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0. Introduction

In this article, we study the quantum mechanics of N electrons and M nuclei
interacting by Coulomb forces. Motivated by an important idea of Chan-
drasekhar and following Herbst [H], we modify the usual kinetic energy —A
to take into account an effect from special relativity. As a result, the system
can implode for unfavorable values of the nuclear charge Z and the fine struc-
ture constant «. This is analogus to the gravitational collapse of a heavy star.
Our goal here is to find those values of « and Z for which the system is stable.

We start by explaining the modified kinetic energy. Recall that —A is the
quantum version of the kinetic energy T = p?/2m from classical mechanics.
Now T ~ p?/2m is only a low-energy approximation in special relativity. The
correct formula is 7= (p? + m?»¥? — m in suitable units. In particular,
T ~ |p| in the crucial high-energy limit. A first crude attempt to reflect this
in quantum mechanics is to study the Hamiltonian

H=[(-A+m»)"* - m] + V(» (A)

in place of the usual —A + V(x). While (A) is not a correct physical equation,
it is rooted in a genuine relativistic effect. It is essentially equivalent to the
ideas that led Chandrasekhar to predict the gravitational collapse of stars and
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120 C. FEFFERMAN AND R. DE 1A L1IAVE

derive the order of magnitude of the critical mass. (See also Lieb-Thirring
[LT2].)

Next we show how a system governed by (A) can implode. This happens
already for a single quantized electron attracted to a single nucleus of charge
Z fixed at the origin. The Hamiltonian (A) becomes [(—A + m?*)Y? — m] —
— aZ/|x|, where o ~ 1/137 is the fine structure constant. Modulo a bounded
error,

z
H=(-A)Y2 - %T acting on  L3(R%) (B)

The state of the electron is given by a wave function € L*%(R®) of norm 1,
and the energy is (Hy, ¢). Unlike the usual Schrédinger operator, (B) is
homogeneous with respect to dilations of R3. So if we could find a ¢ € Cg with
{Hop, ¢) < 0, then by dilating ¢ we can make wave functions y concentrated
in a tiny region of space, and having large negative energy. In other words,
the electron will fall into the nucleus. On the other hand, if (He, ¢) > 0, then
dilating ¢ to concentrate the electron into a small region will make the energy
large positive. Consequently, the system will be stable if A > 0. From these
considerations, we may expect the value of aZ to play a crucial role in the
study of (B). In fact, (B) is easily decomposed by means of spherical har-
monics and the Mellin transform, and one finds the following dichotomy:
H > 0if «Z < 2/7; Hunbounded below if oZ > 2/7. See Herbst [H]. Putting

= 1/137, we obtain 2/mwo ~ 87 as the largest stable nuclear charge. Of
course larger atoms exist in nature; numbers predicted from (A), (B) are
physically relevant only as orders of magnitude.

We want to understand what happens for N electrons and M nuclei. The
set-up is as follows. We fix nuclei with charges Z,, Z,, ..., Z,, at points
¥1...Yuw€R3. A quantum state for the N electrons amounts to a wave func-
tion ¥(x; . .. xy) € LA(R*) of norm 1. Since electrons are Fermions, we take
¥ antisymmetric, i.e., ¥(x; . ..xy) = sgn(m)¥(x,; . . . X,n) for permutations .
Note that our wave functions are scalars, i.e., we are ignoring spin. The
energy of a quantum state y is defined as (HY, y) with

N
1 Z.Z Z
H= 3 (—Axk)‘/2+a[2 + - .
K=1 j<k |xj_xk| i<k ij"'ykl Jk |xj_.yk|

}. ©

This is the many-particle version of (B), and agrees with (A) up to an error
O(N). To make sure Hy is well-defined, we take y € Cj.
Depending on «, Z, ... Z,, three very different phenomena may occur.

Case 1 (Stability): (Hy, ¥) >0 for all Y and all y;...yy.
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Case 2 (Many-body implosion): (Hy, ¢) is bounded below for each fixed
¥Y1...Yu, but the ground-state energy tends to —oo as the nuclei are bought
together at the origin in a suitable manner.

Case 3 (Complete implosion): {(Hy, y) is unbounded below for each fixed
ViV

That these are the only possible cases is immediate from dilation-invariance
of the Hamiltonian (C).

From the study of (B) one checks easily that complete implosion occurs if
and only if «. max,Z; > 2/x. The other two cases are hard to resolve.

Stability (case 1) is a strong statement about many-body systems. For instance,
by applying the trivial estimate (—A)Y? < a(—A) + o~ /4, we get in case 1

1 Z;,Z, Z,

%:( Ax") +j;k |xj_xk| +j§k |}’j—}’k1 ik lxj—J’kl >-cN D)
with C = o~ %/4. This is a sharp form of stability of matter (see Dyson-Lenard
[DL1], Federbush [F], Lieb-Thirring [LT]). Antisymmetry of the wave func-
tion must therefore play a crucial role in stability of (C). Already in the case
of a single electron (N = 1), (D) is not obvious; its analogue in Thomas-Fermi
theory [L] is false.

In fact, the case of one electron and M nuclei was settled by Daubechies and
Lieb [DL2] for @ < 1/3w. They found that the Hamiltonian (C) is stable in
this case under the sharp assumption « - max, Z, < 2/x. It would be interesting
to know the best constant in (D) with N = 1.

Recently, J. Conlon [C] proved the further deep result that the Hamil-
tonian (C) is stable for arbitrarily many electrons and nuclei, provided
o - max;Z, < 10729,

Both [DL2] and [C] are major steps forward in our understanding of
relativistic stability of matter. They contain a wealth of important insights which
we take for granted here.

Our results are as follows.

Theorem 1 (Hydrogen). Suppose all Z,, = 1. Then the Hamiltonian (C) is stable
Jor a < 1/2.06m.

Theorem 2 (Small o). There exists o gca SUCH that o < dggiicar and
amax,Z, < 2/n imply stability of (C).

Since complete implosion occurs when o - max; Z, > 2/, Theorem 1 pro-
vides the best o up to a factor of 4.12, while Theorem 2 completely settles the
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case of small o. From the proof of Theorem 2 one has a good chance to find
an explicit (non-optimal) o ica;- Moreover, we hope that o > 1/137.
H. Trotter has produced strong evidence for this, but a complete proof is not
yet available.

We should point out here two immediate consequences of our proof, which
may be of independent interest.

Cor. 1. Letx,...Xxn, V1. ..V € R? be electrons and protons, let 5(x;) be the
distance from x; to the nearest y,, and let

V= Z Ixj_xkl_l + Z |yj_yk|_1 - lej—ykl‘l
i<k Jj<k Jrk

be the Coulomb potential. Then

>33

v o0r)

Note. Elliott Lieb has pointed out to us that Cor. 1. appears in Baxter [B], 1980.

Cor. 2. Let y(x, . ..xy) be antisymmetric, and let 6(x;) be the distance from
X to the nearest x;(I # k). Then

1/2 35
(Sa0"0.9) 250 <Z 5(x)w>

More generally, we hope that the ideas in our proofs will be useful tools for
understanding many-body problems.

In this paper, we prove only Theorem 1, leaving Theorem 2 for later in the
hope of getting o ica1 > 1/137. An intresting feature of our proof of Theorem
1 is that it makes use of computers. This is perhaps natural in a theorem on
best constants. (Without computers, we can only prove Theorem 1 with 1/2.06x
replaced by 1/57.)

We begin our proof by reducing Theorem 1 to a problem involving only one
electron and three nuclei. The reduction of a «big» problem for N electrons
and M nuclei to a «small» problem for a few particles is made possible by the
key equations (1), (2), (6) below. The one-electron problem in turn can be reduc-
ed to the non-vanishing of a function D(¢,, t,) defined in terms of the solution
of a second-order linear ordinary differential equation. Since the equation can
be solved numerically, it is easy to calculate D(¢,, £,) to good accuracy with
a computer and convince oneself that D(z,, £,) # 0. However, a complete pro-
of requires computer programs that produce rigorous upper and lower bounds
for solutions of ordinary differential equations. Related computer-science issues
arose in the rigorous study of the renormalization group equations (see [La, LI]).
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In section 6 below, we explain the compuer programs in detail, and provide
listings so that our results may be easily reproduced.

1. Notation

¥(x; ...x,) denotes a many-electron wave function, while y; ... y,, are fixed
nuclei in R3.

B(z, R) = ball of center z and radius R in R>.

N(z,R) = N(z, R; x; . . . x;) = number of electrons x; in B(z, R).

M(z, R) = number of nuclei in B(z, R).

Let A be a subset of {1...s}. We write x; = (X})je4 and x4 = (x;); ¢4. Thus
Yxy - . X) = Yy, X2).

We write dx, for II jc4dx;, and dx)y for II ; .4 dx;.

If A = {k} has just one element, then we write x;, x, dx}, in place of x,
XY, dxl. Thus Y(x; . ..x5) = Y(xg, xp) for each k.

For a constant x to be picked later, set

_12x 7 12
H=—¢> %}( AN+ V
1 1
V=, + 2 !

i<k 1xi—=xe| i<k |yi—=yl 5% 1% — Y

Our present H is proportional to the Hamiltonian (C) in the introduction,
with o = (2/7) - (35/12x).

2. Rewriting the Hamiltonian

A key idea in our proof is to associate both a kinetic and a potential energy
to each ball B(z,R), and then regard the total energy { Hy, ¥) as an integral
over all possible balls. To do this for kinetic energy, we use the elementary
identities -

dzdR
J j I |u(x) — u(y)|* dxdy—5
z€R3 JR>0 Jx,yeB(z,R)
167 ]u(x)—u(y)lz 327° 1/2 o/ 53
= = —'A C [R .
35f R dxdy = 2 (-0, u e CFRY)

(The second equality is well-known from the Fourier transform.)
Hence if we set

Tele R X = [, 2o pe g W X0 — Y(E, x))|* dx d¥

X.
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for Y € L%(R*) and x}, € R**~3, then we have

12% =

35 2 2=] ((_Axk)l/zw’ ‘p)

d: dR
j J j T Rixpax, Z9R . )
167r k=1JzeR3 JR>0 J x) eR3s-3

To write the potential energy as an integral over spheres, we just note that

dzdR
X for x,x'eR.
Ix X | Leﬂ%3 J‘R>0 oxeB@R RS

Summing this over all particle pairs with an appropriate sign, we have at once

1 1 1
V=> + -
i<k lxj_xk| j<k lyj—)’k| ik 1% — Yl

1 NN-1) MM-1) dzdR
= jj“{ 2 T 2 MN] @

where N = Nz, R; x;...x;) and M = M(z, R).
Next we bring in antisymmetry of the wave function to prove the following
estimate, which we shall put into (1).

Lemma 1. Fix B = B(z, R), and suppose y(x, . . . x,) is antisymmetric. Then

ZJ . 3Tk(z,R;x}<)dx;c>ZJ Ti(z, R; x3) dx
keﬂ? s =

x%€(R3\B)s —1

83”R3j (NG Ry Xy ... %) — 1), [0 .. x)P dxy . . . dx,.

PROOF. Let ¢, ¢;, 5, - .. be a complete orthonormal system in L*(B), with
@, = const. If we expand a given u € L%(B) into its Fourier series u(x) ~

~ 21 A4¢a(x), then

x€B

j  |ux) — u(®)|*drdx = 83—”1&3 J lu(x) — Avgu|*dx
X, xeB

=ﬁr—R3 Z |Aa|2'

3 a#0

Now let o(x; . . . xy) € LA(B"), and write

qp(xl . 'xN) -~ N Za Aotl. . .uN¢ul(x1) s qpaN(xN)'
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The preceding identity gives at once

- . X. col X
Lxl ..... Xk — 1, Xk + 1, +++,XN)EBN—1 .[i,feBI(p(xl Xie = 1%k +1 N)

— Xy .+ X 1 XXy XN P dRARdX XXy - dXy

8
-5 R 3 |4
3 op...Qp
(ay #0)

|2
ap...opn

for each k. Sum this over k, and we get

- \ = 2
;jBN‘lji ;eB|¢(x1---xk-1xxk+1 e XN) — (X X 1 XX g - - X))
d)?dfdxl. . .dxk_ldxk+1.. .de

= —-3—R3 2 An ooy an), B)
0(] “ee D(N
where (e . . . ay) = (number of k with oy # 0).
If o(x,...xy) is antisymmetric, then the AmlmﬁY v are antisymmetric, so
that 9U(a; ... ay) = N — 1 whenever 4,, ., # 0. Hence (3) yields

- = 2
;jBN_IJ‘i’feBI¢(x1 ce e X1 XXy XN) — 90({1 e Xp 1 XXy 1 - XN)]
didxdx,...dx,_,;dx;,,...dxy

3 2
?TR (N_ l)cxl‘ZaN IAal...aN|
_r

3 RAWN-1) jBN loCey . .. x)2dx, . . .dxn, (4

whenever ¢ € L*(B™) is antisymmetric.

Next, let y(x, . . . x,) € L*(R*) be antisymmetric, and let N > 2. For each N-
element subset A C (1...s}, let E(4) = {(x;...x)|x;eB if and only if
JjeA}, and F(A, k) = {x} = (X;); -« | Each x;(j # k) belongs to B if and only
if jeA}. For fixed A and fixed x/,, we regard

¢|E(A) = Y(X4, Xy) xa€BN
xhe[CB]S—N

as a function of x, € BY, and apply (4). Integrating against dx/, over [‘B]° -N
we obtain

[W(x, x3) — VX, x3)|* dx dX dx),

ked .[x’keF(A,k) L‘qieB

8 . 2
2—3—R (N-1) E(A)Nx(xl...xs)| dx, ...dx,.
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Sum this over all N-element sets A, and we find that
= 4! Z v'\2 A% A7 ’
2 [ oo Jo.sep VX0 — Y& x| dX dE d,

87r

5 RO [ X koo =n Y0 x) Py dx (5)

with G(V, k) = {x} € R**~*| Exactly N — 1 of the components of x} belong
to B}.

If finally, we sum (5) over all N from 2 to s, then we get the conclusion of
the Lemma. []

Corollary. If Y(x; .. .Xx,) is antisymmetric, then

D80,

ddR
<2 j j XING, R; ») — 1], 2R ¢¢>
T JzeR3 JR>0
dzdR

+ 2= j j j T.(z, R; x) dx} 6)
k 167" zeR3 JB>0 Jx}€l°B(z, R)I* 1 g « “ RY

Proor. Immediate from the Lemma and (1). O

12x =
35 2

We pause to point out some simple applications of (2) and (6). (These were
stated in the introduction as Corollaries 1 and 2.) Since

J‘ j [Nz, R) — 1],
zeR3 JR>0

N(z,R) dzdR
- XN(z R)=2" 5 2 R5

dzdR

dzdR
XN(z R)22XxxeB(z,R) RS
zeR3

J J X x dzdR
R JR>0 Xk 7 j(k)eB(z, R) R’

N|H

N|>—‘

(X = nearest neighbor of x;)

Z xj(k)[ -1
I3

m|=l



RELATIVISTIC STABILITY OF MATTER-I 127

by (2), it follows from (6) that
12%

Tac _12‘-_ g Xk)1/2¢, \P> 2 <’21; . 'er“ ; le - xj(k), - 1¢’ ¢> :

Setting x = 4 and 8(x,) = min; ., |x; — x|, we obtain

247r 12
kz ((—4) Y ¥) 2> <Z 5050 v, >

for antisymmetric ¥. This gives a new quantitative meaning to the intuition
that kinetic energy keeps Fermions apart. Similarly, if 6(y,) denotes the
distance from y, to the nearest electron then for particles in fixed positions
we deduce from (2) that
1 [ * d dR
V=—u (NN — 1) + M(M — 1) - 2MN} 2255

JzeR3 JR>0

1 i 1\ 1 dzdR
=— N-M-—) ——|-2M{————
27 JzeR3 uR>0{|:< 2) 4] } RS

1 [ * dzdR
Xn=1 (—2M)—5—

Y
|

JzeR3 JR>0
1 dzdR
- XNz, R) = 1 XyreB(z, R) RS
zeR3 JR>0

1 J‘ J‘ X dzdR
—— B@R) 5
T Z: 2eR3 JR> 80972 S @R RS

8
N _?Z 6(yk)

This is one expression of screening: Each nucleus feels (roughly) only the

attraction of the nearest electron. The constant 8/3 here cannot be reduced

below 3/2, since we can take a single nucleus midway between two electrons.
Returning to the proof of our main result, we use (2) and (6) to write

<H¢,¢>>< j j d’"’Rw>
zeR3 JR>0

dzdR
T(z, R; x}) dx; 7
167" LeneS IR>0j‘xke[CB(z R)s—1 g k kT RE @

= «Potential energy» term + «Kinetic Energy» term, where

\%

Q=NN-1)+MM-1)—2MN + »(N - 1), . (8)
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Thus @ = Qz, R; x; . . . x).
In the sections to follow, we shall prove that the right-hand side of (7) is
positive.

