the analysis of the spherical summation multipliers.

We believe that equally important as the theorem itself, is the fact that we
treat the operator Hf(£) = f(§)m(%) by taking advantage of the decay of m (%),
its smoothness and the geometry of its level sets, which suggest the use of dif-
ferent (angular and vertical) Littelewood-Paley decompositions. Weighted
and vector valued inequalities are also some of the tools used to pass informa-
tion from estimates of the maximal funcion to estimates for the Hilbert
transform, and vice-versa. The set of techniques is due to the contribution of
a long list of people, as reference [6] clearly indicates. There are several slight-
ly different proofs of the boundedness of the operators H and M for even or
odd curves, one of which is given in [6]. Here we present our version, together
with the extension to the class of balanced curves and the appropriate
estimates for the maximal Hilbert transform which give the pointwise ex-
istence of the principal value singular integral.

2. Decomposition of the Operators and Sketch of Proof

All the L” estimates will be proved for fe $(R?), and then extended by con-
tinuity. We define the singular measures M, and A, (k € Z) such that

M= |

@@m=j

1=<]t]=

exp (iQ2¥ts + v(2¥t)n)) dt
<ltj=2

exp ({2 + Y1) =
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and consider the following basic decompositions of our operators

Mf(x) = sup | M = f(x)|

Hf(x) = i hy*f(x)
st s 5 e

We shall also use the following square function

-]

1/2
@(iv) Gf(x) = <k > |Mkf(x>|2>

where
M, f(&, 1) = My (&, 1) — 2Q*OM, 0, D)1 f (5, m)

for a suitable function ® in the Schwartz class satisfying ®(0) = 1.

The proof of the boundedness of the maximal function Mf is based on the
following strategy: we have the pointwise majorization Mf(x) < Gf(x) + f*(x),
where f* denotes the strong maximal function of f. We start by proving the
L?*-boundedness of Gf by means of Plancherel’s theorem. This implies the
same result for Mf which, in turn, implies the L? estimate, 4/3 < p < 4, for
the square function Gf by a nowadays familiar argument based on a vector
valued inequality and an ad-hoc Littlewood-Paley decomposition of frequen-
cy space. In general, and L” estimate for M implies an L? estimate for G, with
'é - %| < 51;, and therefore, a bootstrap argument will yield the whole range
of p's, 1 < p< o0,

The doubling time condition of the curve will be used to define angular
Littlewood-Paley decompositions. For the sake of simplicity, we shall assume
that the doubling time constant is C = 2. Then, we consider the angular
regions

1 ! !
Af = {(E, = [7(£29] < :—fI'T <2y (iz"“)lz
(ke Z). 1t turns out that {Af }*, is a lacunary decomposition of R? with
finite overlapping: ASNAS= @ if |k — k| >3, and the same is true for

{Ac ).

3. The Maximal Operator and the Square Function

Let Ay = A{UA; and define the projection operators T by (T f)" =
=fok, keZ.



Lemma 1.

a)

b)

)
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For every p, 1 < p < o, we have

<6l /1,
p

(Zkv_‘ |ka|2)1/2

2 Tife
k

<¢
p

2 Tf
n=k

<G| flp
p

sup
k

(2 |fk|2)“2\|p
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_ a) is nowadays a well known inequality (see [2] for references) and b) is its
dual form; c) follows from ) in the same way that one proves the lacunary
convergence of Fourier series.

Lemma 2.

h

I'f(6) = :up—l— . [ (6 — ¥(2))| dt

>0 2h J -

is a bounded operator in L’(R), 1 <p < .

The proof is obvious due to the monotonicity of '

iJ‘hfé— tdt—i NGRS
y ), @ T =4 | e -w

v(h) du
¥'(v W)

_ L (6 — uyplu) du < F*G),

(Hardy-Littlewood maximal function), because ¢(u) is nonnegative, decreas-
ing and jf) o(u) du = 1. The same argument holds for the average over the in-

terval [—A, 0].

