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1. INTRODUCTION

This is the first of three papers on the geometry of KDV. It presents what pur-
ports to be a foliation of an extensive function space into which all known
invariant manifolds of KDV fit naturally as special leaves. The two main
themes are addition (each leaf has its private one) and unimodular spectral
classes (each leaf has a spectral interpretation), but first a bit of background.

Darboux’s transformation: scattering case

Let® Q = —D? + g(x) be a Schrédinger operator on R with potential of scat-
tering class® C7. The spectrum of Q acting in L%(R) comprises 0 < g <  sim-

@ The work presented in this paper was performed at the Courant Institute of Mathematical
Sciences with the support of the National Science Foundation under Grant NSF-MCS-76-
07039.

@ D signifies differentiation with respect to x € R.

® C7is the class of infinitely differentiable real-valued functions vanishing rapidly at +oo.
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ple bound states —k*< - -- < —k; < 0, plus the continuum [0, o) of multiplici-
ty 2. The ground state —k? (if present) has an eigenfunction e, of one sign;
it is removed by the transformation Q - Q — 2D?1ge, = Q~, the bound states
of the latter being the same as for Q with —k? left out. Bound states can also
be added: if —k3Z is any number below spec Q, then Qh = —k2h has positive
solutions /- € L*(—eo, 0] with [$h% = co and &+ € L*[0, o) with [ _h% = oo,
and if ey = (1 — ¢)h- + ch, with 0<c <1, then Q* = Q — 2D?*Ige, has
bound states —k3 < —k3< .- < —k;. This type of transformation stems from
Darboux [1882]; see also Bargmann [1949], Crum [1955], and Faddeev [1964].
It can be expressed in other ways: for example, if e is any positive solution
of Qe = —k’e, if AQ = Q — 2D*Ige, and if p = ¢’/e, then Q = —D* + p’' +
p? — k* while AQ = —D? — p’ + p? — k?, so that the Darboux transformation
A is identified with the Béicklund transformation B of KDV in the form
discovered by Miura [1968], fo wit, B:p' + p* — k* > —p' + p*> — k*. A variant
is to express Q as® (eDe )T (eDe™') — k? and to exchange the factors:
(eDe™Y)eDe )T — k% = AQ; see Deift [1978].

Addition defined

I make two small but important changes in the Darboux transformation: [ in-
sist that —k? be to the left of spec Q and I take for e always h_ or h +, which
was not done before. Let p=(\, =) or (\, +) with A\ = —k? and take
e(x,p) = h-(x) or hy(x) in accordance with this choice. The map

A*: Q- Q — 2D*1ge(x, )

is called addition of p for reasons to be explained presently; unlike the previous
maps of its kind, it is always isospectral, and a great deal more besides, as you
will see. The composition rule®

AP, AP = Q - 2D%Igle(x, py), . - - » e(x, p,)]

shows that addition is commutative, and its specialization to n =2 with
pr=p=(\ £) and p, = —p = (\, F) shows that A~" is inverse to AP, so
that repeated additions produce a commutative group of transformations.
The point now to be stressed is that addition makes sense in a very wide class
of operators: the only thing you really need is that spec Q is bounded away

® The dagger signifies the transposed.
® Crum [1955]. [e;, . - - , e,] is Wronski’s determinant.
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from —oo! The corresponding class of (smooth) potentials is the extensive
function space alluded to before.

Addition explained: Hill’s case®

The name addition has a better justification than its mere commutativity. Let
O be a Hill’s operator with potential of class™ C. Then the spectrum of Q
acting in L*(R) consists of bands

Do M TUIN M TUDG AU -
marked off by the periodic/anti-periodic spectrum of Q:
—0 <Ay <A KM <N SN <A €---Too.

Now the class of Hill’s operators Q having one and the same spectrum as some
fixed specimen is faithfully represented by divisors in real position on the
(nonclassical) multiplier curve M determined by the irrationality

VAT = = I n-2 20w —Now =W,
n=1

I pause to explain what all that means. The points of the curve are pairs
p = (\, =) comprising a projection \(p) € C and a signature (of the irrationali-
ty). The function e(x, p) introduced before agrees, to the left of spec Q, with
the Baker-Akhiezer function of M specified by

a) Qe = Np)e;
b) e(x + 1) = m(p)e(x), m(p) being the multiplier A — \A* — 1;

and
c) e(0)=1.

The pole divisor p; + p, + - - - of e(x, p) is independent of 0 < x < 1. It is the
divisor of Q and is in real position in the sense that its projections fall one
into each of the spectral lacunae: \,; < \(p,) <N,/ (n > 1). The association of
Q to its divisor is 1:1. The latter form an co-dimensional torus J which is (the

© McKean-Trubowitz [1976] is cited for background.
™ €% is the class of infinitely differentiable real-valued functions of period 1.
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real part of) the Jacobi variety of M. In this language, the addition® of p,
with Npo) < \g fo the left of spec Q is effected by the following recipe

Q= wmtpto

= Pt PPt
= o tpi
- Q'

in which —p, is p, reckoned with the opposite signature; p; + p5 + - - - is a new
divisor in real position; the divisors of lines 2 and 3 are equal in J, meaning
that the one comprises the roots and the other the poles of a function of ra-
tional character on M; and Q' = A™Q is the new Hill’s operator with divisor
pi + p5 + - -+ . The proof is presented below; compare McKean [1985].