3. Allocating Energy Among the Nuclei

Note first that if B(z, R) contains no nuclei then M = 0 and @ > 0. Hence for
any fixed electrons x; . ..x; and nuclei y, ...y, we can write

! ___dZdR 1 Q dzdR
Vt=_— Q >3 Q dzdR
2m J‘zeﬂ?-? J‘R>o R’ le 2 J;an@ jR>0XYIEB(z,R) M R

In other words, we allocate the «potential energy» Q associated to B(z, R) equally
among the nuclei in B(z, R).

Next note that /M > e(x) > 0 when » > 4 and N > 2; this is immediate from
(8). Hence

1 dzdR
vtz Zzlzr (M —1-2N)Xn<1 + e(0)Xn=2]Xy,eBe, R) 9

=5 K

For fixed /, we shall make the change of variable z = y, + Rw in (9). In par-
ticular, dzdR = R*dwdR, and B(z, R) = B,(w, R) = B(y, + Rw,R). We have
»,€ B(z, R) if and only if |w| < 1. Define R(k, /, w) = sup{R > 0| B,(w, R) con-
tains no x; with j # k} B(k, [, w) = B)(w, R) with R = R(k, I, w).

Observe that R(k,/, w) and B(k, [, w) depend only on x}, not on X;. Note
also that R — B;(w, R) is an increasing family for each fixed w (|w| < 1). Next,
note that

XN@,Ry=2 = ; XR > Rk, 1, w) XB(k, 1, w) (X)) for z=y,+ Rw,
(10)
XN@z, Ry <1 = ;XR<R(k,l,w)XB(k,I,w)(Xk) lw| < 1.

To check (10), we fix /, w (|w| < 1), and look at the union of the B,(w, R) con-
taining at most one electron. This will have the form B,(w, R¥*), and will contain
exactly one electron. Here we ignore a set of w of measure zero. If that electron
is x, then R* = R(k, [, w) and Xy, ry<1 = Xr<r* fOr 2=y, + Rw. So we ob-
tain (10).

To proof of (10) shows also that N = N(z, R) = X, r)(Xx) When z = y; + Rw,
|w| < 1, N(z, R) < 1 and x; € B(k, [, w). Putting these remarks into (9), we obtain

e(x)
Rk, 1, w)

RéoLW M — 1 dR
+ j _‘2__ - XB[(w, R)(xk) R—Zz dw.

0

1
V' 22— 2 Xsge 1, w %) {
T Kk, lwl <1
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Integrating this against |y(x; ...x,)|*dx; . ..dx,, we find that

d dR 1
< J j < —xﬁ ¢> — Zj J Ak, I, w, x4) dx'. dw
2T Jzer3s JrR>0 T kol Jiwl<1 JxjeRr3s-3 (11

where A = A(k, I, w, x}) is given by

e()  [*| M®) -1 dR
4= JlB(ia) |u(X)|2[7;-;_— * _L [—2—* - XB(R)(X)] F} dx (12)

and for simplicity we have set
R =Rk, I, w), B(R) = B,(w, R), M(R) = number of nuclei in B(R),
ux) = Ylx,xz).  (13)
In particular,

B(R) is a ball of radius R; R — B(R) is increasing; R — M(R)
is an increasing, positive integer-valued function. (14)

(Recall y,e Bi(w,R) so M(R) > 1.)

Thus, the «potential energy» term on the right in (7) is built out of one elec-
tron energies of the form (12).

We next make an analogous study of the «kinetic energy» term. Again, we
allocate the contribution of B(z, R) equally among the nuclei contained in
B(z, R), discarding any balls with no nuclei inside. Thus,

T= Z J J J T\ (z, R; x}) dx}——g—
167T eR3 JR>0 JxjelBz,R)I5 1

j j j TdaRixi) ax, P29R
16# 1 Jeers Jr>0 Jxjerne -1 Mz, R) SPERTTE RS

For each y, we again use the change of variable z = y, + Rw. As before,
y,€B(z, R) if and only if |w| <1. Also x,€[°B(z,R)]*"' if and only if
R < R(k, I, w), the function of x} already defined above. Hence, in the nota-
tion (13), we have

dz dR

dzdR
Z j j j Ti(z, R; x}) dxj—
16"’ 2€R3 JR>0 Jx}elcB(z, R - ! R®
= — LN J J‘ B(k, [, w,x})dx}; dw (15)
T kI Jlw|<1 JxjeR3s-3



130 C. FEFFERMAN AND R. DE LA LLAVE

with B = B(k, I, w, x}) given by

3% Rj ) dR
B= u() — u(y)|?dxdy ———— 16
= L wsm)l ) — u(y)| Y BM® (16)

So the «kinetic energy» in (7) is also a superposition of one-electron energies.

Now, comparing (7), (11), (15), we see that (HyY, ¥) > 0 provided we can
show that 4 + B > 0 with A given by (12) and B by (16). This inequality in-
volves a single electron and a single nucleus, but depends also on an unknown
integer-valued function R - M(R). M has the bizarre effect of screening
kinetic energy, while providing a constant term attributable to repulsion in the
potential energy. In the next sections, we shall see how to simplify and prove
A+B>=0.

4. Simplifying the One-Electron Problem

So far we reduced (Hy, ¢) = 0 to the following problem: Let R — B(R) be an
increasing family of balls, with B(R) having radius R. Let R — M(R) be an in-
creasing, positive integer-valued function on (0, «), and let R > 0 be given.
Prove that

3 JRI s dR
— u(x) —uy)|“dxdy ———
167 0 Jx,yeB(R) l ( ) ()’ I Y RSM(R)

, (e  [F[M®)-1 dR
¥ L(R)lu(x)I {ﬁ_i- L [f XB(R)(X):| 7} dx>0. (17)

Now (17) is dilation-invariant, so we may take R = 1. Moreover, we may
assume that the B(R) are all centered at 0, in view of the following simple
result.

Lemma 2. There is a measure-preserving transformation of R* which carries
B(R) to B(0, R) for all R.

Proor oF LEMMA 2. First, we make a preliminary change of variables & which
carries B(R) to B(0, R); then we correct & to make it volume-preserving. To
define ®, let £(R) be the center of B(R), and pick a line thorough £&(R) parallel
to d&(R)/dR. [If (dt/dR)(R) = 0, then any line through £(R) will do, as long
as its dependence on R is measurable.] Using this line as a polar axis, we pick
in any measurable fashion a meridian on dB(R), i.e., a great circle passing
through the poles. The poles and the meridian determine latitude 6 and
longitude ¢ on dB(R), and therefore give coordinates (R, 8, ¢) for an arbitrary
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point z of R*. Our map ¢ simply sends z to the point whose ordinary spherical
coordinates are (R, 0, ¢). Although ¢ needn’t preserve volume, the new
measure on R* induced form ¢ will have the form g(R, 6) - R* dR cos 6 d d¢.
Since & ~(B(0, R)) = B(R) is a ball of radius R, we have

[[77  2me(R,6)cos0dd = 4r. (18)

Now to make ® volume-preserving, we just follow & with a change of coor-
dinate y: (R, 6, ¢) > (R,8,¢) on R? given by 6(—7/2) = —7/2, cosfdb =
= g(R, 0) cos 0 df. In view of (18), we have 8(+7/2) = +x/2, so our map is
well-defined on R? despite the amibiguities of longitude at the north and south
poles. Now y o ® carries B(R) to B(0, R) and preserves volume. []

We could have worked out an explicit formula in place of Lemma 2, since
our B(R) = B(y; + Rw, R).

Returning now to (17), we may suppose R = 1 and B(R) = B(0, R), so our
problem is to prove that

3 (! 2 dR
Q) = Tor L j'IXI,lyRR |u(x) — u(y)| dXd}’—Rs—ME

+ f <e - i>|u(x)|2dx >0 (19)
Ix<1

|x]

with

e(x) VM(R) -1 dR
e=1+ > +L > R (20)
Up to now we worked with wave functions in Cg. Since the transformation
in Lemma 2 is merely measurable, we must prove (19) for all # € L. Next,
it is trivial to reduce (19) to the special case of radially symmetric u. In fact,
for general u we just write ¥ = v + w with v radially symmtric and w having
average zero on each sphere. We have

_ 3x (87 , 2 dR
o) =0®) + [E . —3—R Jlx|<R |w(x)| dxm

+ j <e - L> ]w(x)lzdx},
x| <1 |x]

the point being that Avj,| . gw = 0. Define a positive radial function w by the
condition Avy,_gW* = Av|,|_g|w|>, R > 0; then the expression in brackets
evidently dominates Q(w). So (19) for radial u implies (19) in the general case.
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So far, the increasing function R — M(R) is arbitrary. However, we observe
that for » < 12, it is enough to prove (19) for functions M(R) taking only the
values 1,2,3. In fact, suppose M(R) takes the values 1,2,3,..., M, with
M; > 4 and the jump from M;— 1 to M occurring at R = R;< 1. Let us
change M(R) to M’(R) = min { M(R), M, — 1}, and see how Q changes in (19),
(20). The first term in Q increases by

dR
u(x) — u(y)|*dxdy - <——— - >
167l' J‘Rfjlel |y|<R| | Mf"— 1 Mf RS

3 8w dR
=— - R3j u(x) — Av u(y)zdx>—
16TM;(M;— 1) J, < ,x|<R| 1 <r4O)) R’

x ! J’ dR
< u()|? dx—-
2(M;— 1)M, Lf |x|<R| | R?

S g (5~ 1) 1ul?
T 2My(M;— 1) \ R, '

On the other hand, e drops by an amount

)]
2 Jo, B 2\R,

Hence the new quadratic form is at most equal to the old one plus

x 1/1 2
[Mf(Mf 1 l:l'5<Ff_l>"u"'

If x < 12 and M, > 4, then the quantity in brackets is negative or zero. Hence
Q(u) decreases if we pass form M(R) to M'(R). Repeating this argument, we
reduce (19) to the case M(R) < 3, all R. Since also M(0) = 1, the function
M(R) is now completely determined by the positions of its two jumps.

In the next section, we study the Euler-Lagrange equation associated to Q,
and reduce (19) to a statement about ODE’s.

5. Ordinary Differential Equations for the One Electrom
Problem

We start off this section with some elementary estimates for quadratic forms
related to (19).1 First of all, for ¢(x) radial, square-integrable, and vanishing

1 Throughout this section our basic Hilbert space is L,ama,(B(O, 1)).
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near 0 and o, we have the basic inequality

Il

This may be verified by using the Mellin transform, that is, writing

3 (= dR dx
—f f ) = ¢ drdy 75 - j b2 >0, (200)
0 Jlx|,|y|<R R3

o) = |7 _Ix| 7 M a() dY.
The left side of (20a) then becomes
[ mlenIay,

and one simply calculates #(Y) and checks that it is non-negative.

Next, let ¥(x) be radial and square-integrable on |x| < 1, with y(x) = 0 for
[x| < 1. We set o(x) = ¥(x) for |x| < 1, ¢(x) = 0 for |x| > 1, and apply (20a).
Since

8w

87
j 009 — o) dxdy < ST R = STRYE for R>1,
Ixl, Iy <R

we obtain

3 1 R
—j f W) — yo)Paxay 2R — f WP & s —apyl. @b
x|, I¥y| <R R x| <1 |x|

Now fix 0 < R; < R, <1, and define:

1 for 0 <R<R,
M@R)= |2 for Ri<R<R,
3 for R,<R<1

dR dx

Zd d ‘[ 2

QW) = IGWJL\ Iy|<Rl¢(x) YO)|*dxdy —s——- RBM®) ,M"“X)' ]
(22)

for Y € D, = {square-integrable radial functions on |x| < 1, vanishing near
the origin}.
Note that

3% —I I dR }
== d
QW 81 Jui <1 Y(x) [ Ll <R W) — v Ay —57 5 RM®)

— Z_d_x= A
j|x|<1]¢(X)l ] (AY, ¥)
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for Y € D, with

AY) = W) — [, . Ko () dy 23)
1 3x (1! dR
Wx) = ——+-— e 24
® |x| 8 L .f|y|<R 4 R°M(R) @
1
Koo ) = 2 dr @5)

87 Jmax(lxl, Iy R°M(R)

If » > 8, then comparison of (22), (21) shows that {(Ay,¢) = QW) >
> —C(R;, Ry | ¥|? for y € D,.

Since also (AY, ¢) = (Y, Ap) for ¢, p € D,, we recall from basic func-
tional analysis that A extends from D, to a self-adjoint operator A, the
Friedrichs extension of A. Specifically, u € Domain (4) and Au = v if and on-
ly if we have (u, Ay) = (v, ¢) for ¥ € D,, and there exist ¥, € D, converging
to u in L2-norm, with Q(¢, — ¥,) = 0 as k, /= . These facts are contained
in Dunford-Schwartz Vol. 2, Cor. 12.6.3.

It will be useful to have a concrete sufficient condition for a given radial
ueL*(|x| < 1) to belong to Domain (4). We first note that

o) = WOuE) = [, Kex, )u(y) dy (26)

is well-defined for all ueL? because of the simple estimate |K(x,y)| <
< C(lx| + |y)~* So if

n

j [v(@)|?dx < o and J Iu(x)lZE < © 27
<1 ¥l <1 |x|
then u € Domain(4), and Au = v.

To see this, we first have to check that (u, Ay) = (v, ¥) for Y € D,. That
is easy, because the relevant integrals converge absolutely when ¢ € D,, and
hence their order can be switched. We much also find ¢, = u in L? with
QW — ¥) — 0. It is enough to take Y(x) = u(x)X|y > 14> and note that

DWW - ‘PI)SCJl lu(x)lzﬂ—’o
x| < max[(1/k), (1/D)] ||

if (27) holds. Thus we have a sufficient condition (27) for ¥ € Domain (4), and
a formula (26) for Au.

The main point of this section is to reduce questions about the spectrum of
A to a study of ordinary differential equations.

From now on, we fix » = 12. Let R; = €', R, = e, so that ¢; < ¢, < 0. Fix
€ > 1, not necessarily given by (20).
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The relevant differential equations turn out to be as follows.
For ¢, <t < 0 we solve

d*s dF 6
— + RN — =
a? "t a P ive—ge - ° (28)
with boundary conditions
as
F0)=0 —(0) = 1.
(V] df (V] (29)
Having found §, d%/dt at t = t,, we next solve
d*g dg 9
a T ar +<2+[e—2—e-f2]ef>9 0 (30)
in the region #; < f < t,, with boundary conditions
_ 9 _
S(t) = F(%), (tz) 3 (tz) (31)
Next we solve
d*3c dsc 18
+ 4 + = 2
dar* dt <5+[e—2—e"2—3e""]e’>3C 0 (32)

in the region —o < f < t;, with boundary condition

R(t)~exp<[-2+\/%]t> as (— —oco, 33)

Then we say that a match occurs for e, t,, t, if the vectors

<scal), (t1>> and <9(t1) 2 Qm))

are proportional. Define the discriminant for e, t,, t, as

dg dx
{ 7 )
: <|Q(t1)| +

dix
——(t) - 31 - St (h)} /<|3C(t1)| +

dag
7(%).)-

Lemma 3. For e > 1, we have —e € Spectrum(A) if and only if a match oc-
curs.
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ProOF. Let us study the equation (¢ + A)u = f for radial fe Cy(|x| < 1)
vanishing near the origin. According to (26), (27), it will be enough to solve

(e + WEHUP) — [, K(r, sybms’u(s) ds = (7) (34)

with

jl ) -4xr?dr < o
o T ’

u continuous away from 0. (Finally we have written radial  on R® as a func-
tion of one variable.)