Lemma 3. Let ® e S(R) be such that X;_, ;; <® <X_, ;- Then

|M, (5, 1) — ®Q2*HM(0, n)] < Cmin (2|¢, 2*|£) ™Y,

Sor all (¢,7) ¢ A. The same estimates hold for h(£,n) in place of My(£,n).

Proor. The estimate for the case 2%|£| < 1 is trivial because M is a measure
supported in {(x;, X;): |x;| <2¥*!}. For 2*|¢| > 1 we use Van der Corput

lemma

Mg m) = [ e®©dt + [*e™®O ar
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with
gk )] = 125 + 7'@"1)n]
and
@] = [2°E + ¥'(=2"1m)|.

If €] > 2[n| - [v'@**Y)| then |gi®)] > 2°7"|¢]. If [£] <7/21n] - |¥'(2")], then
also |gu®)| =25 v'@*0)| - || = 2*|¢| and the situation for /i is similar.
Finally the complement of these four cases corresponds to points (£, 5) € Ag.
The proof for 4, (&, 1) is essentially the same. [J

Suppose that U, f= U, *f is a sequence of positive operators uniformly
bounded in L¥(R") and consider U*f(x) = supy | Uy *f(x)]|.

Lemma 4. If U*f(x) = supy |Uy « f(%)| is bounded in LY(R") then
|Gy <o (3iar)”
1

P
1 _ 1 __1
for‘p 2|-2q,

This is a well known result and we have stated it here only to clarify the
presentation of the proof of the theorem. Our proof of the estimates of the
maximal function depends on the following proposition of a conditional
nature:

Lemma 5. Suppose that |Mf|,< C| f|, for some q. Then for all p such
that

1 1 < 1
p 2| 2q
we have the inequality

IGfl, < Cplflp
where Gf is defined by (iv).
PrOOF. Recall that Tpf =X, - £, and let us write f*¥ = f — T, f and

Skf =T X my2-ksieis2-x+1y-
Then

Gf < (; |M, ka|2>1/2 + @] |V, *f"|2>1/2 =I+1I
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Now, observe that sup; (|M,| *f) is a bounded operator in L? due to the
hypothesis and lemma 2. Therefore

111, <G} (B1TsP)?| <6171,
p

by lemmas 4 and 1.

2\ 1/2
11=<%“, Mk*< z +kf"> ) ;<§;|Mk*sj+kfk|2>1/2=§;zg.
We shall prove:
[, <C2 Vg1, and ), <CIAL,, for |5 -—|=5
jl2 = 2 an by S ||‘,Jo or |5 2|~ 24
Interpolating, we shall obtain
11, < 3 1), < S e2 £l <G I f1, with ~=——2 0.
PRI pS G, W ST

We use Plancherel’s theorem for the L*inequality

i3 = 2 I M (8, m) ~ @RHM O, n)|*| f(E )|* dEdn
&) €4,
< (by lemma 3) < C [ | &, mIP@ ™V dgdn = c272V1| f|3.
Finally

1L, ” <2, +kfk|z>1/2 ,,
< |35 oty
G, {171, + | (Z1ms) |

S

{<G, /1, O
o

To finish the proof of the theorem for the maximal operator, we use the
majorization

Mf() < 2sup |Mj*f(0)| < ZSUP | M +f ()] + 2Nf(x) < 2Gf (%) + 2Nf (%)

where N is the hardy-Littlewood operator in the x;-variable and the operator
T of lemma 2 in the x,—varible. Now, the bootstrap argument sketched in sec-
tion 2 can be applied and yields [Mf|, < C,|f|, 1 <p < .
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4. The Singular Integral

The estimate for Hf will be based on an argument similar to that of lemma
5 together with the fact that the operators 4, * f are acontrolled by the max-
imal operator Mf.

We first consider the case of even v(¢), so that /,(0,7) = 0. The notation
used is as in lemma 5.

Hf = ;hk* T.f+ ;hk*fk =H,f+ Hf.