Note. The special addition (not permitted by the present recipe) of the point
of ramification p, = Ay is an involution® of the Jacobi variety corresponding
to the addition (in J) of the sum of all real half-periods; see McKean [1980].

KDV-type fields

The next item is the connection between addition and KDV. Take p = (A, +)
and p’ = (A + A\, +) for X below spec Q. Then

AYA7PQ = Q — XQ A\ + etc.
with@®
X0 =2G, (N,

G,,(\) being the Green’s function (Q — )\)X;l. The vector field X, familiar
from Hill’s equation,™? appears in this way as an infinitesimal addition. Now
XQ may be expanded as A! —oo in diminishing half-integral powers of —A:

XQ — i )\—(1/2+n)XnQ,

n=1

® 1t would be more accurate to speak of subtraction but never mind.
©, _

A0 The prime signifies differentiation on diagonal.
(Y McKean-Trubowitz [1976/78].
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in which X,Q = ¢q’, X,0 = 3qq’' — (1/2)q"", etc. are the conventional KDV
fields up to unimportant constants, the point being that, irn the full generality
envisaged here, addition provides a substitute for the flows of the KDV hier-
archy even when the latter have no existence.'? This realization prompts the
formation of the additive class produced by closing up the operators Q obtain-
ed from a fixed specimen by repeated additions of points p to the left of spec
Q. In this way, the space of operators with spectrum not extending to —oo
is foliated™® by classes which fill the office of the invariant manifolds of
KDYV, each class having its private addition.

Note. The vector fields XQ = 2G (), taken for A to the left of spec Q, may
be integrated without obstruction to produce commuting, class-preserving
flows. This can be done by explicit formulae involving Fredholm deter-
minants, much as in McKean-Trubowitz [1982]; see the third paper in this
series. Mumford [1983/4] has studied these flows in a special case.

Unimodular spectral classes

It is known that the invariant manifolds of KDV have a spectral basis: for
example, in the scattering case, the transmission coefficient is the invariant
specifying the manifold, while in the Hill’s case, it is the periodic/anti-
periodic spectrum, alias the discriminant, that is fixed. You will ask: what is
the corresponding invariant for the general additive class? 1 present a conjec-
ture verified in three examples cited below. Let dF(\) be the (2 X 2) spectral
weight"® of Q. Then Q is isospectral (= unitarily equivalent) to a second such
operator Q' if and only if the spectral weight of the latter is related to the
former weight as'> GdFGT with a factor G = G()) taking values in GL(2, R).
Now it is easy to compute the spectral weight dF? = GdF G T of APQ: isospec-
trality prevails, the factor being

1 c -1 . e'(0,p)
GO\ = —— h c=- :
» VA Ap) IN-Mp) —¢* ¢ =0,

and you notice that det G = 1! This prompts a definition: two operators Q
belong to the same unimodular spectral class if they are unitarily equivalent and

(12) KDV cannot be balanced with initial data x?, for example.

(13) The usage is informal as the dimensionality of the leaf varies from 0 to oo!
(14) Kodaira [1949] is cited for background; compare art. 2 below.

(13) The dagger signifies the transposed, as before.
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if the factor G takes its value not just in GL(2, R) but in SL(2, R); evidently,
the additive class of Q is part of its unimodular spectral class. I conjecture that,
with the proper technical precautions, these classes are always one and the same.
The second paper of this series verifies this conjecture in three examples:

a) the scattering case CT19;
b) the Hill’s case CT;
¢) if the additive class is of finite dimension.

Under (a), the class has fixed transmission coefficient, the phase of the reflec-
tion coefficient together with the logarithmic norming constants serving as
additive coordinates. Under (b), the periodic/anti-periodic spectrum is fixed
and the class is identified as the real part of the Jacobi variety, the addition
of the latter falling in with the addition of the class. Under (c), the class is a
leaf of the Neumann system and every leaf appears in this way.?”

Second measure class

The two measure classes determining the conventional isopectral class of Q
are typified by"®

spdF = dfy, + dfy,

and®®

VdetdF = Nfi.f4 — (f12)* spdF.

The latter is of special importance in its role of unimodular spectral invariant.
It is always smaller than d\ and the density D = v/ detdF /d\ can be inter-
preted as the modulus of a (mean) transmission coefficient; in fact, it is
precisely |sy;| in the scattering case. The evaluation of the gradient:

dlgD
0q(x)

hints at an attractive connection between the unimodular invariant and the
vector fields XQ = 2G.,()\), but this has not been fully understood.

= —the real part of G, (A\+~V-10+) if D>0

6 g = —D? is the simplest instance; it is settled in item 7, art. 5.
a7 McKean [1979] and Moser [1978] are cited for background.
U9 gF = [df,:1 <4,/ < 2].

W =df/spdF (1<i,j<2).
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2. PRELIMINARY SPECTRAL THEORY

I collect for future use a number of standard facts about Q under the sole
assumption that its spectrum is bounded from —co.

Eigendifferential expansions®?

Fix a complex number \ outside spec Q so that Qh = A\ has independent solu-
tions

h-eL(-w,0] with ["|h-|"=e
and

hieel’0,0) with [° |h|?= .