Now
K(,s) = Hmax {r,s}) with H(¢)= - 2. L .
T ’ 8T M)
So, differentiating (34) in r, we get
d 3x r d
— g | Ars? =—f
ar [(e + WHu] + SrSM(r) Jo wSs“u(s) ds a’rf (39)

Also (e + W)u(l) = 0 by (34), since f(1) = 0 and K(1,s) =0 for s < 1.
Conversely, (e + W)u(1) = 0 and (35) yields (34) by integration. So we must
solve (35) with the boundary conditions: (e + W)u(l) = 0, j}j r|u(r)|2dr < oo,
u continuous away from 0.
Next multiply (35) by r’M(r) and differentiate away from the jumps of
M(r). The result is

d sd 3 d d
M(r) 5’5 <y e+ Wul + 2" ru(r) = M(r)ErS p S (36)

away from the jumps of M(r). Also from (35), we see that

d
MO g,

[(e + W)u — f]
is continuous across the jumps of M(r). Conversely, if
M) L1 + Wy - 11
dr €

is continuous across the jumps of M(r), then we may integrate (36) to obtain

rSM(r)i [(e + W)u] + 3x Jr41rszu(s) ds = r’M(r) a f+ (Const.).
dr 87T 0 dr



RELATIVISTIC STABILITY OF MATTER-I 137

If as r — 0 we have u(r) = O(r~ %) and (du/dr) = O(r— %~ 1), with a < 1, then
the Constant term must vanish, and we recover (35). Also Ll)r[u(r)|2dr < o
if u = 0@~ %. So (e + A)u = f, provided (36) holds, and:

(e + W)u(l) = 0, u continuous on (0, 1), M(r)-g%[(e + Wu — f1]

continuous across the jumps of M(r); u(r), ru'(r) = O(r®~ ') as
r—0. (37)

Now we can check whether —e € Spec (4). If a match occurs, then we can
solve (36), (37) with f= 0. In fact, taking r = e’ and (¢ + W)u(r) = F,G, 3
in the three regions [¢,, 0], [#;, 5], (—,t;), we find that (28)...(33) with a
match amount to (36), (37). We use e > 1 because then ¢ + W # 0 everywhere.
Thus € + A has nontrivial kernel, and —e € Spec (4). Conversely, suppose a
match doesn’t take place at ¢, £,. For fe Cg(0, 1) we can then solve (36), (37)
by means of a Green’s function. Setting F = (¢ + W)u — f, we rewrite (36),
(37) in the form

d sd 3x r 3x r
MO G E“T<e+ W>F— '7<e+ W>f %)
dF . .
F(r), M(r)? continuous across the jumps of M(r) (39)
F1)=0 (40)
Fr=0@0"2*%, F@H=0r"3*% a r—0. 41)

To find a Green’s a function for (38)...(41), we first set f= 0 in (38), and
pick out two special solutions of the homogeneous equation: Set
F, (r) = solution of (38), (39), (40); set F_(r) = solution of (38), (39), (41).
Since a match does not occur, these solutions are distinct. Our Green’s func-
tion takes the form

Ci®F,(n if r> s]

K, ) = [CZ(S)F_(r) if r<s

where C,(s), C,(s) are picked so that r — K{(r, s) is continuous at r = s, while

. 0K(r, s)

jumps by an amount ———~ at r=s
or.  Umps Yy M@)s®
As ,—0, we have F_(r)~r"2+m, F+(r)~r‘2'“/ﬁ

. Consequen\t/]il
we may estimate C;(s), C,(s) as s = 0; in fact |C,(s)| < csV?5, |Cy(s)| < Cs Y
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for0<s<1, so
r s Va/s
|K(r, $)| < Cr'z[min <;,7>} ) 42)

Equations (38)...(41) are now solved by taking

135 s?
F(r) = LT' <m>f(5) - K(r, r) ds, 43)
_F+f
e+ W (44)

Having solved (e + A)u = f, we next note the a-priori bound

lul 2201 <y < ClS | 2221 < 1) (45)

In fact, from (42), (43), (44), we have

o V275
lu(P)| < CTS () = Cf {MIN <i’ éﬂ 795
0

3
s s

and (45) follows at once by the Mellin transform.

Now if e is any number, 4 is any self-adjoint operator, and for f in a
dense subspace we can solve (e + A)u = f with a bound |u| < C| f], then
—e ¢ Spectrum (A), as follows at once from the spectral theorem. Hence in
the context of Lemma 3 we have —e ¢ Spectrum (A) if a match does not
occur. [J

We can now state what we need about ODE’s in order to prove our main
result, namely

Lemma 4. No match occurs in any of the following ranges of t,, t,, €:

9
@th=0=0, S <e<4
5 1, _, .
(b) —ZStIStZSO, E=Z+E(e 1+e 2),
LIPSy -t 5 1, —t
© t=-2 -2<56<0, S "+e P)<esp+o (e +e ),

|
|
N
o
Il
o
N‘ ®,
N
om
N
Nl Q,
+

@t =
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We check here that Lemma 4 yields (19), (20) and thus proves our main result.
In the sections to follow, we give a computer-assisted proof of Lemma 4.
Define \,(¢, t,) = inf Spectrum(A) with R, = e’', R, = e"; and set €(t;, 1,) =
=5/4 + (e~ " + e~ ?)/2. Note that \,(¢,, ¢,) varies continuously in ¢,, ¢,, since
a small change in ¢, t, will change A by adding an operator of small norm.
We shall prove (19), (20) by looking at the four cases

(@) Ri=R,=1,

(B) e”>< R <R<1,

(y) Ry<e™? R, <R,<e’R,
(6) e’R, <R, < 1.

Note that (19), (20) with R, =", R, =e™ is equivalent to N\ (f,1,;) =
= —€(ty, 1)

Take case () first. Estimate (21) gives A\,(0, 0) > —4, while Lemmas 3 and
4(a) show that \,(0, 0) cannot be in [ -4, —¢(0, 0)]. Hence A\;(0, 0) > —¢(0, 0),
and case () is settled. Now suppose (19), (20) are violated for some R;, R,
in case (B). Then we must have \,(¢,,%,) = —e(ty,2,) for some ¢, with
-2 <t £t, <0. (This is required in view of case (o) and the continuity of
\1»> €.) On the other hand, Lemmas 3 and 4(b) imply \,(#,, #,) # —e(#y, 1) for
—2<t; <t <0. So case (f) is settled also.

Next, by combining case (8) with Lemmas 3 and 4(c), we get

3 ! j , dR , dx
— u@x) —u)| dxdy —s—- — J‘ uX)|“
16w jo |x|,|y|<R‘ | R°M(R) |x|<1| | ||

1 1 5
e > 46
+<2R1 ¥ 2R2>||uu 0 (46

where

1 for R <R1=e_2
MR)= |2 for R;<R <R, and e ><R,<1.
3 for R, <R <1

Similarly, using case (8) with Lemmas 3 and 4(d) yields

3% j'lj 2 dR
— ux) —u)| dxdy —s o
167[‘ 0 |x|’|y|<RI I RsM(R)
dx 1
- u@)|*— + — |u|*>=0 47
L(J P + 2 1l @7)

where
1 for R <R1=e"2-’

M(R)z{z for R, <R <1

4
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Inequalities (46), (47) will take care of cases (y), (6). In fact, to handle (v),
set Ry = e’R, and rescale (46):

Rx dR dx
u@) — u(y)|*dxd ——j u(x)|*—
Tor Iy Loy anlio0 = vy = |

1 1 j )
+ + = u(x)|“dx =2 0.
<2R1 2R2> Ix|<R*I |

Adding to this the obvious inequalities

dx 1 1
- u(x)2~——+[—+——}j u(x)|*>dx >0
Lx|>k*| | |x| 2R, 2R, |x|>R*| |

_ 2 dR E(x) )
161r L*Jm Iyl <R () = u()|"dxdy RSM(R) 2 ”

we obtain (19), (20) in case (y). Finally, in case (6), we rescale (47) to get:

= Yy

R dR
o _ 2
J‘ jm . |u(x) — u(y)|" dxdy -7 EM®

1671'

X
- u)|>— + ———j u@)|*dx >0
L|<R* )| x| 2R, Ix|<R*| |

Adding to this the obvious inequalities

dx 1
- u(x) 2-~~A+—j lu(0)|*dx >0
me‘ | Xl 2Ry Jix>&.

_ 2 dR 1 e(x)> 5
167r L*Jm |y|<Riu(X) u()|"dxdy RM®R) & <2R +— ) lul” =0,

we obtain (19), (20) in case (6).
Thus, our main result is reduced to Lemma 4. Since we took » = 12, our
main result takes the form

1
S -, } >0
i<k \xi— x| i<k \yi—yl  ix 1% — Il

;(—Axg“m[z N B

with
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6. Rigorous computer solution of ordinary differential
equations’

In this section, we explain in detail how Lemma 4 was actually established.
In broad terms, what we did is to reduce the statements to be checked to a
finite computation (expand the relevant quantities in appropriate parameters
and bound the remainders) and then, perform this finite computation with the
help of an electronic device (a VAX 11/750).

The fact that even finite arithmetic operations can be performed rigorously
by a computer is not obvious (and indeed somewhat surprising for many of
today’s mathematicians).

The most serious reason is that computers are not equipped with real
arithmetic, but only with some caricature defined on a finite set of numbers
(those the machine can understand, usually called machine numbers) and
yielding only approximate answers. The difficulty is that when approxima-
tions are taken a large number of times (e.g. the number of operations
peformed by a computer in a minute) the result may not be a reasonable ap-
proximation any more. (For example, most computers are unable to
guarantee even the sign of f1%(V3/2) where f(x) = 1 — 2x2%.)

The cure for this difficulty is to work systematically with upper and lower
bounds of numbers rather than with approximations to them, and to imple-
ment an arithmetic working on bounds (e.g. the addition for upper bounds
should produce an upper bound to the true sum of the two original upper
bounds).

That is, we work with intervals, and construct operations that given two
intervals produce a third. That third interval contains the result of the true
operation when the arguments range in the original intervals.

In other words, we build an arithmetic that takes into account roundoff
errors. Then we will perform some analysis to reduce the original problem to
an arithmetic one; that is, we take into account both roundoff and truncation
errors.

The introduction of interval arithmetic can be attributed to R.E. Moore in
1962 and has a developed literature (see [Mo] [KM] and references there). The
application to mathemtical problems was fostered by the pioneering work of
Lanford [La] who found a quite remarkable abstract framework in which
several hitherto unapproachable problems could be reduced to arithmetic
statements, and wrote a package well adapted to those needs. Under his in-
fluence, similiar strategies have been applied for several other problems
[E,K, W], [E, W] [MP] [LL] [Me].

In all the references above (except in [MP]) interval arithmetic was used to
provide rigorous error bounds for certain computations; here we want to
show that certain conditions do not happen for parameters ranging in a cer-
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tain region. Even if the basic operations are the same, we are forced to deal
with intervals much wider than the roundoff unit, and some considerations,
safely ignorable for sharp intervals, come into the foreground (e.g. coherence
and subdistributivity). Several features —implemented in our package—
desirable for the handling of sharp intervals (e.g. double precision, 0 and 1
being neutral for addition and multiplication) become irrelevant when the in-
tervals are «fat» and presumably take a toll in execution time, although, clear-
ly, not in correctness. We preferred not to revise for speed, since in the present
form the package had alredy been checked.

In a first subsection, we explain how the arithmetic package was im-
plemented in our case.

In a second subsection, we document the reduction of the original question
to an arithmetic problem. We refer the reader to [T] for computer concepts
we use without explanation.

A. Interval arithmetic

Our implementation of interval arithmetic was done using the facilities pro-
vided by the manufacturer. The alternative of writing from scratch the
arithmetic subroutines not only would have required more programming effort
but also have resulted in programs running between 10 to 100 times slower.

The most authoritative source about what the VAX can do is [DEC]. For
the purposes of this section, this could be the final description of our com-
puter.

The only objects we are concerned about are «machine integers» and
«machine reals» which are respectively

J=1((S,0N|,S= +1,-1,IeN, -2’1 < I < 2*'}
®R=((S,e,m)|S=—-1,+1;0<e<2’ -1}
0<m<2% - 1)

When e # 0, (S; e, m) is supposed to mean

S.0e- 128)(”’ + 256)
257 .

When e =0, and S = +1, (S, e, m), is supposed to mean zero regardless of
what m is.

When e = 0 and s = —1, this number is not supposed to mean anything and
according to the manual, appearance of this number could cause unpredict-
able results [DEC] p. 34. The machine can understand and manipulate other
numbers, buy they do not appear in our programs.
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We will also be reading and writing numbers, which involves switching
from the internal representation of the machine to another more familiar to
the users. Since, for our problem, reading and writing was only a heuristic aid,
we did not care about writing careful input and output subroutines. (This was
done e.g. in [LL].)

On machine integers and reals we will be performing several operations:
arithmetic operations, comparisons and conversions from integer to real.

We will assume —and we checked in several crucial cases— that the com-
parisons and type conversions worked correctly. A moment’s reflection will
show that there is no hope that the arithmetic operations work as those on real
numbers.

Arithmetic operations on integers are performed mod 23 and, with this pro-
viso, they are exact. Real operations are more complicated. In [DEC] appen-
dix H, it is stated that, when both the oeprands and the result are in ®, the
result is correct to «1/2 of the least significant bit.»

When the result is not in the range of acceptable numbers, the computer
reports this condition but goes ahead. (These «exceptions» are used by the
compilers and we will explain how the ones we used dealt with them.) This
leads to a «circular arithmetic» in integers —arithmetic modulo 2V, with the
fundamental domain depending on which way the numbers are represented
[T] p. 447 (N = 32 for the VAX 11/750 and notation of 2’s complement)—
and quite unpredictable results when there is overflow in floating point
numbers.

With this information at hand, it is clear what we should do to obtain a con-
trolled arithmetic: we should watch out for the signals that report an improper
operation and modify the result in ways suitable for the arithmetic of upper
and lower bounds. The «1/2 of least significant bit» accuracy implies that,
any function right: ® — ® satisfying

right (x) > x
will also have the property
right (x&.y) >x&y

where & and &, stand respectively for any of the four arithmetic operations
and its computer implementation. This holds (provided the operations has a
result in ®). Similarly for an operation left satisfying left (x) < x.

Even if any such operations left, right are acceptable, it is clear that it would
be to our advantage to make them as small modifications as possible. The best
we could do is just modify the least significant bit.

The programs considered here will be written in a high level language that
will eventually get translated into machine language. Usually, this translation
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wili include handling of the signals of incorrect operations. The most usual
convention for modern compilers —we checked that it was the case for the
compilers we used— is as follows: let the circular arithmetic of the integers
go unnoticed: when the result of an operation in ® has too small absolute
value, set the result to zero. When the absolute value is too big, or there is
a division by zero, print error messages and terminate the program. (In our
system, the C-library included facilities to change the handling of those excep-
tions, but the standard ones were adequate.)

With this way of handling the exceptions, the only thing we have to worry
about is zero which many appear as the result of an underflow. A moment’s
reflection will show that rounding to any number strictly different from zero
is still adequate; but we should remember that, for the internal representation,
this means modifying e and not m.

Adequate versions of right and left could be the ones listed at the end where
one plus, one minus, zero plus and zero minus are global variables. Notice
that their value does not matter too much, because at the end we check the
strict inequality of the return value of the argument and as we pointed out,
by the «1/2 LSB» property of the VAX operation this suffices.

Notice that, even in the case that one plus and one minus did not produce
a sufficient effect, the only thing that would happen is termination of the pro-
gram and not propagation of the wrong result.

We also used another version of these routines that only modifies the last
bit. Unfortunately, since Pascal does not have bitwise manipulations this ver-
sion was written in Fortran 77 and then grafted into the Pascal programs, a
rather delicate task.

From the strictly logical point of view the first version is enough, but the
second one also provided some insight into the workings of the machine.

The main idea is to use Fortran integer arithmetic to access the bits of a
double precision number. This is achieved by using the equivalence statement
between an array of two byte integers and a copy of the double precision argu-
ment. Double precision numbers are stored in four consecutive words whose
significance decreases with increasing address (the first one contains the sign
and exponent). Inside each word, the significance increases with decreasing
address [DEC].

Integers are stored in a word with increasing significance given to decreas-
ing addresses. Moreover, they are stored in two’s complement notation with
bit 15 designating the sign.

To increase the last bit of m, we increase the least significant bit of the last
element of the array and check if this produced a carry. If it did not, we are
satisfied, but if it did, we increment the next one. (Here, the fact that the in-
tegers are represented as two’s complement is used in two places: one that
increasing by 1 as a signed quantity is the same as an unsigned quantity and,
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second that the carry in unsigned addition is produced exactly when the result
—intepreted in two’s complement is zero.)