By using lemmas 1 and 4, and the fact that sup, |A| *f < Mf

| H,f1, = | 2 TeCre* T f) | (3 (% T 2 )2
k | \ %
(; |ka|2>1/2

<G,
p

p

<G, <Gl flp

p

On the other hand

<2

J

+
|H, f| = ’;hk*j=z_:w‘sj+kfk

;hk*sj.;.kfk = Z‘IIJ|

J
Since #,(0,7) = 0, lemma 3 and Plancherel’s theorem yield

miz=3 [ AP

&) €4,

<CfIfenl2 M agan < c272| £|3
In L?, 1 < p < o, we have a uniform estimate
17|, = H;Spfk(hk* j+kfk)|lp

(S lhercs, 1)

(Z18F) 2] <Gl 11

<G,

P

<G,

and the proof ends by interpolating and summing a geometric series.
For the case of a general curve, we decompose

hk = Ek + mk
where, with ® as above

(8, m) = 3QY) - A0, ).



ESTIMATES FOR WAINGER’S SINGULAR INTEGRALS ALONG CURVES 113

Then, the Fourier transform of /4, satisfies the same estimates as in the case
on an even curve, namely

|(A)™E m)| < Cmin 2¥|¢], @¥|E) ™Y i (5,n) ¢ A,

and sup || *f < Mf + Nf is bounded in L”(R?) for all p > 1. Therefore, the
previous argument gives

e

<Cp"f"p! I<p<oo.
p

Next, we need to estimate the decay of /,(0, ). It is precisely here where the
hypothesis of having a balanced curve plays a role. Let us assume for simplici-
ty that the balancing constant is k < 2. Define A\, = |v(2%)|, k€ Z, so that
{\e]” « is (by convexity) a lacunary sequence, and the balancing condition im-
plies M _; < |Y(=2%)| < N\¢41, k€Z. Now, for small n we have

J [em@D _ ] a
1<|t|=2 t

< (log 2)[n|(Iy@* Y| + [v(=25* 1)) < Const A\ 4 5 - [].

A0, )| =

For large n we once again use Van der Corput’s lemma; since

d ,

E(W’Y(Zkt))‘ = 207'@*D)| = Ne_ 1 Iml, 1<)f <2
we obtain

A0, m)| < Const (A, _y|n])~".

We now apply the same argument of the even case alter replacing the
operators S; by S, defined by

S NE =FE ) - X (n)

where 7, = [\, A, 'TUL=N1, =\ 1. Then

J+1 0
~ te
dimpxf=2mexS,  f= > Af.
k Jk 7 jo e 7

The uniform estimate |A4,f], < C,|f],, 1 <p < o, is as in the even case.
In L? we have

3= [ 17w rimenr dean
R Ij+k
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Ifj>1andnelj+k,

A .
|m (&, m)| < )\’”2 <p*,
k+J

where p > 1 is the lacunarity constant of the sequence {\,} _2. If j < —1 and

nel

A, .
|me(&,m)| < IHEHL  p24)
xk—l

Therefore
|4;f12 < Constp™ V| f,  (~eo0<j< o)

and this ends the proof.

5. The Maximal Hilbert Transform

We shall prove here the L?-boundedness of the operator H*f(x) defined by
(iii) for all 1 < p < . Since

H*f(x) < Mf(x) + sup
k

3 hr ) \

it suffices to consider the maximal operator:

2 haxf

n=k

sup
k

.

For simplicity, we shall only do this in the case of an even curve; the necessary
modifications for dealing with general balanced curves are essentially contain-
ed in the last computations of §4. Define ® € §(R) as in lemma 3, write
&, (¥) = (2%), and denote by ¥ convolution in the first variable. Then, we
decompose the truncated Hilbert transform as follows:

> harf= @k‘P{Hf— > hy *f} + @G- 8P Ay x T, f +
n=zk n<k n=zk
+ (G- ®IP D hyxf"=Arf+ Bof + Cof
n=zk

and we need to estimate sup, |4, f|, supy | By f| and sup; |C, f|. In doing so,
we shall use the following maximal operators:

a) g¥(x) = Hardy-Littlewood maximal function of g(x;, x,) in the x;-direc-
tion.
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b) Ng(x) = the Hardy-Littlewood operator acting on the x; varible and the
operator I' of lemma 2 acting on X, (this operator appears at the end of §3).