The Wronskian [h_,h+]=h"-h+ —h_h's is always taken as 1. Then
Green’s function (Q — N " = G, (M) is expressed as h-()h+(y) if x <.
Let the bottom of spec Q be placed at 0 for simplicity. The fundamental
matrix

M<X>=tm,~,m=1<i,j<21=[2”—”+ (h-m}

(h-h+) 2h'_-h',

evaluated at x = 0 is analytic in the cut plane C — [0, o0); it is also symmetric
and of determinant — 1. It is real for A < 0; most important, its imaginary part
is positive (—definite) in the open upper half-plane®” and so has the
representation '

imag M(\) = % j:[(x' —a)* + b7 'dF(\)

@0 Weyl [1910] but see Kodaira [1949] for the present more elegant version.
@D Thjs is easily seen from the identity

imag G,,(\) = imagX X [(Q — N ~"YQ — M) "1, =[G, (WG M).
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withA =a++ —1b, b >0, and a 2 X 2, real, symmetric, positive®? spectral
weight

dF(\ = ) = lim imag M(a + V=1b)da = [df,;(N:1< i,/ <2].
blo

The spectral theorem

0= ["NdBOy

is implemented thereby: if E(x, \) = (e, e,) with Qe = \e, ¢;(0) = e5(0) = 1,
and e}(0) = e,(0) = 0, then the kernel of the projection dP(N) is

dBy (N = 2m) T'E(x, N dFONVET (3, N).

Measure classes

The function fi(x) is taken as h_(x)h.(0)if x<Oand as h-(0)h +(x) if x >0
for fixed A = —1, say, to the left of spec Q; similarly, f,(x) is taken as
h_(x)h'+(0) if x <0 and as A’_ (0)A + (x) if x > 0. Then®

[(fis dBOVS): 1< 6,7 <21 = o) 7'\ + 1) 7 2dF(V);

also, the families dBf; and df, together span the whole of L?(R). Now df;,
is dominated by®® df,, and/or df,,, so every spectral measure (f, dBf) is
dominated by

(f1, dBfD) + (f2, coprojection of dBf, upon dBf)) = (f1, dBf) + (f2, dBSf2)
- r(fZ, d‘Bfl)

with r = dfy,/dfy,, i.e., by dfy; + dfy, — rdfi,. The corresponding fop measure
class is typified by the trace sp dF = df;; + df;,; indeed, by the positivity
of dF, |df;,| < Vdfy dfy,* so that |rdf,,| < dfs,, and the vanishing of
J11(8) + f2,(4) — IA rdfy, implies f1;(4) = 0, | f12|(4) = 0, and f,,(A) = 0, in
that order. The top measure class is now seen to be based upon the family

@2 The adjective means that f;;(A) > 0, f,,(4) 2 0, and £2,(4) < f,;(A) f,,(4) for arbitrary sets A.

@9 Kodaira [1949]. The parenthesis is the inner product.

(24)f11f22 >f%2 .

@9 This type of expression always signifies what is must: here, the radical is v/f}, f}, X sp dF,
the primed densities being taken relative to the trace.
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(1 = rdPBf; + dPf;: in fact, the associated spectral measure is just df;; +
df,, — rdfi,. The second class is based upon the perpendicular family

dfy, + (1 = ndfy, df1;
dBf, — dBf,,
A+ dfr = rdfs T dfy ¥y — 1 O
the associated measure being
dfndfn =@ _ SuSn= U

dfiy +dfy, —rdfy,  fiy+fo —rdfi,

in particular, the second class is typified by the measure*®

VdetdF =df, dfy, — (df1n)* =~Nfi1fs — (f12)* spdF.

Note. Masani-Wiener [1957-58] introduced v/ detdF in a different context
and in a different way: it is a elementary fact that the interval function D(J) =
v det F(I) is superadditive: D(A UB) > D(A) + D(B) if ANB is void. This
permits the alternative definition:

L\/det dF = the infimum of the sum of D(J),

the infimum being taken over countable covers of A by intervals 7. This will
be helpful later on.

Unitary equivalence

The main fact about unitary equivalence can now be stated in a convenient
form:®” two operators Q, and Q, are isospectral if and only if they determine
the same top and the same bottom measure classes, or, what is the same, if
and only if their spectral weights are related as dF, = GdFIGT, the 2 X 2
Jactor G = G(N) taking its values in GL(2,R). I could not find the second
criterion stated in just this form, though it is an easy consequence of the first,
which is standard.

Proor. Let Q, and Q, be isospectral. The weight dF; can be expressed as
ODIOT dm with O € SO(2), 2 X 2 non-negative diagonal D,, and a positive

@6 Compare the preceding footnote.
@D Stone [1932].
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(numerical) measure dm. Now as dF, has a similar expression with the same dm,
it suffices to produce G = [g;;: 1 < i,/ < 2] taking its values in GL(2, R) so as
to make D, = GD,G T under the condition that sp D, vanishes simultaneously
with sp D;, and det D, with det D;. The rest will be plain.

Note 1. dF is not intrinsic. The fact is, it depends upon the choice of origin
x =0, and if the latter is displaced to x = ¢, then the former weight dF is
changed to GdFGT with the factor

G [el(c) ez(c)] _

ei(c) e

G is unimodular, so vV detdF is not changed. This already commends it to
special attention.