This process of incrementing and carrying, if necessary, is repeated without
any change till the first word where we should worry about the extra structure
of exponent and sign. By a truly miraculous coincidence it turns out that the
same prescription continues to work in the first word. We can think of the
mantissa as representing .1m, where the leading 1 is not explicitly written. If
by adding 1, the mantissa overflows, then the incremented mantissa is 1.00...0
whose internal representation would be achieved by incrementing the exponent
by 1 and setting the mantissa to zero. This is what happens when we increment
the first word as an unsigned bit pattern.

The only thing to do is to check that this carry did not affect the sign bit.
If it did, we stop.

The exceptional case of zero is treated at the beginning and what we do is
to set a bit pattern which corresponds toe=1, m =0, s = +1.

Similar considerations apply to the routine down moving the number towards
zero. The only difference is that we set to zero all the numbers that, when divided
by 4 underflow. Even if wasteful, this is expedient and certainly correct (because
of the 1/2 LSB property).

Thus we have procedures «up», «down» which increase or decrease slightly
the absolute value of a machine number. Once we have «up», «down», writing
«right» and «left» is very easy.

Other versions acieving the same were also written for the VAS 11/75in C
by D. Rana on other principles, and there are versions working for other
computers described in the references. Translating our Fortran routines to C
is very easy using type casts rather than equivalence to assign double precision
to integer arrays. Since quite a lot of system programming is done in C, the
compilers tend to be well taken care of and, since the language is better designed
than Fortran, it is harder to make mistakes writing the compiler. Moreover,
in our environment, it turned out that grafting C was easier than grafting
Fortran. Even if these considerations are quite machine dependent (and surely
are reversed in other machines), we wanted to make the reader aware of this
difficulty.

Once we have this rounding constructing an arithmetic package is reasonably
straighforward.

We introduce three new structures which are bound, interval, complex: con-
sisting respectively of a real field .top, supposedly a positive upper bound; two
real fields .upper and .lower upper and lower bounds for the interval; two
interval fields .re, .im which are intervals containing the real and imaginary
part.

This package is really more than what the problem in its present version
needs —for example, we do not make any use of complex numbers— but we
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had used it for other type of problems —in fact, many of the names come
from [LL] where the basic operations are implemented in a very different way.

We hope that the names of the subroutines are rather self explanatory and
the working straightforward. Usually the name has some remainder of the
function and a few extra letters remingding the reader of the types on which
it acts (i:integer, v:interval, b:bound, c:complex).

We have tried to enforce the compatibility with standard Pascal and, with
two exceptions, included mainly for experimenting, have avoided functions
returning structures —which is de facto standard even though forbidden in the
original description of the language [J.W.].

Even if the type conversions and comparisons were done using only those
the compiler provided, we have included comparison and conversions as ex-
plicit subroutines with the hope of having a clean interface with the machine.
If only those we supply are used, changes in the internal representation should
only affect this level and not the upper levels. (We sometimes slackened and
used compiler comparisons but they could easily be removed.) Notice that,
when we want to assign an integer value to a real, we first assign it to an in-
teger variable and, then, the integer to a real. This produces something strictly
correct whereas writing x: = 2.0; would have made the computer involve the
routine to convert decimals to internal, which gets the last bits wrong.

In particular, this interface was implemented by another different method in
[LL]. Changing the programs there to run in the VAX was a question of a few
hours of works. To adapt the present programs to the IBM PC would take only
slightly more; this could be interesting because, for those susbstantial programs
we run on both machines, the speeds were comparable in CPU time and the
small computer was superior in real time since the big one has to be shared.

One important point of this package is the variable «status,» which is
initialized to 0 at the beginning and, will take the value of 1 if some division
by an interval containing 0 is requested.

The reason why we did that rather than killing the program from the divi-
sion subroutine is, again, to allow different implementations of it.

One important part of checking the results is to check that this «sticky bit»
is still zero.

We also had to write some subroutines for special functions —the only one
used is the interval valued exponential of real intervals

ENRES CUNE S U
expx—1+1<l+2\l+3 >>

We select an N and then, produce an interval that contains

X b'e
=1+ 1 ... . .
R < N+ 1 < + N2 >> when x ranges in the input
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interval and then evaluate the product with interval arithmetic. We use the
crude bounds

X .
IZR> 1+ if —(N+1)<x<0

lgRs---—;— if N+1>x>0.
b= N+1

This procedure, even if correct in the interval (—(N + 1), N + 1) is quite in-
efficient. What we do is to use this only when the input interval is in a small
interval (about (—1/8, 1 x 8)) and reduce to this case by using e* = (¢*?)* as
many times as needed; using recursion —allowed in Pascal— this is quite easy
to program. At the beginning, we also check that the interval is within
reasonable bounds. Even if this was not strictly necessary, the exponential
ceases to work well for intervals not within reasonable bounds.

We also include routines to compute sin, cos for reals and exponential for
complex. It is amusing to note that, for complex exponential it is much more
accurate for fat intervals to use Euler’s formula and call the real subroutines
that to use recursion involving complex numbers.

Since we will very often be computing e* — 1 for small x we included a
special subroutine that does not reqire to subtract two very similar numbers.
It is also based in using Taylor expansion grouped in a way similar to the ex-
ponential and the recursion relation (e* — 1) = (% — 1)(e”? + 1). Those
subroutines are included in cexpo.i and a test program is testexpo.p.

We also have a right computation of powers which works on positive
numbers and rounds to the right, and a left one. Out of those it is very simple
to compute powers for intervals and a root; the idea for the latter is to com-
pute the root approximately using the ones supplied by the compiler and then
round appropriately until we can show using the previously mentioned powers
that the power of this interval contains (not is contained in!) the given
interval.

B. Excluding matches

In this subsection we describe how to compute bounds for discriminants with
finitely many arithmetic operations (that is, we take into account truncation
errors) and we will discuss how to use that to show that there are no matches
in the regions required by Lemma 4.
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One can observe that all the equations to be studied are of the form

o

D*y + 4Dy +
4 v 1+ ee’

y=0

for suitable choices of «, €, and it will suffice to solve two problems associated
to this equation.

I) Given the asymptotic behavior as t = — o find the ratio of y(Z,), ¥'(%)
at some negative Z.
IT) Given y and y' at some point #, find ¢ and ¢’ at another point ;.

If our algorithms are going to be useful for present purposes, they should
be able te work with intervals. That is, given that we know bounds for e, we
should be able to produce upper and lower bounds for the results.

Problem II will be solved in the most conservative way possible. That is:
given intervals ¢, £, ¥(Z,), ¥'(¢;). We will produce intervals y(¢;) and ¢'(¢;) in
such a way that any initial data contained in ¥(z,), ¥'(¢,) for an initial time
contained in #,, will be contained in y(#;) ¥'(¢;) for any final time contained
in ¢;. (Of course, we will obtain estimates uniform in e ranging in a given
interval.)

Even if less conservative solutions would also be useful, this hast the advan-
tage that it can be iterated quite straightforwardly. The iteration can be made
without terrible losses in accuracy, as we will explain.

Rather than implementing a general O.D.E. solver, we have drawn freely
on specific properties of the equation we were strudying. Even if the for-
mer goal is obviously desirable, and perhaps within reach, we thought it
prudent not to tackle it before getting some understanding of the effect of
coherence, which seems to be disasterous, e.g. for Runge-Kutta methods. We
rather used some methods based on Taylor expansions that, besides having
less serious coherence problems than R.K. methods, can be used to expand to
any order.

We will try to explain the algorithms with a notation as close as possible
to the computer programs even if this will occasionally lead to some small in-
consistencies.

Problem 1

D¥ +BDY + ——— =0
1
) + ee

DYy ~p) as t— —oo,

We try to find an asymptotic expansion for ¢ of the form ¥ = >} ey, (?),
and show error bounds for the truncation. Expanding the fraction as a
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geometric series we are led to

D*) + BDY + a¥ = —« i (—e)"e™y
n=1

and we can recursively solve for y,, matching the corresponding powers of e.
It is easy to show by induction (except in some cases to be discussed later) that

Yult) = 1,e“*™,  m,eR.

Calling P(x) = x> + Bx + «, the characteristic polynomial of the R.H.S.,
we have

P+ nyn, = —a 23 (=1n, .

Provided that P(u) = 0, this allows us to choose 7, = 1 and then, all the other
n’s are determined provided P(u + n) # 0 for any n, which will be the case in
our problem.

Even if this hierarchy is sufficient to compute as many terms as we wish we
can transform it in such a way that computing the n* term requires 1 opera-
tion and not n. This improves the execution time but, more importantly for
us, the accuracy of the estimates.

In fact,

P(u + n)y,

—a[ o+ kgz(_l)"nn_k]

n—1
—Ot|: I Z ("l)knn—l—k:|
K=1
=la—Pu+n—-1Dly,_,.

This recursion relation has the property that from a certain term on (which
is 4 for our case) the g,’s decrease and hence, the series of the function and
the derivatives will be uniformly convergent in all intervals of ¢ of the form
ee' <1 -6, 6> 0. Hence, the expansion will be a solution of the O.D.E. in
this range and have, clearly, the right asymptotic behavior.

v, Y’ at any point can be recovered by Y(f) = [ >, nn(ee’)”]e‘”
n=10

v = go (1 + n)(ee’)"e™.

Since for the discriminants, only the ratio matters, it suffices to compute
the terms in brackets, which we evaluate using Horner’s scheme. We sum a
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finite number of terms and estimate the remainders using the decrease of |7,
and the sum of a geometric series

d 1
Z (eet)n = |7]n|(eet)N+l 1 3
+1 -

D nalee’)"| < |nl
n=N+1 n €e

2 (r+ nmy(ee’)"| < |yl 20 (n+ n)(ee)"
n=N+1 n=N+1

(ut+ N+ 1) e -
{ et ey |

Notice that this computation has the good feature that provided that we
deal with the bounds on the input quantities using interval arithmetic we ob-
tain bounds for the results.

This is implemented with the subroutines charpol, findetal, findf, findfl.
The only nontrivial programming consideration is that we passed eta by ad-
dress rather than by value. Even if this is slightly more dangerous, it saves the
copying of the array » which takes quite an amount of time.

Remarks. In some cases, this algorithm could be used to propagate the solu-
tions because we could very well produce two independent solutions, and we
could find a linear combination to match the initial data. This is not enough
to carry the computation for all cases of interest, but it can be used as a test.
We have a program to perform this check in asymptest.

Now we turn to the problem II, solving the initial value problem.
It will be more convenient to use { = ey which satisfies

o A P
4 +{l+ee’ 4]¢ 0-

(We will, for this discussion, forget the ~ from now on.)

We first remark that, for this equation, it suffices to solve the initial value
problem at ¢, = 0. Starting at another point is the same as substituting ee®
for e.

The algorithm we are going to use will be based on expansions in powers
of (' — 1). We will try to find {y, ] so that Y(¢) = 25 _o ¥.(e" — 1)" solves the
initial value problem.

If we write

1+ e’

{—“— - 4] = 2 Bae' = 1"
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we have that the original equation is equivalent to

ny+ 1+ D@+ DYy + (1 + DO+ 2 + kzoﬁk%._k = 0.

The B,’s can be readily computed using geometric series, and they are:

B, =B, if n#0
Bo—4 if n=0

where

5 _ A € \' o
Bn=(=1) <T:> T+e

Besides, matching the initial conditions, we have ¥, = ¥(0); ¢; = ¥’'(0).
[Remember that our present y(¢) is what we called e*y(¢) in the original
equation.]

So we can find recursively all y,’s. It will, however, be more convenient to
proceed as we did before and use the relation between the 3,’s to obtain a
simpler recursion relation between the ¢,,’s.

Writing explicitly the first term in the summation sign, pulling out the fac-
tors and substituting the previous equation of the hierarchy, we obtain

Yne2n + 2+ 1) = =+ D@1+ DYy — (0% + Bol¥s

+ <1—‘+ie> (1 + D1 + @1 = Dy + (1= 1 = 4]

which has to be supplemented by the initial conditions
Yo = ¥(0);
¥ = ¥'(0);

1
¢2 = —2‘[—50% -l

the third one being, of course, the second equation of the original hierarchy.
It becomes necessary because one equation of the new hierarchy is a combina-
tion of two consecutive ones of the previous, hence of higher order.

Again, when we recursively compute in interval arithmetic, we obtain
bounds for the y,,’s uniform in the input parameters ranging in the given inter-
vals.

Now we turn to the task of bounding the error incurred by truncating the
hierarchy to a finite order.
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We rewrite the equation in integral form as

Y=y + 1y, + IHY) = KY

where I is the operator y — [ y/(s) ds. H is multiplication by [o:/(1 + ee”) — 4].
Those operators act on the spaces of functions {y = 2 ¢, (e’ — )" [¢] =
= 2] |¢,|r" < o} where r is an arbitrary parameter to be chosen later.

The idea of the proof will be to estimate, for our finite dimensional approxi-
mation ¥, | — K| and show that, for sufficiently small , K is a contraction.
Using these estimates, we can bound |y — ¥| < |¥ — K¢ |/(1 — Lip(K))
and a fortiori the error for the ¥ and ¢’ evaluated in a place where e — 1| < r.

Proposition 1.

r

I < .
1<

PROOF. (¥'), = ny, + (n + ){,,. . Hence (n + 1)(IY), .1 = ¥, — n(IyY),, so
M+ D)UY ps1 =¥~y =Y —Vn1 t Yn_at+ - £ IYp=0.
Therefore

rn

o © n
2 1@< 20— 20 [l
n=0 n=1N k=0
The derivative of the R.H.S. with respect to r is 2_or" 2kt 8 |V, but
this is just (3 |lr*)[1/(1 — r)]. Integrating and noting that at r =0 this
R.H.S. takes the value 0, we obtain

" ds J" ds r
I| < < = .
” ||\Jvol_s\01_r l—r

We also observe that if y(f) = O¢™), Iy = OtV *?) near ¢ = 0.

-1
a er
1- + 4.
1+e‘< ‘1+e>

Proor. It is well known that these spaces of analytic functions will have the
Banach algebra property under multiplication. Therefore, the norm of a
multiplication operator is less than the norm of the function. The R.H.S. of
the formula above is a bound of the function A in view of the explicit expan-
sion computed.

Clearly, the Lipschitz constant of K can be bounded by |7 |*|H|.

Proposition 2.

17| <
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The bound for |y — Ky/| is a little bit more subtle. We should remember
that the intervals that we have produced for the ¢, are only bounds for the
values of ,,, but they are not all the information on y,, we are entitled to use.
Particularly, we can use that the y, satisfy the previous recursion relation
exactly and, therefore, we can conclude that many of the terms to estimate
are indentically zero.

In particular we have that, since the equation is satisfied to order N,
Ky — ¢ = Ky>N - y> N = gy >N pecause >N = 0.

If N>2 —as we will always assume— we have

[PHY)> N < TP E)PY 2

[EHHPN < 3
=N-

n

r" Z 18— k| Wl
k=0

1

[-+]
< 2
=N-—

n

rn< Z !Bn—k‘ |¢k| + 4|‘l’n|>
k=0

1

= 3 S I N-1
= rn _ +4 B r _
l 1+e ,,=JZV:_1 kgo 1+e | [¥n—1]
+ 4|y,

Using that v, is zero for n > N, we have that the first term can be rewritten
as follows, where v = |e/(1 + ¢€)|:

N

;Nrn,yn—N Z 'YN_kl‘,ka-

a |
1+e€

‘ o

N-1
0 rN—I Z ')/N_l_kll//k'+
+ € k=0

n

The last term can be bounded by

N N N
o r n—k o r
= Sy +
’1+e l_m<n=ov |¢k|> I1+e 1=y Sr+ ¥aD
where
N-1
S= 3 vV Kl
k=0

Putting everything together, we obtain

o {14 ) il
1+e€ 1—r 1 —r

+ 4{|Yal + |‘r,/N——l|}j|-

1KY —¥] < fN”l[
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To bound the truncation error we can use not only the estimate on norm
of Yywe — ¥ but also the fact that this function is of high order. We have

5 N+1
i =¥ < (2] e 91

n=N+1 n=zN+1

s\” 5"
ld/;m(a)—w(a)ls[ sup "<7> + sup (”H)W} | ¥tre — ¥

as can be seen by writing the sums explicitly, and bounding in the crudest way.
We observe that if §/r is sufficiently small, the sup is reached in the first term
and the bracket in front of the derivative becomes

N+1
2N + 3)(£> <1 + i)
r r

Notice that 6/r = 1/2 is sufficiently small for the purpose of having the
previous property independently of N.