) T*g(x) = supy |Tig(x)|.

d) $*g(x) = supy | Sz i T,e()| (see lemma 1).

e) Mf(x) = maximal operator along the curve T'.

All of these are bounded in L?(RR?) for every p, 1 < p < «. Now, to estimate
A, f, we observe first that the action of the kernel ®, %], _, A, is pointwise
dominated by the action of the maximal operator N. It suffices to prove this
at the point x = 0 and for k£ = 0; given a test function g, we have

| <‘1>(3=’Z hmg> ' =

n<o0

© 1
j [p- vj 1g(s+ t,v(t))i?}@(S)ds

o 1
j j [®(s — 1) — P(s)]g(s, v(t))—ds

Constj‘ J |g(s Y(2))|ds dt < Ng(0)

(we have used the fact that v is even in the second equality). Therefore
supy [ A, f(x)| < Const [(Hf)F(x) + NfF()].

For the second term, since {7, },.z are orthogonal projections, we can write
hy* T,f = T,(3;h;* T,f). Remember from §4 that Hf was decomposed as
Hf = H,f + H,, f, and both pieces were bounded in L” for all 1 <p < .
Then,

sup | B, f(9)| = sup ;(6 -20¥ Y T, f)(x)| Const (S*H, f)}(x).
k k
Finally, the last term can be decomposed as follows:

sup |Cf| = sup
k k

PINCEE DLIONETAN I
J=

where

P,f() = sup |6 — 3 )Ph;, ).

The operators Pj are uniformly bounded in Z?(R?), 1 < p < o, because

P, f(x) < Const (Mf + MT*f)}().
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On the other hand, a more favourable estimate holds for p = 2, since

Hij||§ <2 ” 11— ‘i(ZkE)lzlﬁjJ,k(E, | F & n)|* dedn
k G #4;, .

< Const j j %, R dedn
k:2-k<|¢

< Const27%| £ 2.

Again, interpolating and summing a geometric series shows that

oo

21 Pl
0

Jj=

SGlflp  1<p<e=
p

finishing the proof.

6. Balance is Necessary

Suppose that ' = {(¢, v(¢)},cr is a biconvex curve, i.e., ¥(0) = ¥'(0) = 0 and
|7'(¢)| increases in (0, + ) and decreases in (—, 0), and let H be the Hilbert
transform along I'. We wish to prove that, if H is bounded in any L” space,
then I" must be a balanced curve. In fact, since H is a translation invariant
operator corresponding to the multiplier
® r dt
m,n)=p- vJ _exp @&t + iy () —-

we have H bounded in L”(R?*) = H bounded in L*%(R?>) <& meL”(R*}) =T
is balanced.
Only the last implication must be proved, but this follows from

Lemma 6. If I' is biconvex and |v(—1y)| = |v(t;)| with t,,t, >0, then
llog #,/ty| < 8 + |m(0, 1)|, where n = 1/]v(t,)|.

Proor. Suppose that 7, < ¢;. Then

o I{
m(0, ) = j e”“)”g; + J‘oe”(’)”%

t —©

t t
+ I [e7Y®n — l]ﬂ + dt
-t t 4

o fo

t
=11 +12+I3 +10gt_1'
0
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Let F(t) = j"’ e ds, t, <t < . For s> t;, we have |Y'(s)|n = |7'(t)|n =
= (|r(@)| /t1)?7 = 1/t,, and v’ is monotone. Therefore, F(¢) < 3/t,, and in-
tegrating by parts yields

L] = HjF(t)t‘zdt‘ <3

Similarly, |I,| < 3. On the other hand

t dt 31
|55 < j_t @7 < nj V'@l dt = (@] + [7(~t))) =2

Putting everything together, |I; + I, + I;| <8, q.e.d.
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