Note 2. The unimodular spectral class of Q, is the subclass of isospectral
operators Q, having one and the same invariant \/detdF, = /detdF;;
equivalently, the factors G cited above take their values not just in GL(2, R)
but in SL(2, R). The distinction is non-existent at bound states: if dF, =
GdF,GT with G e GL(2, R) at a jump of dF;, then the simplicity of bound
states of Q implies that dF; and dF, are of rank 1. Now G may be chosen from
SL(2, R), as you will easily check.

Side operators

These are employed infrequently and can be skipped for now, as can the rest
of this article. The side operator Q% is the restriction of Q to functions on
the half-line x > 0 vanishing at x = 0; its spectrum is confined to [0, =), in
agreement with the form of its Green’s function

G = e(h+()/h+(0)  (x<)

and the fact that 4. (0) is root-free off the cut [0, ©).*® The imaginary part
of G%.(\) is positive in the upper half-plane, so

lim x~ % imag G%.(\) = imag -+

_2 © r_ 2 21-1 0 r
o he© "7 ol @ P00,

@® p , (0) = 0 off the cut means that 4, is an eigenfunction of the side operator Q% . Then A must
be real and negative, and j:h+ Qh, = )\I:h2+ < 0 violates spec Q C [0, ).
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in which A = @ + v/ —1b, b > 0, and the spectral weight df% is non-negative.
The other side operator of interest is the restriction Q% of Q to functions on
the half-line with vanishing slope at x = 0; its spectrum is likewise confined
to [0, ), with the possible exception of an isolated ground state to the left
of 0, in agreement with the form of its Green’s function

GoN) = —eh+()/h+0) (x<Y)

and the fact that ', (0) = O has at most one (real, simple, negative) root off
the cut [0, ©).?® The imaginary part of G{,()\) is positive in the upper half-
plane, so

he() b

imag Gg,(N\) = —imag W) - -
"

[V = a7 + 67171 dr (),

in which A\ =a++ —1b, b> 0, and the non-negative spectral weight df%
vanishes off [0, «) + ground state, if any. The analogous side operators Q%
and Q% for the left half-line also play a small role below.

Note. The identity for mJ, of the last footnote shows that if 4’, (0) = 0 has
aroot <0, then A"- (0) = 0 does not, and it is easy to deduce that if the ground
state of Q% is below 0, then the bottom of spec Q% is at 0.

Inverse spectral problem

The association of Q to its 2 X 2 spectral weight dF is 1:1. This is made plau-
sible by a count: 2 degrees of freedom in Q, one for (—, 0] and one for
[0, ), versus 3 degrees of freedom in the symmetric 2 X 2 weight, less 1 to
account for det M = —1.%9 The proof is easy, too: dF determines M and so
also

—h'_(0)/h-(0) = (1/my;)(=1 — my,) and A"+ (0)/A+(0) = (1/m;)(—1 + my,),

(29) p'. (0) = 0 off the cut means that A . is an eigenfunction of the side operator Q% . Then A < 0
as before, and

1
2AR- O O = m30) = — [V =0 dfi,(N)

does the rest, the spot signifying differentiation with regard to .
(30) det M = —1 looks like the loss of 2 degrees of freedom but, as the real part is conjugate to
the imaginary, the count is only 1.
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which determine the side operators Q% and Q% by the recipe of Gelfand-
Levitan [1951]. Newton [1983] proves this directly in the 2 x 2 format, of
which the only drawback is that one does not know what det M = —1 signifies
for dF, i.e., one cannot (to date) satisfactorily describe what are the 2 x 2

spectral weights.

3. ADDITION

The letter p, denotes a pair (N\y, =) comprising a projection A, to the left
of spec Q C [0, ) and a signature indicating which function e(x, py) = A -
or A, is to be employed. The operation of adding y, to (the divisor of) Q is
the map

AP: Q- Q — 2D*1ge(x, py) = Q™.
Its simplest properties will be elicited below.

Item 1. ey(x) = e(x, po) cannot vanish so that addition is well-defined.

Item 2. Q = PTP + )\ in which P = eyDe; * and P is its transpose —e; ' De,.
O™ is produced by exchange of factors: Q™ = PPT + No; in particular,
P: h— e; '[h, e;] maps solutions of Qh = \h into solutions of Q"h =\h. The
proof is routine.

Item 3. Ph_ belongs to L*(—oo, 0] if \ is not on the cut [0, «); similarly, Ph .
belongs to L*[0, «).

PROOF. A is typical:®?

x *h,
- j ——D[h+, e]*
0o €

0

X X
h
j |Ph+|2=j [hs,e]*D(h s [eg) =——[h+, eol*
0 0 €o

X

+ O\ - xo)*j Ih.2=reV "1 + 0Q1)
0 0

AT
€

so that either Ph ., € L0, 0) or else (h+ /eg)[h+ , eg]* = re’ ~1? tends to w as

x{ 0o in such a way that r — +o0 and 6 — 0. In the second case,

6D The star means complex conjugate. D stands for differentiation with regard to x.
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|he| "2 =r ?|Phy|? = r~2[Dre” ' + (A = \)*| A+ |1

_ [_’:__{_ \/?9’]@/_—10_’_ (A — N)*

— h2
! ST

! !

r . .
= —¢osf — —sin @ + a summable function,
r r

upon taking the real part. Now the imaginary part of the first formula reveals
that rsin 6 is monotone and bounded so that (rsin #)’ is summable. It follows
that

!

cos @ r sinf . i
———' 7 [2 =2z (rsinf)’ + a summable function
+

is itself summable, so [5|h+| ™% < e, contradicfing 31 +|? < . The proof
is finished.