Notice that the previous bound runs into problems when r = 0 (numerically,
it would be disastrous when r is very small). So the obvious choice of r as 26
would lead to problems when 6 is very small. Hence, arbitrarily, we have
decided that when 6 < 10~%, then we take r = 10~* (or, more precisely, the
numbers the compiler interprets when given 10~ 6 and 10~ #; we do not care
about computing them carefully since they are just arbitrary choices and the
only thing we assume is that one is more than double the other).

Remark. The way of grouping terms in the previous computation is quite im-
portant. For certain ranges of the parameter, v can be extremely small and
pulling v~ out of the sum may lead to disastrous results. This at first sight
could be quite puzzling since the estimates become ridiculous at some points
where v comes close to zero.

Unfortunately, these things seem to be quite hard to guess without actually
writing and running the program.

The only place where such difficulty would show up would be requesting
steps acting on two identical sharp intervals as initial and final time, and clear-
ly those could be avoided in the program. However, we have decided to have
a subroutine that works even in the absurd cases. This allows us to use the
same general propagation subroutine without worrying about the boundary
conditions in do loops which lead to these special cases.

In the subroutine step, we take as inputs, the initial and the final time, and
obtain an interval containing all the increments. We compute (e’ — 1) and
evaluate a finite truncation of the propagation.

There is another boolean variable «inconclusive» that gets set if any of the
geometric series estimates we were performing has ratio bigger than 1. This
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will inform the main program that something wrong has happened: the data
should be discarded, the increment halved and start all over (this turns out to
be more convenient that just stopping the program).

There are many advantages to organizing step in the way we did. Being as
conservative as possible in the lowest level saves considering which way the
uniformity of the estimates goes in the higher levels.

Clearly, we can divide the initial value problem for large intervals in a se-
quence of smaller steps. Notice that, with our organization, it suffices that the
final time of one step contains the initial time of the next and is not necessary
that they are equal.

Nevertheless, it cannot be denied that basing a step in the initial interval and
the increment would have had something more natural to it, since the incre-
ment is really what is used. However, the final interval that we can guarantee
should be an interval contained (not containing as before!) in the sum. This
would require getting out of the philosophy of interval arithmetic, implement-
ing new operations, and we thought it unappealing and confusing and stuck
to the safe —albeit wasteful— procedure. This, we admit, we could do
because the problem was not too delicate. It could very well be that more
demanding problems require improvements in this direction, extending inter-
val arithmetic with some inverse operations.

Out of this, it is quite trivial how to propagate the solutions from zero and
infinity and compute if, for some given range of parameters, there is a match.
This is what is done by the boolean function «excluded». It is natural to give
it three parameters, #; and ¢, and a third one we called offset, which, when
it takes the value zero, makes us recover the first problem and that by varying
in an interval produces the changes in e required by the other problems.

Given those parameters, this function computes the numerator of the discrimi-
nant, taking good care that each time step is involved, it is tested whether it
is conclusive or not. The only non-obvious point is that we propagate taking
sharp intervals as intermediate steps, so that we are only forced to have steps
with fat intervals as ends at #; and ¢, themselves. For those we found it advan-
tageous to compute in three different ways from a sharp interval in the middle
and from sharp intervals at each end and take the intersection.

Switching differential equations is a little bit cumbersome. Notice that here it
is not sufficient that the initial time of the next step is contained in the final time
of the previous one; the reason is that #, has two roles: one as final time of
the propagation and also as the place where the differential equation changes.
Even if our bounds would allow us to restrict the final time of propagation,
the say nothing about the effect of switching O.D.E. at a different time.

The solution is to propagate the new O.D.E. from the full #, to another in-
terval, a little bit ahead. After that the propagation is very similar to the one
used before.
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At the end, «excluded» prints the numerator of the discriminant and the in-
terval in which it was invoked. Even if the input and output —which are not
quite right— are invoked to do that, this does not affect the conclusions
because the numbers written are only going to be used as heuristic aids.

The only thing left now is to explore in a systematic way all the range to
be excluded.

The most obvious way would be to just make a double loop exploring in
turn small squares adding up to the whole range to be explored. This,
however, would be quite impractical since the allowable size for the estimates
to be informative depends very much on the place and this cannot be guessed
before doing the computation.

A clean way out is to introduce another function: «superexc» that, given
a certain square in parameter space, will compute the discriminant and if it
cannot exclude a match, will perform a subdivision of the original square in
four squares and if any of those cannot be excluded will again subdivide and
so on. It will only report false when one of the squares to be considered is very
small (we set it at 10™%).

The way to implement this in Pascal is through a recursive function that,
if it does not succeed with excluded, and the intervals are not too small, sub-
divides and invokes itself on each of the subdivisions.

This simple trick turns out to be extraordinarily effective and is quite a
useful structure for exclusion problems.

Remark. For the aficionadoes of fine points in compilers it may be amusing
to notice that the efficiency with which superexc would abandon when con-
fronted with a non excludable interval depends quite dramatically on the way
that the compiler implements «and».

In Modular-2, for example ([W] p. 27) «p AND g» is taken to mean «IF
p THEN q ELSE FALSE». This has the advantage that if p turns out to be
false, g does not need to be evaluated. Similar conventions are specified in C
([K.R.] p.190) and, several Pascal compilers adhere to it even if nothing is said
in the specification of the language [JW].

Other compilers, however, attempt to evaluate both p and g before
evaluating the «and».

If the first alternative is in effect, superexc would abandon the first time it
needs to consider a very small interval whereas if the second alternative is in
effect superexc will abandon the last time it is so required.

For our case, with two variables and too small meaning 100 times smaller
than typical, this would mean roughly (100)? times slower. If all intervals had
to be examined but even if there were matches only along a line, this would
mean 100 times slower.
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On top of that, we just put another loop than invokes superexc on a se-
quence of squares of moderate size and covering the interval to be excluded.
After each one of them is excluded, a report is put into a file and, at the end,
it would be quite easy to check it is there using an editor. This turns out to
be safer than reporting if something bad happens, because power failures
could happen that would prevent messages from being issued, and this would
be interpreted wrongly as success. These reports of success can be extracted
from the other printout of the program very easily using a filter («grep» in
Unix). Similarly, we could extract the report about status.

On other systems, it could be advantageous to write the heuristic reports
and the definitive ones to different files.

Notice that the loop proceeds dividing in intervals by multiplying an integer
by a conventional number which, strictly speaking, we do not know. (We only
know it is the number the compiler translates 0.1 .) But it does not matter
because the upper point of one interval is the lower point of the next. (We
refrained from assuming that either the translation algorithm or the
multiplication is monotonic.)

Remark. If no matches occur, the procedure we have explained will prove
that no matches occur. If there were a match, however, the procedure would
keep on dividing till the subdivisions reach the cut-off in superrexc, which can
be quite a long time and even in that case we could not prove that indeed there
was a zero. However, it is possible —and indeed we did it in a previous
version— to run the exploration from two opposite corners towards the center
and keep a global variable of the signs found so that the existence of a match
could also be established and even located very accurately. Since it was not
necessary in our case and it gives some room for error, we proceeded in the
most straightforward way.

Besides the loop cycling through squares, the main program asks for several
parameters that, even if logically irrelevant, will affect the efficiency of the
run, like the number of terms to keep or the number of steps to take. Since
trying to run through the whole loop at once would be quite impractical, we
just run a few integers at a time.

We have written four main programs, «veuler», «suffices», «lastbound»,
«nomatch@» which correspond to the statements claimed in Lemma 4.

Each one of them has its own choice of parameters of the run, its own
superexc and mainloop, but they share most of the other subroutines and we
keep them as «include» files.

From the programming point of view, it is instructive to point out that the
use of the same excluded for the three first leads to «lastbound» requesting
a propagation form the interval v@ to itself; and, hence, it becomes convenient
to have a «step» that works correctly even in this case.
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The last bound can be considerably simplified. Excluding matches
t,=1,=0,2.25 < e < 4.5is equivalent to G(0) = 0 and e ranging over this in-
terval means that e, = 1[e — 2 — e~ — 3¢~ "] ranges over (—3/4, —3/10)
and this is what «match®» accomplishes.

The first two programs run much slower than the last two but, in a VAX
11/750, with lowest priority, they both run in a few days. The last two can
be completed in a few minutes.

«veuler» run excluding matches for —2.5 < ¢, < ¢, < 0.05.

«suffices» has built in to take 7 = 2.0 and cycle from an interval in offset
5/4 + 0.05 to —0.05.

«lastbound» also has built in to take 7 = 2.0 and we run it from offset
5/4 — 0.05 to 5/4 + 0.05*26.

«no match@» was run from offset (—8)*0.1 to (—2)*0.1.

Notice that both «suffices» and «lastbound» have a T generated in an iden-
tical way, so it is an identical number in both programs.

The other numbers involved are generously overlapping so that they cover
by far the possible inaccuracies of the input and output subroutines.

Even after the algorithm described before is coded in Pascal, there are
several steps towards its execution: the program has to be translated into
something the machine understands —compiled— and the compiled versions
have to be shifted from memory to disk and scheduled to share the resources
with other processes. One could worry that we do not have much control over
these steps.

It can be argued that nowadays developing compilers is a well understood
technique and, when not worried about optimizing resources, (e.g., in per-
sonal computers or with optimizers) the results are very reliable.

Besides, we did some checking on the parts of the compiler we used and
refrained from using delicate parts like optimizers or separate compilation.
We run the program in two machine equipped with Berkeley 4.1 BSD and with
ULTRIXVI.O (4.2 BSD), which are developed independently and we could
compare parts of the output. This excludes also the possibility of some ran-
dom malfunction or strange interference with other processes.

In spite of all this checking, however, the weakest part is the human effort
of programming. (That is why we decided to publish the programs so that they
can be checked by anybody wanting to do so.) Nevertheless, we feel more or
less confident that there are at most minor errors; certainly there are not ter-
ribly serious errors because, besides checking the program we wrote heuristic
programs to compute discriminants based on different algorithms, in Pascal,
Fortran and Basic. Even if the effort was independent and conducted in dif-
ferent computers the results agreed. The existence of niggling errors in the
estimates cannot be so easily excluded —and, of course, it is logically very
serious and we feel strongly about it. However, the programming was very
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careful and all the algorithms worked correctly at the first try —only once we
found a faulty reasoning. In any case, were any error to appear, the estimates
are so conservative that it would certainly be absorbable at the expense, at
most, of more computing time; at the moment, running the whole verification
is not a problem at all.

Cetainly we want to encourage our colleagues to check the programs and
we can make them available, including some tests, through USNET or
BITNET, or we can send an I.B.M. diskette (double-sided, double-density).
It goes without saying that any error reported to us will be greatly appreciated.

We believe that this amount of reliability is quite comparable to any
mathemtical proof involving complicated computation. There is always the
possibility of error; minor errors will probably never be entirely removed.
Nevertheless, after careful checking one has very strong reasons for con-
fidence. Except for philosophical objections we will not address in public,
Lemma 4 should be considered as rigorously established.
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program veuler ( input , output ); veuler

const

##include ’const.i’

type

#include 'types.i’

var

#include 'globalround.i’
#include ’global.i’
orderused :integer;
t1,t2 :interval;
etag :list;
ng :integer;
alphaf,alphah :interval;
vrootg :interval;
sucess :boolean;
stepnuml,stepnum?2 :integer;
1,) :integer;
imin,imax :integer;
demult :integer;
#include ’'complex.i’
#include 'cexpo.i’
#include ’initialize.i’
#include ’asymp.i’
#include ’step.i’
#include ’excluded.i’

function superexc( t1 , t2 :interval):boolean; superexc

label
1
var

tlcenter,t2center :double;
t1plus,tIminus,t 2plus,t2Zminus :interval;

begin

if excluded( t1 , t2 , v0) then

begin

end
else
begin

superexc := true;
goto 1;

if (meas(tl) < 1.0e—04) and( meas( t2) < 1.0e—04 )then
begin

superexc := false;

goto 1;
end;
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tlcenter := center(tl);
tlplus.lower := left( tlcenter );
tlplus.upper := right( tl.upper );
tlminus.upper:= right( tlcenter );
tlminus.lower:= left( tl.lower )
t2center := center( t2 );
t2plus.lower := left( t2center );
t2plus.upper := right( t2.upper );
t2minus.upper:= right( t2center );
t2minus.lower:= left( t2.Jower );
superexc =
superexc( tlplus , t2plus )and
superexc( tlplus , t2minus )and
superexc( tlminus , t2plus )and
superexc( tlminus , t2minus );

end;
1:
end(* superezc *),
begin

initialize;

writeln( 'key in the number of terms to keep for G’ );
readln (ng );

writeln( * ng = ’, ng );

writeln( 'key in the npumber of terms to be used’);
readin( orderused );

writeln( * orderused = ’,orderused });

writeln ( 'key in imin °);

readln( imin );

writeln( *imin = ’,imin );

writeln ( ' key in imax ');

readln ( imax ); .

writeln ( ’imax = ', imax );

writeln( ’key in the demultiplication factor ');
readln ( demult );

writeln ( *demult = ’, demult );

vroot( 2 , v2over5 , vrootg );

subv( vrootg , v2 , vrootg );

findeta( vrootg , vl8over5 , v4 , etag , ng );

alphaf := v6;
alphah := v9over2;
for i := imin to imax do
begin
tl.lower := —i*0.1;
tl.upper := —(i—1)*0.1;

tl.Jower := left{ t1.Jower );
t1.upper := right( tl.upper );
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for j := 1 to 1 do
begin
t2.lower := —j*0.1;
t2.upper := —(j—1)*0.1;
t2.Jower := left( t2.Jower );
t2.upper := right( t2.upper );
stepnum?2 := demult*j;
stepnuml := demult*(i—j+1);
sucess := superexc ( t1 , t2 );
if sucess then
writeln( i , j ,’superexcluded’)
else
wrnehﬂ i, j ,”NOT SUPEREXCLUDED’ });
end;
end;
writeln;
writeln( ' status = °, status);
writeln;
end.
program suffices ( input , output );
i suffices
#include ’'const.i’
type '
#include 'types.i’
var

# include 'global.i’
# include 'globalround.i’

#include
#include
#include
#include

orderused :integer;
bigt,t2 :interval;
alphaf,alphah :interval;
etag :list;

ng integer;

vrootg :interval;
sucess :boolean;
stepnuml,stepnum?2 :integer;
1) ‘integer;

imin,imax :integer;
demult :integer;

offset :interval;
"complex.i’
‘cexpo.i’
'ipitialize.i’
'asymp.i’
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#include ’'step.i’

#include ’excluded.i’ superexc
function superexc( t2 :interval; offset :interval):boolean;
label
1:
var

offsetcenter,t2center :double;
offsetplus,offsetminus,t 2plus,t2minus :interval;

begin
if excluded( bigt . t2 , offset ) then
begin
superexc := true:
goto 1:
end
else
begin
if (meas(offset) < 1.0e—04) and( meas( t2) < 1.0e—04 )then
begin
superexc := false;
goto 1;
end;
offsetcenter := center(offset);
offsetplus.lower := left( offsetcenter );
offsetplus.upper := right( offset.upper );
offsetminus.upper:= right( offsetcenter );
offsetminus.lower:= left( offset.lower );
t2center := center( t2 );
t2plus.lower := left( t2center );
t2plus.upper := right( t2.upper );
t2minus.upper:= right( t2center );
t2minus.lower:= left( t2.lower );
superexc :=
superexc( t2plus , offsetplus )and
superexc( t2minus , offsetplus )and
superexc( t2plus , offsetminus )and
superexc( t2minus , offsetminus );
end;
1:
end(” superezc *);
begin
initialize;
writeln( 'key in the number of terms to keep for G’ );
readln (ng );

writeln( * ng = ’, ng );
writeln( 'key in the number of terms to be used’);
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readIn( orderused );

writeln( * orderused = ’,orderused );
writeln { 'key in imin °’});

readln( imin );

writeln( *imin = ’,imin );

writeln ( ' key in imax ’);

readln ( imax );

writeln ( 'imax = ’, imax });

writeln( 'key in the demultiplication factor ');
readln ( demult );

writeln ( 'demult = ’, demult );

vroot( 2 , v2over5 , vrootg );

subv( vrootg , v2 , vrootg );

findeta( vrootg , vi8over5 , v4 , etag , ng );

alphaf := v6;
alphah := vOover2;
bigt := vmz2;
for i1 := imin to imax do
begin
t2.upper := —(i—1)*0.05;
t2.lower := —i*0.05;

t2.lower := left( t2.lower );

t2.upper := right( t2.upper });

stepnum2 := trunc( —t2.lower/0.05)+1;

stepnuml := trunc( ( —bigt.Jlower + t2.upper)/0.05) +1;

stepnuml := stepnuml * demult;
stepnum?2 := stepnum?2 * demult;
for ) := 0 to 26 do

begin '

offset.lower := ( j—1 )*0.05;
offset.upper := (j )*0.05;
sucess := superexc ( t2 , offset );
if sucess then
writeln( i , j ,’superexcluded’)

else
writeln( i , j ,”NOT SUPEREXCLUDED'’ );
end;
end:
writeln;
writeln( * status = °’, status);
writeln;

end.
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program nomatchO( input , output );
const
#include 'const . i’

type
#include 'types.i’
var
etag :list;
ng :integer;

vrootg :interval;

sucess :boolean,;