Item 4. The addition of y, is a unimodular isospectral transformation.

Proor. By item 3, Ph_ and Ph. play the role of 4. and A, for Q, after
accounting for the fact that [Ph_, Ph.] = N — ), is not unity; in particular,
spec Q™ is confined to [0, ), and

W1 [ZPh_Ph+ (Ph - Ph.) taken at x = 0

T N=X | Ph_Ph.Y 2Ph_Y(Ph.y

is the fundamental matrix of Q", permitting the evaluation of its 2 X 2 spec-
tral weight as

dF*(\ = a) = limimag M™(a + v =1 b)da = GdFGT
blo

with the unimodular factor

oo | [ c —1] V)
IN=2 [A=N=¢* ¢ e0(0)

The computation is routine in view of M™ = GMGT.

ExampLE 1. If Q = —D?, then dF()) is the diagonal matrix [\~ /2, A * 2] d)\
and GdFGT = dF, in agreement with D?Ig e, = 0: in brief, addition has no

effect.

ExampLE 2. The proviso that A(p,) lies to the left of spec Q may be essential for
isospectrality, as the example Q = —D? + x* — 1 shows. Qe, = 0 with ey(x) =
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exp (—x?/2) = the ground state, #_ and /. being coincident, and the addi-
tion of p, = (0, +) shifts the whole spectrum 2 units: Q= Q — 2D?*1ge, =
—D? + x*> + 1. Contrariwise, if Q = —D? + a positive compact function,
then spec Q = [0, ©), Qh = 0 has 2 independent positive solutions 2_ =1
near —o and 42, = 1 near +oo, and both additions (0, =) are unimodular
isospectral, as in item 4.

Item 5. The effect of repeated additions is described next. Let p; and p, be
distinct points. The function e(x, p,) associated to Q' is proportional to
e; '[e,, ;] in which e; = e(x, p,) and e, = e(x, p,) are now formed for Q itself.
It follows that

A”AMQ = Q - 2D%Ige; — 2D%Ige ey, 1] = Q — 2D%Igey, €]

The more general formula®?

A, A"Q = Q - 2D%Igle(x, ), . - . , e(x, p,)]

is obtained by induction; in particular, addition is commutative and invertible,
the inverse to A” being 4~ formed with the point —p having the opposite
signature to p but the same projection.

Item 6. A" approximates the identity as the projection \(p) tends to — .

Proor. Let Q = —D? + g(x) and take p = (\, +) for instance. Then D*Ige =
g(x) =\ — (W'+ /h+)?, so what is needed is the development

_ + (%)
h (%)

= (=M% + —;—q(x)(—)\)”l/z + etc. (Al — ).

The idea is to write the Green’s function G, in the form of a Brownian
integral:

") _ [emn Egte D),

G:O()\) == hl+(0) ~Jo

in which E,, is the expectation for the reflecting Brownian motion r(¢): > 0
with infinitesimal operator D?, conditional on (0) = 0 and r(¢) = 0, and L is
the integral [{ g[r(#')] dt'. The computation is localized by checking that paths

GDe,,...,e,] is Wronski’s determinant.
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with 1 < max [r(¢'): ¢’ < ¢] do not contribute to the development. I omit the
routine details.®?

Item 7. Let p be any point (\, +) to the left of spec Q and letp’ = (A + AN, +).
Then A”A~"Q = Q — XQ A\ + etc. with XQ = 2G..(\).

Proor. The composite addition produces Q — 2H’ with®?

H=DIlglh_(x,N),h+0, N+ AN] = Dlg(1 + [h—, I's] AN + etc.)
=(h"hy —h_hY)AN=(h_Qh' — h's Qh_)AN = h_h, AN,

to leading order, by item 5.

Note 1. The vector fields X: Q — 2G/,()) inherit the commutativity of addi-
tion.

Note 2. X appears in item 7 as an infinitesimal addition. This is of par-
ticular interest in view of the fact that, as in the scattering case, G,,(\) can
be developed, as in item 6, in diminishing half-integral powers of \{ — o,
with the conventional KDV fields as coefficients. It follows that addition
commutes with, and shares the invariant manifolds of, the KDV flows when
these have any existence, in particular, addition can be viewed as a substitute
Sor the KDV hierarchy under the sole condition that spec Q is bounded from
— oo,

Note 3. X can be expressed in commutator format as XQ = [K, Q] in which
K is the infinitesimal skew operator®® [(3/2)G., — DG,]G. The skewness of
K is equivalent to the vanishing of

Q- NK + KT)(Q — N =¢gD + Dg — (1/2)D?® —2\D acting on G,,,

which is well known and easily checked. This facilitates the evaluation of the
commutator:

3 3
K, Q1 = KQ =N + (Q = NKT = -Gy = DGy + - Gl + GuD = 2G.

63 McKean-van Moerbeke [1975] will serve as a model.

6% The spot means differentiation with respect to \.

3% McKean-van Moerbeke [1975] misstated this without proof. G is the Green’s operator
(Q - N"'. DG,, is now the operator G, + G,,D not the function G,.
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Note 4. The gradient dG,,(\)/dg(y) = —ny()\) is easily computed; it is sym-
metric in x and y so that in the small, 2G,,(N\) is itself a gradient dH/dq(x),
by Poincaré’s lemma, and the field X has the conventional KDV form XQ =
(0H/dq)'. H is termed an integral. The discussion indicates but does not prove
that the additive class of Q should be determined by fixing the values of these
integrals for every A to the left of spec Q. Unfortunately, the application of
Poincaré’s lemma is only formal in the present very wide generality. The
integrals are morally equivalent to the additive invariant D = \/det dF /d\, or
rather to its logarithm, as attested by item 6, art. 4:

dD/dq(x) = —the real part of G, (+ +V —10+) X D,

but this looks more satisfactory than it really is. For example, in Hill’s case,
G, (s + v —1 0+) is imaginary on spec Q where D lives, and the formula is
without content.

Item 8. Concerns an additive duality®® which exchanges the spectral weights
of the side operators Q% and Q% , and likewise the weights of the side
operators Q% and Q% for the left half-line. The weights are recalled from art.
2: df% represents imag 'y (0)/h+(0), df% represents —imag 4 (0)/A’s (0),
and so on. I take®” the ground state \, = bottom spec Q% to the left of
0 = bottom spec Q% to fix ideas and consider the effect of adding the point
po = (Ao, +). Then A’_(0) vanishes so 4’_(0) does not, and it is the result of
a brief computation that the addition produces a duality of spectral weights:
with m = —h'_(0)/h - (0) evaluated at the ground state, you find

dfs = (N =N~ df%

dr’ - (\ =\ dfs knocking out the weight of the ground state
dfe = (A —X\) " 'df% plus the positive mass m at the ground state
dfe = (N =N\ df2.

The ground state migrates from Q% to Q. A further addition of
po = (\g, —) reproduces Q: in short, duality is involutive. A similar duality
holds if bottom spec Q% = bottomspec Q2 =0. Then e;(x,0) does not
vanish and may be used in place of the former ground state. The computation
is the same.

(% McKean [1985] treats Hill’s case; see also Isaacson-McKean-Trubowitz [1984].
G The spectra of Q% and Q% cannot both extend to the left of 0; see art. 2 under side operators.
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4. UNIMODULAR CLASSES

The present article investigates the unimodular spectral class with special
attention to the invariant v detdF. The fundamental matrix M is written
A+~N-1BwithA=[a;1<ij<2]and B=[b;:1<i,j<2]

Item 1. ~/det dF is independent of the choice of origin x = 0, as noted in art.
2; in particular, the unimodular class is closed under translation.

Item 2. ~/det B is a superharmonic function in the open upper half-plane.

Proor. Let do be the uniform distribution on the perimeter of a circle C in
the open half-plane. The interval function

D(I) = A/ det LB do

is defined for circular arcs I: it is superadditive, B being symmetric and
positive, whence®®

N

v/ det B(center) = D(C) = lim D, = IC\/ det Bdo.
Nt 1

Item 3.
HA=a++-1b) = %j[()« — a)® + b~ '\detdF (\)

is the greatest harmonic minorant of N/ det B; in particular,

v det dF (a) = lim~/det B(a + V —1 b) da.
blo

Proor. The superadditivity employed in item 2 is valid for horizontal lines as
well, whence the interval function

D) = \/detﬂ j [N — @) + b%] ™ 'dF(\)
T JI

formed for fixed a + / —1 b, satisfies®®

G® B is harmonic. C is divided into N equal arcs I,:n < N.
B9 R is divided into small intervals I,. The final step is by routine approximation.
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\det B = D(R) > ED(In)l% [10v = @ + 17 ' VdetdF (V) = H,

so that H is overestimated by the harmonic minorant m of /det B: H < m.
But also, and for the same reason,

LmdasL\/dethaS\/detLBda=\/detF(l)+o(l) as blo

for most intervals I, and as the left side in additive while the right side is
superadditive, so m < H. The rest is routine.

Item 4.
det B = [A*%(0), A (O)][1% (0), h+ ()] = 1 — |[A%(0), h+ (O] < 1;

in particular, N'detdF < d\, and the density D = ~/det dF /d\ is the limiting
value~/det B(\ + ~ —10+) at almost every point of [0, «). The computation
is routine.

Item 5. Interprets the density D = /detdF /d\ of item 4 as the modulus of
a (mean) transmission coefficient, as advertised in art. 1.