1 :integer;

imin,imax :integer;

epsg :interval;
#include ’'global.i’
#include *globalround.i’
#include ’complex.i’
#include 'cexpo.i’
#include *initialize.i’
#include ’asymp.i’

function superexc( eps :interval ):boolean;

label
L

var
epscenter:double;
epsplus,epsminus:interval;
gatO :interval;
excluded :boolean;

begin

findfO( etag , ng , eps , gat0);

excluded := mnot{ contained( vO , gat0 ));
write( "eps = ’);printv( eps );writeln;
write( 'gatO = ’);printv( gatO );writeln;
writeln( *excluded = °*, excluded };

writeln;writeln;
if excluded then

begin
superexc .= true;
goto 1;

end

else

begin

if (meas(eps) < 1.0e--04) then

begin

superexc := false;
)

goto 1;

nomatchQ

Superexc
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end;
epscenter := center(eps);
epsplus.lower := left( epscenter );

epsplus.upper := right( eps.upper );
epsminus.upper:= right( epscenter );
epsminus.lower:= left( eps.lower );
superexc :=
superexc( epsplus )and
superexc( epsminus );

end;
1:
end(” superezc *);
begin
initialize;
writeln( 'key in the number of terms to keep for G’ );
readln (ng );

writeln( * ng = °, ng );
writeln ( 'key in imin ');
readln( imin );
writeln( "imin = ’ imin );
writeln ( * key in imax ');
readln ( imax );
writeln ( ’imax = *, imax });
vroot( 2 , v2over5 , vrootg );
subv( vrootg , v2 , vrootg );
findeta( vrootg , v18over5 , v4 , etag , ng );
for i := imin to imax do
begin
epsg.upper := i*0.1;
epsg.Jower := (i—1)*0.1;

sucess := superexc ( epsg );
if sucess then
begin
writeln( i , 'superexcluded’)
end
else
begin
writeln( 1, "NOT SUPEREXCLUDED’ );
writeln;
end;
end;
writeln( * status = °, status);
writeln;

end.
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program lastbound ( input , output });

const

#include ’const.i’

type

#include 'types.i’

var

#include °globalround.i’
# include 'global.i’
orderused :integer;
bigt :interval;

offset :interval;
alphaf,alphah :interval;
etag :list;

ng integer;

vrootg :interval;
sucess :boolean,;

stepnum1,stepnum?2 :integer;
1 :integer;
imin,imax :integer;

demult :integer;

#include ’complex.i’

#include ’cexpo.i’
#include ’initialize.i’
#include ’asymp.i’
#include 'step.i’
#include ’excluded.i’
function
label

1;
var

begin

offcenter:double;

offplus,off minus:interval;

if excluded( bigt , vO , offset ) then

begin

end
else
begin

superexc
goto 1;

if (meas(offset) < 1.0e-04) then

begin

end;

:= true;

superexc :

goto 1;

superexc(offset :interval ):boolean;

false;

lastbounc

superex(
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offcenter := center(offset);
offplus.lower := left( offcenter );
offplus.upper := right( offset.upper );
offminus.upper:= right( offcenter );
offminus.lower:= left( offset.lower );
superexc :=

superexc( offplus )and

superexc( offminus );

end;
1:
end(” superezc *);
begin
initialize;
writeln( 'key in the number of terms to keep for G’ );
readln (ng );
writeln( * ng = ’, ng );

writeln( 'key in the number of terms to be used’);
readln( orderused );
writeln( * orderused = ’,orderused );

writeln ( 'key in imin ’);
readln( imin );
writeln( 'imin = ’,imin );

writeln ( * key in imax ');

readln ( imax );

writeln ( ‘imax = ', imax );

writeln( 'key in the demultiplication factor ');
readln ( demult );

writeln ( 'demult = ’, demult );

vroot( 2 , v2over5 , vrootg );

subv( vrootg , v2 , vrootg );

findeta( vrootg , vl8over5 , v4 , etag , ng );

alphaf := v6;

alphah := vQover2;

bigt := vmz2;

for i := imin to imax do
begin

offset.upper := i*0.1;
offset.lower := (i—1)*0.1;
stepnuml := 20*demult;
stepnum? := 1;
sucess := superexc ( offset });
if sucess then
begin
writeln( 1, 'superexcluded’)
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end
else
begin
writeln( 1, *NOT SUPEREXCLUDED’ );
writeln;
end;
end;
writeln( * status = °*, status);
writeln;

end.
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(*TTHIS IS ASYMP.I *) charpol
procedure charpol( alpha , beta :interval; x :interval ; var poly:interval);
begin

poly = x;

addv( poly , beta . poly );

mulv( poly , x , poly );

addv( poly , alpha , poly );
end(” charpol *),
procedure findeta ( u .alpha,beta :interval ; var eta :list; n:integer); findeta
var

1 :integer;
vi,viml,upi,upim1,poli,polim],factor :interval;
begin
etal0] := vl;
for i :== 1 to n do
begin
evtiv( 1, vi);
evtiv( i-1 , viml );
addv( vi, u , upi );
addv( viml , u , upiml );
charpol{ alpha , beta , upi , poli);
charpol( alpha , beta , upiml , poliml );
subv( alpha , polim1 , factor });
divv( factor , poli , factor , status );
mulv( etali-1] , factor , etali] );
end;
end(” findeta 7); findfo

(7 Notice that findf0 and findfl assume that n s big enough so that they could
be 1ncorrect if the cufficiency of n 1c not checked before calling them *)
procedure findf0(var eta :list; n :integer; exptepsilon :interval; var fO :interval);
var

1 ‘integer;

berror,berrorl,berror2.,berror3 :bound;

verror :interval:
begin

absv( exptepsilon , berrorl);
if cmpb( berrorl , bl ) <> -1 then

begin
writeln( ’expanding in an unfavorble range’ );
halt;

end;

fO := etaln);

for i := n-1 downto 0 do
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begin
mulv( fO , exptepsilon , f0 );
addv( f0 , etafi] , fO );
end;
absv( exptepsilon , berrorl );
powerb( n+1 , berrorl , berrorl );
absv( etaln] , berror2 );
mulb( berrorl , berror2 , berror);
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subv( v1 . exptepsilon , verror );
divv( v1 , verror , verror , status );
absv( verror , berror3);
mulb( berror , berror3 , berror );
enlargev( fO , berror , f0);
end(* findf0o ),
procedure findfl ( u:interval;var eta :list; n :integer; exptepsilon :interval;
var {1 :interval); findf1

var
1 :integer;
sum,vwork :interval;
berror,berrorl,berror2,berror3,berror4,berror5 :bound;
verror,vnpl :interval;
begin
absv( exptepsilon , berrorl );
if cmpb( berrorl , bl ) <> -1 then
begin
writeln( 'expanding in a bad range’ );
halt;
end;
cvtiv( n , vwork);
addv( vwork , u , vwork );
mulv( etajn] , vwork , sum );
for i:= n-1 downto 0 do

begin
mulv( sum , exptepsilon , sum );
cvtiv( i, vwork );
addv( vwork , u , vwork );
mulv( vwork , etali] , vwork );
addv( sum ,vwork , sum });

end;

absv( exptepsilon , berrorl );
powerb( n+1 , berrorl , berror2 );
subv( vl , exptepsilon , verror);
divv( vl , verror , verror , status );
absv( verror , berror3 );

cvtiv( n+1 , vnpl);

addv( u , vnpl . verror);

absv( verror , berror4);

absv( etaln] , berror5 );

mulb( berrorl , berror3 , berror );
addb( berror4 , berror ,berror };
mulb( berror , berror3 , berror );
mulb( berror2 , berror , berror );
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mulb( berror5 , berror , berror );
enlargev( sum , berror , f1 );

end(* findf1 *);

( THIS IS CEXPO.I ?)

procedure expvv( v :interval, var expo:interval); expvv
const

degree = 12:
var

1 :integer;

vi :interval;

dwork :double;

begin
if not( contained( v , v32) ) then
begin
writeln( 'evaluating the exponential out of range’);
halt;
end;
if not ( contained( v, width )) then
begin
dive( v , v2 , v | status );
expvv( v , expo );
mulv( expo , expo , expo );
end
else
begin
expo = vlj
if { v.lower < d0 ) then
begin
cvtid( degree—1 , dwork );
dwork := v.lower/dwork;
dwork := left( dwork );
expo.lower := expo.Jower + dwork;
expo.lower := left( expo.lower );
end; ‘
if ( v.upper > dO ) then
begin
cvtid( degree+1 , dwork });
dwork := v.upper / dwork:
dwork := right{ dwork );
dwork := d1 - dwork;
dwork := left( dwork );
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dwork := d1/dwork;
expo.upper := right( dwork );

end;
for i := degree downto 1 do
begin
mulv( expo , v , expo );
evtiv( 1, vi );
divv( expo , vi , expo , status );
addv( expo , vl , expo );
end;

end;
end(” ezpvv *);
procedure cosvv( v :interval; var vcos :interval);forward;
(1 i)

procedure sinvv( v :interval; var vsinus :interval );

const
degree = 7,
var
vwork1l,vwork2.factori.vsquare :interval;
1 :integer;
dwork :double;
begin
if not( contained(v , v32) ) then
begin
writeln( ’'evaluating vsin out of range’);
halt;
end;
if not ( contained( v , width ) ) then
begin
divv( v , v2 , v , status );
cosvv( v , vworkl );
sinvv( v , vwork2 );
mulv( vworkl , vwork2 | vsinus );
mulv( vsinus , v2 , vsinus );
end
else
begin
mulv( v , v , vsquare );
vsinus := vl;
cvtid( (2*degree + 2 )*(2*degree + 3) , dwork );
dwork := vsquare.upper/dwork;
dwork := right( dwork );
vsinus.lower := d1 — dwork;
vsinus.lower := left( vsinus.lower );

for i := degree downto 1 do

Cosvy

SInvVv
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begin
mulv( vsquare , vsinus , vsinus );
cvtiv( 2*1*(2%i+1) , factori);
divv( vsinus , factori , vsinus , status );
subv( vl , veinus , vsinus );
end:
mulv( v , vsinus .vsinus );
end;
end(’ sinvv *);
procedure cosvv; COSVV
const
degree = 7;
var
vwork,vsquare,factori :interval;
1 :integer;
dwork :double;
begin
if not( contained( v , v32 ) ) then
begin
writeln( 'evaluating cosvv out of range');
halt;
end;

if not ( contained ( v , width ) ) then

begin
divv( v , v2 , v . status );
cosvv( v , vwork );
mulv( vwork , vwork , vwork );
mulv( vwork . v2 , vwork );
subv( vwork . vl , vcos );
end
else
begin
mulv( v . v , vsquare };
vcos = vl;
cvtid( (2*degree + 1)*(2*degree + 2 ) , dwork );
dwork := vsquare.upper/dwork;
dwork := right ( dwork );
vcos.lower := vcos.lower — dwork;
vcos.lower := left( vcos.lower };
for i := degree downto 1 do
begin
mulv( vcos , vsquare , vcos );
cvtiv( (2*1-1)*2*i , factori );
divv( vcos , factori , vcos , status );
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subv( vl , vcos , vcos);
end;
end;

cosvv " );

procedure expcc( ¢ :complex; var cexpo:complex); expcc

var

begin

end(*

count :integer;
expre :interval;
expim :complex;

if not( contained( cre , v32) ) or mot( contained( c.im ,v32 ) )then
begin
writeln( ’evaluating the exponential out of range’);
halt;
end;
count := O:
while not( contained( c.re,width) and contained( c.im,width)) do
begin
divev( ¢ , v2 , c , status );
count := count + 1;
end;
expvv( c.re , expre );
sinvv( c.im , expim.im });
cosvv( c.im , expim.re );
mulcv( expim , expre , cexpo );
while count > 0 do
begin
mulc( cexpo , cexpo , cexpo );
count := count — 1;
end;

ezpcc *);

procedure expvvml( v :interval;, var delta:interval); expvvml

const

var

begin

degree = 12;

i :integer;

vi :interval;

dwork :double;

vworkl , vwork?2 :interval;

if not( contained( v . v32) ) then

begin
writeln( ’'evaluating the deltanential out of range');
halt;

end;
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if not ( contained( v , width )) then

begin
divv( v , v2 , v | status );
expvv( v , vworkl );
addv( vworkl , vl , vworkl);
expvvml( v , vwork2 );
mulv( vworkl , vwork2 , delta });
end
else
begin
delta := vi;
if ( v.lower < d0 ) then
begin
cvtid( degree+1 , dwork ):
dwork := v.lower /dwork:
dwork := left( dwork );
delta.lower := delta.Jower + dwork:
delta.Jower := left( delta.lower );
end:
if ( v.upper > d0 ) then
begin
cvtid( degree=1 , dwork ):
dwork := v.upper / dwork:
dwork := right( dwork );
dwork := d1 — dwork;
dwork := left( dwork );
dwork := d1/dwork;
delta.upper := right{ dwork );
end;
for i := degree downto 2 do
begin
mulv( delta , v , delta );
evtiv( 1, vi );
divv( delta , vi , delta , status );
addv( delta , v1 , delta );
end;
mulv( delta , v , delta );
end;

end(* ezpvvml *),



RELATIVISTIC STABILITY OF MATTER-I 179

(* THIS IS COMPLEX.I *)
#include 'roundprocs.i’
function overlap( va,vb :interval):boolean; overlap
begin
overlap :=  ( (va.upper >= vb.lower) and (va.lower <= vb.lower) )
or ( (vb.upper >= valower) and (vb.lower <= va.lower) ):
end(* overlap *);

function contained( va,vb :interval):boolean; . contained
begin
contained := ( va.upper <= vb.upper) and ( va.lower >= vb.lower);
end(” contained *};
procedure intersec( va,vb :interval; var v:interval); intersec
begin
if not( overlap(va,vb) ) then
begin
writeln( *finding intersection of non-overlapping
intervals’);
halt;
end;

if ( va.upper > vb.upper ) then
v.upper := vb.upper

else

v.upper := va.upper;
if ( valower > vb.lower ) then

v lower := va.lower
else

v.lower := vb.lower;

end(” intersec )

function center( v :interval ):double: center
begin
center ::- ( v.upper + v.lower )/d2 :
end(” center °):
function meas( v :interval):double; meas
var
measure :double;
begin
measure := v.upper — v.]ower:
meazure := right( measure );
meas := measure;
end(” meas 7);
function
cmpb(var x,y: bound): integer;
begin

if x.top > y.top then cmpb := 1;
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if x.top < y.top then cmpb :=
if x.top = y.top then cmpb :=

end(* cmpb 7);

procedure
printd(var w: double);
begin
write ( w);
end(* printd *),
procedure
printv(var v: interval);
begin

write( ' [*);printd(v.lower);
write(’, *); printd(v.upper);
write(’]’)

end;
procedure
negv(var u:interval);
var
dummyu :interval;
begin
dummyu := u;
u.lower := —dummyu.upper;
u.upper := —dummyu.lower;
end(” negv )
procedure
cvtid(i: integer; var x: double);
begin
X = 1
end(’ cvtid *);
procedure
cvtib(i: integer; var b: bound);
begin
b.top := i
end(” coutib 7);
procedure
cvtiv(i: integer; var v: interval);
begin

cvtid( i, v.upper );
cvtid( 1, v.]lower };
end(" cotiv ')
function
max( var ba.bb :bound) : bound;
begin
if cmpb(ba ,bb) <> 1 then
max := bb
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else
max := ba;
end(® maz’);
procedure
absv(var u: interval; var b: bound):
begin

if uv.upper > —u.lower then
b.top := u.upper
else
b.top := —u.lower;

end (* absv *);
procedure
vabsv( v :interval; var vabs :interval);

label
I
begin
if vower >= d0 then
begin
vabs := v;
goto 1;
end;
if v.upper <= d0 then
begin
vabs = v;
negv( vabs );
goto 1,
end;
if ( ( v.lower < d0 ) and ( v.upper > d0 ) ) then
begin
vabs.lower := d0;
vabs.upper := v.upper;
if ( —v.lower > vabs.upper ) then
begin
vabs.upper := —v.lower;
end;
goto 1;
end;
writeln( 'we are in an unreachable part of vabsv ');
1:
end(” wvabsv 7);
procedure
addv(var u:interval; var v:interval; var w:interval);
label