DiscussioN. D = +/detdF /d\ = |s;,| in the scattering case; see example 1 of
art. 5, below. The Jost functions f_ and f; and the scattering matrix [s;: 1<
i,j < 2] figuring in that computation depend for their definition upon the
posibility of standardizing eigenfunctions at +oo, as in

f+(x)=s;1exp(N¥N —1kx) + 0o(1) at x= +oo,

but this can be side-stepped, even in the most general case. The trick is to stan-
dardize the functions 2_ and A+ by A_(0) = £+ (0) > 0 for A <0, keeping
[h-,h+]=1; then h_(0) = h,(0) everywhere off the cut [0, ). Now the
harmonic functions m,;, —1/m,,, and m,, have finite limiting values at almost
every point of [0, o), so the same is true of A_(0) = A2 (0), A'-(0) + ~A'+ (0) =
= my,/h +(0), and A"_(0) — '+ (0) = 1/h +(0), and so also of 4 _(x) and A . (x),
independently of xe R, [A_, h+] = 1 being maintained on the cut. The values
h_ and A, from the upper bank of the cut and likewise the values ~* and
h* from the lower bank provide a base of solutions of Qh = \A, so you can
patch them across the cut:

hy
h_

ri h® + rh%

ry h: + rph%

with a matrix [r;:1<i,/j<2] reminiscent of the scattering matrix in its role
of patcher of Jost functions. You read off
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ra = [h+,h%], rp=I[h%,hi]=r3, rp = —[h-,h%],
and —r; 1y, + |rp|* = 1 by item 4, so that the density

\detdF /d\ = lim~/det B =N —r; 1y = V1 — |rp,]?

blo

is seen as the modulus of a (mean) transmission coefficient.

ExampLE. In the scattering case,
h-=c-f-, hy =c+ f+,
and with c_ = ¢ for short, you find —2+/ —1ks;; = 1/c_c, and®®

{ru "12] B [ —1/2 =1k|c|? s$c*/c .
- sy ¢/c* 2+ =1 k|sy )lel?]’

1 I

incidentally, (4k) ™! < |c|*> < 4|s1;|? on [0, ), so that (1 + k%)~ 'lg |c| is sum-
mable and ¢ extends to a non-vanishing Hardy function off the cut.

Item 6. There is a close but untransparent connection between +/det dF and
the vector fields X: Q = 2G4, (N) of arts. 1 and 3: with D = v/ detdF /d\ as
before,

D
i’)q((;\)) = —the real part of G,,(A + VvV —10+) X D on the cut;

compare note 4, art. 3.

ProoF. D is insensitive to translation so it suffices to compute at x = 0. Let Q *
be the operator Q + ¢ X the unit mass at x = 0, with variable —1 < ¢ < 1. This
falls outside the class of operators permitted before but never mind. Now if
the origin is taken at x = 0+, then with H =1 + ch_(0)A+(0),

h*t(©0) = H 'h_(0), h#%(0) = h+(0),
hE(0) = H™ [’ (0) + ch_(0)], h%'(0) = h'4 (0),

while if it is taken at x = 0—, then

h(0) = h-(0), h4©0) = H 'h.(0),
h'(0) = h'-(0), h(0) = H™'[1'+(0) ~ ch+ (0)],

@ON=k%20.
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and it turns out (as it must) that the 2 determinations of det B are the same:
det B¥ = H=?det B. It follows that
"= |1+ (c/2my|™'D
With mu = mll(' + V _1 0+) and(41)

D _ oD*
ag(0)  dc

a 2 c2 -1/2
aC[<1+2 >+be1] D = (a;,/2) D,

as promised. The computation is a bit formal but reliable, so I leave it at that.

evaluated at c =0

Item 7 is a test case. I proposed in art. 1 that the unimodular spectral class
of Q and its additive class must be one and the same thing. I prove it now for
Q° = —D? whose additive class is the singleton QO itself.

ProoF. The spectral weight of Q° is dF° = diag [\~ Y2, \* /2] d\. Let dF be
the spectral weight of an operator Q from the same unimodular class as Q°
so that sp dF belongs to the Lebesgue class on [0, o) and D = v/ detdF /d\ is
the indicator thereof. Then“?

p*D=£J:[()\’—a)2+bz]’ldk', takenat A\=a++/—1b,
™

is the harmonic minorant of v det B, and for any interval 7 C [0, o), ,[1 [[h-, h%]
taken at x = 0 and

a+~—1b*da < 2L(1 —/det B )*»

2L(1 — p*D)

__2b 0 ' 2 27-1 1
= [ da | 10V - + b7 d)

_2% daf (c®+bH lde
sib—j a” lda,
T JI

“Dm i =a,+—-1b,
@2 p stands for (b/7r)[()\’ — a)®> — b7, The star signifies convolution.
@) _rP=1-n1+n<20-r if 0<r<l.
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whence

2
+

. hl_ sk’
1magf [—-— takenatx=0anda+\/—1b}da
I

h-  h%

<j|[h_,h’§,][2daj |h-h.| *da
I I

da“?P

2 daj 4b,; b
<— | — 7 5
7 Jra Jr |myl® by

w -1
=—2—-J‘ﬂ4j‘imag(—l/mu)>< [ij‘ [(C—a)z"'bz]_ldfll(c)] .
T )1 a I ™ Jo

Now introduce the representing measures df% of —imagA’- (0)/4-(0), df%
of imagh'. (0)/h +(0), and df,, of —1/m,;, and make b0 in the preceding
display to obtain @) the bound

o 1
AW - P <2 j aa, j [ij (- a)-deu@] dfoo(@),
T Jr a I| ™ Jo

b) an estimate |df% — df%| < a multiple of a~'?>~/dadf,, in the small,
and c) the conclusion that df% and df% have the same singular part, except
perhaps for different jumps at 0. Now df% and df% have the same non-
singular parts as well: indeed, at almost every point of the cut [0, ), the den-
sities f'- = df% /da and f'. = df% /da satisfy