1;

181
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var
x,y:double;
begin
if contained( u . v0) then
begin
W= v
goto 1:
end:
if contained ( v , v0) then
begin
w o= u;
goto 1;
end;
x := u.lower + v.]ower;
V = u.upper - v.upper;
w.lower := left(x):
w.upper := right(y);
1:
end(” addv *J;
procedure
subv(var u:interval; var v:interval; var w:interval);
label
L
var
x,y:double;
begin
if contained( u , v0 ) then
begin
w o= v,
negv( w):
goto 1;
end;
if contained( u , vO ) then
begin
w o= u;
goto 1;
end:
X := u.lower — v.upper;
y := u.upper —v.lower;
w.lower := left(x);
w.upper := right(y);
1: v
end(” subv *);
procedure

mulv(var u:interval; var v:interval; var w:interval);



label

var

begin
1:

end(’
procedure
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x1,x2,x3,x4: double;

183

if contained( u,v0 ) or contained( v,v0) then

begin
cvtiv( 0 ,w):
goto 1;
end;
if contained( u
begin

, vl) then

w o= v,
goto 1;
end:
if contained( v ,
begin

vl ) then

w o= u;
goto 1;
end;
x1 =
x2 :
x3 :
x4 =
w.upper :=
if x2 >
if x3 >
if x4 >
w.upper
w.Jower =
if x2 <
if x3 <
if x4 < w.lower then w.lower
w.lower := left( w.lower);

*

u.upper
u.upper
u.lower *
u.lower *

v.upper;
v.lower;
v.upper;
v.]ower;

*

Il

x1;

:= right(w.upper);
x1;

mulv ),

w.upper then w.upper :
w.upper then w.upper :
w.upper then w.upper :=

w.lower then w.lower :=
w.lower then w.lower :
= x4;

x2;

divv(var u:interval; var v:interval; var w:interval,

var

begin

var status: integer);

x1,x2,x3,x4 :double;

if ( d0O >= v.lower) and ( dO
x1 := u.upper / v.upper;
x2 := u.upper / v.lower;

<= v.upper) then status := 1I;
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x3 := u.lower / v.upper;

x4 := u.lower / v.lower;

w.upper := xlI;

if x2 > w.upper then w.upper := x2;
if x3 > w.upper then w.upper := x3;

if x4 > w.upper then w.upper := x4;
w.upper := right( w.upper );

w.lower := x1;
if x2 < w.lower then w.lower := x2;
if x3 < w.lower then w.]ower := x3:
if x4 < w.lower then w.lower := x4;
w.lower := left( w.lower );
end/” dive 7).
procedure
addb(var x,y.z: bound);
begin
z.top := x.top — y.top:
z.top := right( z.top }):
end(’ addb *);
procedure
mulb(var x,y.z: bound);
begin
z.top = x.top ¥ yv.top:
z.top = right( z.top );
end/” mulb ) po\\'erb

procedure powerb ( n :nteger ; ba :bound ; var bb :bound ) ;
begin
if n < 0 then
begin
writeln (’negative exponent on bound’});
halt
end:
cvtid( 1 ,bb.top);
while n <> 0 do
begin
if odd(n) then
mulb ( ba , bb, bb };
n := n div 2,
mulb ( ba , ba , ba };
end(* while *);
end(” powerb *);
procedure enlargev ( va:interval; b :bound:; var vb :interval): en]argev

var
vbound :interval:
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begin
vbound.lower := dO0;
vbound.upper := b.top;
addv( va , vbound , vb};
subv( vb , vbound ., vb);
end(” enlargev *);

function ifactorial{ n:integer):integer; ifact oria,]
begin
if n < 0 then
begin
writeln( ' factorial of a negative number’);
halt;
end;
if n = 0 then
ifactorial := 1
else
ifactorial := n*ifactorial( n—1 );
end(” factorial ),
function vfactorial( n:integer):interval; vfactorial
var
vfact:interval;
begin

cvtiv( Hfactorial(n),vfact);

vfactorial := vfact;
end(” wfactorial )
(* the functions for powers of double are made to work also
Jor negative powers of positive numbers,
even if in the ecpecifications | only required then to work
for positive powers of positive numbers They do not work for
zero power )

function lpowerd ( n:integer ; x:double):double:forward; ]powerd
function rpowerd ( n:integer : x:double):double: rpowerd
var
power:double:
begin
if x < d0 then
begin
writeln ( 'bounds on povers of those numbers not
implemented’);
halt;
end;
if n =0 then
begin

writeln(’0One should not be computing zero povers ');
halt;
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end;
if n > 0 then
begin
cvtid( 1 , power );
while n <> 0 do
begin
if odd(n) then
begin
power := power * x;
power := right( power);
end;
x := sqr(x);
x := right(x);
n := n div 2;
end;
rpowerd := power;
end
else
begin
power := d1/lpowerd( —n , x);
rpowerd := right{ power );
end;
end(’ rpowerd ’);
function Ipowerd; ]powerd
var
power :double;
begin
if ( x < d0 ) then
begin
writeln ( 'bounds on powers of those numbers not
implemented’);
halt;
end:
if n =0 then
begin
writeln(’One should not be computing zero povers ’'}):
]la]I;
end;
if n > 0 then
begin

cvtid (1 . power ):
while u 2> 0 do
begin
if odd(n) then
begin
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power := power * Xx;
power := left( power );
end;
x = sqr(x);
x = left(x);
n := n div 2;
end;
Ipowerd := power;
end
else
begin
power := d1/rpowerd( —n,x );
lpowerd := left( power );
end;
end(" lpowerd *), powery

procedure powerv( n :integer: v :nterval; var pow :interval; var status:integer);

label

L
var
work :interval;
begin
if ( v.lower <= d0) and ( v.upper >= d0) and ( n=0 ) then
begin
writeln( ’computing dO to the O pover’);
halt;
end;
if ( n1=0 ) and not( contained(vO ,v) ) then
begin
pow = vl;
goto 1;
end;
if n < 0 then
begin
powerv( —n , v , work , status);
divv( vl , work , pow , status);
goto 1;
end;
if ( v.upper >= d0 ) and ( v.lower >= d0 ) then
begin
pow.upper := rpowerd(n.v.upper );
pow.lower := lpowerd(n,v.Jower );
goto 1: '
end: .

if { v.upper < d0 ) and ( v.lower < d0 ) then
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begin
pow.upper := rpowerd ( n ,- v.]Jower );
pow.lower := lpowerd ( n ,—v.upper );
if odd( n ) then
negv( pow ):
goto 1:
end;
if { v.upper > d0) and (v.lower < dO ) then
begin
if odd(n) then
begin
pow.upper := rpowerd( n , v.upper );
pow.lower := —rpowerd( n , —v.lower);
end
else
begin
pow.lower := dO0;
if (v.upper >= —v.lower )then
pow.upper := rpowerd( n , v.upper)
else
pow.upper := rpowerd( n , v.ower);
end;
end;
1:
end(  powerv *);
function rrootd( n:integer; x :double ):double; rrootd
label
1;
var
1 :integer;
work :double;
begin
if x = dO then
begin
rrootd := do0;
goto 1;
end;
if x = d1 then
begin
rrootd := dI;
goto 1;
end;

if x < dO0 then
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begin
writeln( 'rroot of a negative number’);
halt;
end;
work := exp( In(x)/n };
for i := 1 to 30 do
begin
if ( lpowerd( n , work) > x )then
begin
rrootd := work ;
goto 1;
end:
work := right{ work });
end:

writeln( 'very unreliable rroot’):
halu:

1:
end(  rroot )
function lrootd( n:integer; x :double ):double; Irootd
label
1
var
1 :integer;
work :double;
begin
if x = dO then
begin
Itootd := dO;
goto 1;
end;
if x = d1 then
begin
lrootd := d1;
goto 1;
end;
if x < d0 then
begin
writeln( ‘lroot of a nmegative number’);
halt;
end;
work := exp( In(x)/n ):
for i := 1 to 30 do
begin

if ( rpowerd( n . work) < x )then
begin
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Irootd := work ;

goto 1;
end,;
work := left( work);

end;

writeln{ 'very unreliable lroot’);

halt;
1:
end(” rroot *);
procedure vroot( n :nteger; v:interval; var root:interval); vroot
begin

root.upper := rrootd( n , v.upper );

root.lower := Irootd( n , v.lower );
end(” wroot 7
procedure cvtvc( v :interval, var c:complex); cvtive
begin

cvtiv{ 0 . c.im);

cre = v;
end(" cwtve *);
procedure cvtic( i :integer: var c :complex): cvtic
begin

cvtiv( 0 . c.im ):
evtiv( 1. cre ):
end(  cvtic ")
procedure conj( var ¢ :complex); conj
begin
negv( c.im );
end(” conj °);
procedure negc( var c¢ :complex); neoc
begin ©
negv( cre );
negv( c.m });
end( negc *);
procedure enlargec( ca :complex; b :bound; var c¢b :complex); enlargec
begin
enlargev( care , b , cbre );
enlargev( ca.im , b , cb.im });
end(* enlargec *);
procedure absc( ¢ :complex; var norm :bound); absc
var
work1l,work2 :bound;
begin
absv( c.re , workl });
mulb( workl , workl , workl):
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absv( c.im . work2);

mulb( work2 , work2 , work2 );

addb ( workl , work2 , norm };
end(” absc *);

function coverlap( ¢ , d:complex):boolean; coverlap
begin

coverlap := overlap( c.re , d.re) and overlap( c.im , d.im);
end(’ coverlap *);
procedure cintersec{ ¢ , d :complex; var e :complex}; cintersec
begin

intersec( c.re , dre , ere );
intersec( c.im . d.im , e.im });
end(” cintersec ):
procedure printc( ¢ :complex ); ' printc
begin
printv( c.re );
writeln;
write ( * + i');
printv( c.im });
end(” printc *);
procedure addc( ¢ , d :complex; var e.complex); addc
begin
addv( cre , dre , ere );
addv( c.im . d.im , e.im );
end{  addc ')
procedure subc( ¢ . d : complex; var e : complex): subc
begin
subv( cre , d.re , ere );
subv( cim . d.im , e.im );
end;

procedure mulcv( ¢ :complex: v :interval; var e :complex): mulcv
begin

mulv( cre , v, ere );

mulv( cim , v , e.im );
end(” mulcr 7);
procedure mulc { ¢ , d : complex; var e :complex); mulc
var

workl,work2 :interval;
begin

mulv( cre , dre , workl );

mulv( c.im , d.im , work2 );

subv( workl , work2 , e.re );

mulv( c.re , d.im ,workl };
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mulv( c.im , d.re , work2 );

addv( workl, work2 , e.im });
end(* mulc *);
procedure vnormc( ¢ :complex ;var vnorm :interval); vnorme
var

work :complex;
begin

work = ¢;

conj( work );

mulc( ¢ , work , work );

vnorm := work.re:

vroot( 2 , vnorm . vnorm );
end(” wnormc °);

procedure bnormc( ¢ :complex: var bnorm :bound): bnormec
var
bworkre bworkim,bwork :bound;
begin
absv( c.re , bworkre ):
absv( c.im . bworkim });
mulb( bworkre , bworkre , bworkre };
mulb( bworkim , bworkim , bworkim );
addb( bworkre . bworkim , bwork );
bnorm.top := rrootd( 2 . bwork.top );
end(” bnormc °); divev

procedure divev( ¢ :complex; v :interval;var e :complex; var status :integer);
begin

divv( cre . v . ere , status);

divv( c.im , v , e.im , status);
end(” divcv )
procedure dive( ¢ . d :complex; var e :complex; var status :integer); divc
var

conjd.ddbar :complex:

denom :interval:-
begin

conjd := d: conj{ conjd );

mulc( c, conjd , e );

mule( d, conjd , ddbar ):

denom := ddbar.re:

divv( ere , denom . e.re . status );

divv( eim . denom . e.lm . status ):
end(  divc ) powerc
procedure powerc ( n :integer; ¢ : complex:var pow :complex; var status :nteg
label

1
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var
vworkl.vwork2 :interval:
cwork1,cwork2 :complex;
begin
if ( n=0) and (c.re.upper >= d0) and ( c.re.lower <= d0)
and (c.im.upper >= d0) and ( c.im.lower <= d0 ) then
begin
writeln( 'zero pover of a complex interval containing zero');
halt;
end;
if n = 0 then
begin
cvtic( 1, pow );
goto 1;
end,
if n = 1 then
begin ’
pow = c:
goto 1;
end;
if n = 2 then
begin
powerv( 2 , cre , vworkl | status );
powerv( 2 , cim , vwork2 , status );
subv( vworkl , vwork2 , pow.re );
mulv( c.re , c.im , pow.im };
addv( pow.im , pow.im , pow.im ):
goto 1;
end;
if n > 2 then
begin
if odd( n ) then
begin
powerc( n div 2 , ¢ . cworkl | status );
powerc( n — (n div 2) , ¢ , cwork2 | status );
mulc( cworkl , cwork2 , pow );
end
else
begin

powerc( n div 2 , ¢ . cworkl , status );
powerc( 2 , cworkl , pow , status );
end;
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goto 1;

end;

if n < -1 then

begin
powerc ( —n , ¢ , cworkl . status );
dive{ c1 , cworkl . pow , status );
goto 1:

end:

writeln ( 'vwe are in an unreachable part of the program’ );
halt;

1:
end(” powerc )
procedure csgrt( v :interval: var root :complex ); csqrt
begin
if ( v.upper > d0 ) and ( v.Jower < d0 ) then
begin
writeln( ’computing the root of an interval containing
zero’);
halt;
end;
if v.Jower >= dO then
begin
cvtiv( 0 , root.im );
vroot( 2 , v , root.re);
end
else
begin
cvtiv( O . root.re );
negv( v );
vroot( 2 , v , root.im }):
end:

end(” c¢sgrt ");
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(" THIS 1S CONST.I *)
maxorder = 60;
maxorderpl = 61;

maxn = 200:
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(* THIS 1S EXCLUDED.I ~) excluded

function excluded ( t1 , t2 :interval; offset :interval):boolean;

label

var

begin

(* WE

1

exc :boolean;

ht1.,hprimetl :interval;

y,yprime.incl,inc2 :interval;

1 :integer;

gtl,gprimet1.epsgetl,vworkl vwork2 :interval;
tlup.tllow.t2up.t2low,ybase,yprimebase,ybis,yprimebis :interval;
tnewt,mtl.mt2,tImt2.exptl,expmtl,expmt2,exptimt2,epsf,epsh :interval;
inconclusive :boolean;

numerator :interval:

START BY COMPUTING SEVERAL USEFUL NUMBERS *)
tlup = tl;

tlup.lower := tlup.upper;
tllow := tl;

tllow.upper := tllow.lower;
t2up = t2;

t2up.lower := t2up.upper;
t2low = t2;

t2low.upper := t2low.Jower;
mtl := tlnegv( mtl );
mt2 = (2;negv( mt2 );

subv( t1 | t2 | tImt2 ):

expvv( tImt2 . exptlmt2 ):

expvv( tl1 , exptl );

expvv( mtl . expmtl );

expvv( mt2 | expmt2 );

addv( expmtl . expmt2 , epsf ):
mulv( epsf . vlover2 ., epsf ):

subv( epsf .v3overd . epsf ):

subv( epsf . offzet . epsf ):

subv( epsf . expmt2 . epsh );

mulv( epsh . vlover2 | epsh }):

mulv( epsf . exptl , epsgetl );

subv( epsgetl , exptlmt2 -, epsgetl );
subv( epsgetl , v3 | epsgetl );

divv{ epsgetl . v5 , epsgetl . status):

inc2.upper := center( t2 ), steppum?2 :
mmc2.Jower := inc2.upper;
incl.upper := ( center( t1 ) — center( t2 ) )/ stepnuml:

incl.lower := incl.upper;



RELATIVISTIC STABILITY OF MATTER-I 197

(* SETTING THE INITIAL CONDITIONS °)

t = v0;
y = v0;
yprime := vl;
(* PROPAGATING TILL WE GET CLOSE TO T2 ’)
for i := 1 to stepnum2 do
begin

addv( t , inc2 , newt );

step( alphaf,epsf,t,newt.v,yprime,y,yprime,inconclusive);
if inconclusive then

begin
exc = false;
goto 1:
end;
t := newt;
end,;
vbase := vy;
yprimebase := yprime:

(* WE PROPAGATE TO THE FULL T2 FROM THE BASE IN THREE
DIFFERENT WAYS AND TAKE THE INTERSECTION )

step( alphaf.epsf.t.t2.y,yprime.y,yprime.inconclusive};
if inconclusive then

begin
exc := false;
goto 1:
end;
ybis = vy;
yprimebis := yprime;

step( alphaf.epsf,t,t2up,vbase,yprimebase,y,yprime,inconclusive });
if inconclusive then
begin
exc := false;
goto 1:
end;
step( alphaf.epsf.t2up.t2,y,yprime,yv,yprime,inconclusive);
if inconclusive then
begin
exc := false;
goto 1:
end;
intersec ( vbis .,y , ybis )
intersec( vprimebis . yprime ,yprimebis }:
step( alphaf , epsf.t.12low,ybasze,yprimebasze,v,yvprime.inconclusive):
if inconcluzive then
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()'

begin
exc = false;
goto 1:
end;
step( alphaf,epsf.t2low.t2,y,yprime,y,yprime.inconclusive);
if mmconclusive then
begin
exc := false:
goto 1:
end;
intersec( ybis,y,y);
intersec( yprimebis,yprime,yprime);

SETTING THE INITIAL CONDITIONS FOR THE NEXT INTERVAL

OF PROPAGATION *)

(:‘

mulv( yprime , v3over2 , yprime );
subv( yprime , y , yprime );

WE PROPAGATE CLOSE TO T1 . THE FIRST STEP HAS TO BE

DIFFERENT TO TAKE INTO ACCOUNT THAT WE CHANGE
DIFFERENTIAL EQUATIONS 7)

(>

addv( t . incl , newt ):
step( alphah ,epsh.t2,newt,y,yprime,y,yprime,inconclusive):
if inconclusive then

begin
exc := false:
goto 1;
end;
for i := 2 to stepnuml do
begin
addv( t , incl , newt ):
step( alphah ,epsh,t.newt,y yprime,y,yprime,inconclusive);
if inconclusive then
begin
exc := false;
goto 1;
end;
t 1= newt;
end,;
ybase := y;
yprimebase := yprime;

FROM CLOSE TO T1 WE PROPAGATE TO THE FULL T1 IN

THREE DIFFERENT WAYS AND COMPUTE THE INTERSECTION °)

step( alphah.epsh,t,t1,y,yprime,y,yprime,inconclusive};
if inconclusive then
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begin
exc := false;
goto 1;
end:
ybis = y:

yprimebis := yprime;
step( alphali.epsh.t.tlup,ybase,yprimebase,y.yprime.inconclusive }):
if inconclusive then
begin
exc := falze:
goto 1:
end;
step( alphali,epsh.tlup.tl,y,y prime,y,yprime inconclusive);
if mconclusive then
begin
exc := false:
goto 1;
end:
intersec ( vbis .y . vbis ):
intersec( yprimebis , yprime ,yprimebis );
step( alphah , epsh,t,t1low,ybase,yprimebase,y,yprime,inconclusive);
if inconclusive then
begin
exc := false;
goto 1;
end;
step( alphah,epsh,tllow,tl,y,yprime,y,yprime,inconclusive);
if inconclusive then
begin
exc := false;
goto 1;
end;
intersec( ybis,y,y):
intersec( yprimebis,yprime,yprime);
(" WE COMPUTE THE FUNCTION THAT IS GOING TO ENTER INTO
THE DISCRIMINANT OUT OF THE COMPUTED SOLUTIONS OF THE
REDUCED O.D.E. WE HAVE BEEN USING *)

htl1 == y ;
mulv( v2 , y , hprimetl );
subv( yprime , hprimetl , hprimetl );
(* WE COMPUTE THE DATA AT INFINITY ~7)
findfO( etag , ng , epsgetl , gtl );
findf1( vrootg , etag , ng , epsgetl , gprimetl );



200 C. FEFFERMAN AND R. DE LA LLAVE

(* WE COMPUTE THE TWO TERMS OF THE NUMERATOR OF THE
DISCRIMINANT AND CHECK WETHER THEY OVERLAP ’)
mulv( gprimetl , htl | vworkl );
mulv( gt1 , hprimetl , vwork2 );
mulv( vwork2 , v2 |, vwork2 );
exc:= not ( overlap( vworkl . vwork2 ) );
1:
excluded := exc:
(" WE PRINT THINGS THAT WILL HELP TO DIAGNOSE THE
CALCULATION 7)
write( 'offset = ’);printv( offset );writeln;
write( "t1 = ");printv( t1 );writeln;
write( 't2 = ");printv( t2 );writeln;
subv( vworkl . vwork2 , numerator );

write( 'numerator =’ );printv( numerator );writeln;
writeln ( ’excluded = ', exc ):
writeln:

end(" ezcluded ')
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(* THIS 1S GLOBAL.] °)

d2,d1,d0 :double;

b0,b1.b2,b3,b4 :bound;
vm4,vm2,v4,v1,v0,v2,v3,v5 v6,v32 voneeigth,width :interval;
vlover2.v3overd.v3over2.vbhover2,v9over2,v18over5,v2over5 :interval;
c0 , ¢l :complex;

status cinteger:
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(* THIS IS GLOBALROUND.I )

oneplus,oneminus,zeroplus,zerominus :double;



(> THIS 1S INITIALIZE.I ~)

procedure initialize;

var

begin

v8 :interval;

v9 :interval;

v18 :interval;
twotominus53 :double;
1 :integer;

twoto53 :double:

status = 0;
cvtid(0.d0):
cvtid(1.d1);
cvtid(2.d2):
cvtib(0,b0):
cvtib(1,b1);
cvtib(2.b2);
cvtib(3,b3);
cvtib(4,b4);
evtiv(—4 ,vm4);
cvtiv(—2 ,vm2);
cvtiv(1,vl);
cvtiv(0,v0):
cvtiv(2,v2);
cvtiv(3,v3):
cvtiv(4,v4);
cvtiv(5,v3);
evtiv(6.v6);
cvtiv(9,v9):
cvtiv(18,v18);

RELATIVISTIC STABILITY OF MATTER-I

initialize

twoto53 = 1;
for 1 := 1 to 53 do
begin

twoto53 := 2 * twoto53;
end:
twotominuzs3 = dl | twoto33:
oneplus := dl1 - twotominusd3:
oneminus := dl — twotominus33:
zeroplus := d1;
repeat

zeroplus := zeroplus /d2:
until ( zeroplus / d2 = d0 );
zerominus := —zeroplus;
divv( vl , v2 , vlover2 . status );
divv( v3 , v2 , v3over2 , status );

203
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end(”’

divv( v5 , v2 , vbover2 , status );
divv( v9 , v2 , vOover2 , status );
divv( v3 , v4 , v3over4d , status );
divv( v18 , v5 , vl8over5 , status );
divv( v2 , v5 , v2over5 , status );
cvtid(32,v32.upper);
cvtid(—32,v32.lower);

cvtiv(8,v8);

divv( vl , v8 . voneeigth , status ):
width.upper := voneeigth.upper;
width.lower := —voneeigth.upper:
evtic( 0 . ¢0 ):

cvtic( 1, ¢l ):

winitwhize ),
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(* THIS 1S ROUNDPROCS.1 7)

function right( var x:double ):double; I‘ight-
var

r :double;
begin

if x = dO then r := zeroplus;

if x > dO0 then r := x*oneplus;

if x < dO0 then r := x*oneminus;

if r <= x then

begin
writeln( x, r };
write ( 'error in right ');
halt;
end:
right := r;
end(" right *);
function left( var x :double ):double: ]eft
var
1 :double;
begin

zerominus;
x*oneminus;

if x = d0 then ] :
if x > d0 then |
if x < d0 then | :
if I >= x then

I

x*oueplus;

begin
writeln( x , 1 );
writeln( *error in left’ );
halt;

end:

left ;= I

end(" left °);
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(> THIS IS STEP.I *)

procedure step( alpha,epsilon,initt,fint,psiin,psiprin:interval; step
var psifin,psprfin :interval; var inconc :boolean);
label
L
var
n integer;,

eps,gamma,beta0,term1,term2.term3,factor,vin,increment,delta :interval;
psl :expansion;
1 :integer;
b2tomnp1,balpha,balphaovereps,bdelta :bound;
berpspr,berrorpsi,bgamma,bin,bnormh.bnormi,bnormk :bound;
bpsin,bpsinm1,br,bresidual,brgamma.brgnm1,brn,brnm1 :bound;
bsum.bterm1,bterm2,bwork :bound;
dden.dden2.dden3 :double;
v2tomnpl,valphaovereps :interval;
normerror :bound;
begin
subv( fint , initt | increment );
expvvml( increment , delta);
psii 0 | := psiin;
psii 1 | := psiprin:
expvv( initt , eps );
mulv( epsilon . eps , eps };
addv( v1 , eps . eps );
divv( vl | eps ., gamma , status );
subv( gamma , vl , gamma );
divv( alpha , eps . beta0 , status );
subv( beta0 , v4 . betaO );
mulv( psil0; , betal , psii2; )
addv( psii2’ ,psi:l' | psi'2} );
negv( psii2i );

divv{ psii2; , v2 , psi'2) | status );

for n := 1 to orderused —2 do

begin
evtiv( n™(n-1) vin):
mulv ( vin . psi n—1 . terml ):
cvtiv( n*( 2*n - 1) , vin );

mulv( vin , psii n |, term2 );
cvtiv( (n=1)*(n—1) - 4 . vin );
mulv( vin , psiln—1, , term3 );
addv( terml , term?2 | factor );
addv( term3 , factor . factor );
evtiv( (u=2)%(n=1) , vin );

divv( factor , vin , factor , status ):
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mulv( gamma , factor , psi n+2 | );
cvtiv( —2*n—1 , vin );

mulv( vin , psil n+1 |, factor );

cvtiv( n+2 , vin );

divv( factor , vin , factor , status );
addv( psi| n+2 | , factor , psi| n+2 | );
cvtiv( —n*n , terml );

subv( terml , beta0 , factor );

mulv( factor , psi| n | , factor );

cvtiv( ( n+2)*(n+1), vin );

divv( factor , vin , factor, status );
addv( factor , psi| n+2 |, psil n+2 | );

end;
psifin := psi| orderused j;
for n := orderused —1 downto 0 do
begin
mulv( psifin , delta , psifin );
addv( psifin , psii n |, psifin );
end;
psprfin := vO0:
for n := orderused — 1 downto 0 do
begin '
mulv( psprfin , delta , psprfin );
cvtiv( n+1 , vin );
mulv( vin , psii n+1 } , terml );
cvtiv( n , vin );
mulv( vin , psi‘ n | , term2 );
addv( terml , psprfin , psprfin );
addv( term2 , psprfin , psprfin );
end;
inconc := false;

absv( alpha , balpha );
absv( delta , bdelta );
absv( gamma , bgamma });
divv( alpha , eps , valphaovereps , status );
absv( valphaovereps , balphaovereps };
mulb( b2 . bdelta , br );
if br.top < 1.0e—-G then
begin
br.top := 1.0e—4;
end:
mulb{ bgamma . br . brgamma );
dden :— dl br.top:
dden := left( dden ):
if dden <= d0 then
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begin
lnconc = true;
writeln ( ' denominator with bound not allowved * );
goto 1:

end:

bnormi.top := br.top - dden:
bnormi.top := right( bnormi.top );
dden2 := d1 — brgamma.top;
dden2 := left( dden2 );

if dden2 <= dO then

begin
inconc := true;
writeln(’denominator in bound H not alllowed’ );
goto 1;

end;

bnormh.top := balphaovereps.top / dden2 ;
bnormh.top := right( bnormh.top }):
addb( b4 , bnormh , bnormh };
mulb( bnormh , bnormi , bnormk );
mulb{ bnormk . bnormi , bnormk );
powerb( orderused—1 , br | brnml );
powerb( orderused , br , brn );
absv( psi[0] , bsum });
mulb( bsum , brnml , bsum };
for i := 1 to orderused — 1 do
begin
mulb( bsum , bgamma , bsum );
absv( psi' 1], bwork );
mulb( bwork , brnm1l , bwork );
addb( bwork , bsum , bsum );
end:
bterml.top := brgamma.top / dden2;
bterm1.top := right( bterml.top );
addb( bterml , bl , bterml };
mulb( bterml , bsum , bterml );
absv( psi! orderused | , bwork );
mulb( bwork , brn , bwork );
bwork.top := bwork.top / dden2 ;
bwork.top := right( bwork.top );
addb( bwork , bterml , bterml });
mulb( bterm1 . balphaovereps , bterml };
absv( psi; orderused | . bwork );
absv( psi' orderused —1 ', bterm2 );
addb( bterm2 . bwork . bterm?2 };



RELATIVISTIC STABILITY OF MATTER-I 209

mulb( bterm2 | b4 | brerm?2 );

mulb( bterm2 ., brnm1l , bterm2 );
addb( bterml , bterm2 , bresidual );
mulb( bresidual . bnormi , bresidual );
mulb( bresidual . bnormi , bresidual );
dden3 := d1 — bunormk.top:

ddens = left( dden3 ):
if dden3 <= d0 then
begin
mconc := true;
writeln{ ’ norm of K too big ');
goto 1:
end;
normerror.top := bresidual.top / dden3 ;
normerror.top := right ( normerror.top ):

powerv( orderused + 1 . vlover2 , v2tomnpl , status };
b2tomnpl.top := v2tomnpl.upper ;
mulb( b2tomnpl , normerror , berrorpsi );
enlargev( psifin , berrorpsi , psifin );
berpspr.top := d1 / br.top;
berpspr.top := right ( berpspr.top );
addb( bl , berpspr , berpspr );
mulb( berpspr , b2tomnpl , berpspr );
cvtib( 2*orderused + 3 , bin );
mulb( bin , berpspr , berpspr );
mulb( normerror , berpspr , berpspr ):
enlargev( psprfin , berpspr , psprfin );

1:

end(" step *);
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( THIS 1S TYPES.I 7)
double = real;
interval = record
upper :double;
lower :double;

end;
bound = record

top :double;

end;
complex = record

re :interval;
im :interval;
end;
list = array|0 .. maxn! of interval;
expansion = array | O .. maxorderpl] of interval;
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real*8 function up(x)
real*8 x,dummyx
integer*2 b(4), oldbl
equivalence( dummyx.b)
dummyx =

X
oldbl = b(1)

if ( dummyx .eq. 0.0d0) then

b(1) = 128
b(2) = 0

b(3) = 0

b(4) = 0

up = dummyx
return

endif

b(4)=b(4)~+1

if {b(4) .ne. 0) then
up = dummyx
return

endif

b(3) = b(3) + 1

if ( b(3) .ne. 0) then
up = dummyx
return

endif

b(2)= b(2)-1

if ( b(2) .ne. 0) then
up = dummyx
return

endif

b{1)=b(1)-1

if( ( sign(1.b(1)) .ne. sign(1l.0ldbl)) .or. ( b(1).eq.0) ) then
write (*,*)'overflox’
stop

endif

up = dummyx

return

end

real*& function down(x)

211
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real*8 x,dummyx
integer*2 b(4)

c
aquivalence( dummyx ,b)
dummyx = x
c
if ( dummyx/2.0d0 .eq. 0.0d0) then
down = 0.0d0
return
endif
c
c observe that we do not do any especial handling of zero.
c We have constructed the other subroutines in such a way
c that down has never to deal with zero
<
b(4) b(4)—1
f ( b(4) .ne. —1) then
dovm = dummyx
return
endif
b(3)=b(3)-1
if ( b(3) .ne. —1) then
dovun = dummyx
return
endif
b(z) < biz) 3
if ( b(2) .ne. —1) then
dovm = dummyx
return
endif
b(1) = b(1)-1
down = dummyx
return
c
c notice that . since this was subroutine was running
c over some non-zero number , it should find something on
c the exponent. so no exception occurs; we can only end up
c with zero but this 1= O.K.
c
end
c
¢

real™8 function right(x)
real™& x
real*® up.down
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if ( x .ge. 0.0d0) then
right = up(x)
else
right = down(x)
endif
return
end

real*8 function left(x)
real*8 x

real*8 right

left = —right(—x)
return

end