[h-. A% _,

h'-  hm¥
v+ —f- =limimag | — — = lim
fo—f-=lim g[h- h"i} bl h_h%
in view of the fact that m,; = 2h_ k. has a non-vanishing limiting value and
the estimate at the start of the proof:

2b ( da
<—

Jilh-,hﬁllzﬂ —=o0(1)
I a 1 a

T

as b1 0if I does not extend to 0. Note, finally, that neither df% nor df% can
jump at 0; otherwise, the representing measure dfy, of (1/2) imag [#'s /h+ —
h'_/h_] = imag(—1/m;) has a jump (at 0) so that

—1/my; > a constant + (—\) " fo[0] T as A10,

contradicting the fact that m;,, is positive there. The upshot is that df% = df% ,
which is to say that Q is symmetrical about x = 0. But the unimodular class
is invariant under translation, so the same is true for any choice of origin,
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whence Q = —D? + a constant function, and the constant vanishes because
spec Q starts at 0. The proof is finished.

5. EXAMPLES

ExampLE 1. Scattering case.“? [s,(k): 1 <i,j<2] is the scattering matrix
defined for real k = VX, with values in U(2); it is related to the behaviour at
infinity of the Jost functions f_ and f,, as in the table. For £k > 0, f— and
f+ are the values of #_ and 4 ; along the upper bank of the cut [0, ), except
that [f-,f+] = —2~/ —1ks,,(k) is not unity.

x| —o0 xl 4o
f— Szze—‘/—lkx e—V—]kx+S e\/—lkx
V= _v= N
f+ e 1kx+s12e lkx 5.€ 1kx

The 2 X 2 spectral weight is comprised of jumps at the bound states and a pure
Lebesgue part on [0, «) with density

dF L | 2f-f+ (f-S+)
—— = the real part of [(f- oY 2f fh

d\ ksy;
The additive invariant (second measure class) v/ det dF is readily computed:
it is unchanged by translation, so the entries of the table may be used in place
of f_ and f, with the outcome

J taken at x = 0.

VdetdF Jaet k(1 + real sy eV =1%*)  _imags, eV~ 1kx
dn —imags, e?¥ ~ 1k k~I(1 — realsy eV -1k
=1 =[5y
= |sy].

The KDV invariant manifold is determined by fixing the transmission coeffi-
cient s, which is to say by the fixing the bound states —k; < - - - < —k? and

@9 Faddeev [1966] and/or Deift-Trubowitz [1979] are cited for background.
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the modulus |s;,| = V1 — |s;;|* because s;; encodes just this information:

lglsn(k')l } L k+~N-1k;
dk’
TN — j ];I k—+~— k

also, it is known that the phase s;, together with the logarithms of the norming
constants

s11(k) = exp [

c,-2=r_°w|f+/sulz taken at k=+—-1k; (i<g

serve as (additive) coordinates on the manifold. Now to elucidate the effect
of addition, take —kj to the left of spec Q and let py = (—k3, +) to fix the
ideas. Then ey(x) = e(x,py) = f+(x,V —1ky) = su(\/tT ko) exp (—kox) at
+oo with a similar exponential behavior at oco: in fact, [lgey(x)]” vanishes
rapidly at +oo, so adding p, not only keeps you in the scattering case but also
preserves the KDV manifold in view of note 2, item 7 of art. 3. The effect of
addition upon the coordinates is found by comparison of new eigenfunctions
e; '[eg, f+] to old:

&5 'leg, f+] = €50%e™ %, 5,671 = — (kg + V=1 Ky ¥
at +oo; similarly,
€5 ey f+1 = (—ko + N —1K)spe™ Y~ — (ko + N/~ 1 k¥ 1

at oo, SO

s - - k

27 k0 ko + N1k
A similar rule applies to the bound states, the ith norming constant being
multiplied by (ko + k)(ko — k;) ' (i < g); in particular, repeated additions

Sfollowed by closure produce the whole invariant manifold, as you will easily
check.

ExampiE 2. Hill’s case. Now A_ and/or A, is proportional to the so-called
Baker-Akhiezer function

e(x,p) = e;(x, N) + e; '(1, N[m(p) — e;(1, N]ez(x, N)

taken at the point p = (N, ) of the multiplier curve of Q. The latter is the
Riemann surface of the 2-valued multiplier®® m(p) = A\) — VA%(\) — 1; the

@9 A is the discriminant (1/2) [e,(1,N) + e5(1, N)].
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former is the solution of Qe = N\(p)e with e(x + 1) = m(p)e(x) and e(0) = 1.
The point is that, for N to the left of spec Q, the number A exceeds +1, so
that the multipliers satisfy 0 < m . <1 and 1 < m_ < o, with the result that
e(x, p) belongs to L2[0, o) if m(p) = m , and to L*(— oo, 0] if m(p) = m _ . Now
the KDV invariant manifold may be described either as the class of Hill’s
operators with fixed periodic/anti-periodic spectrum or as (the real part of)
the Jacobi variety of the multiplier curve; moreover, [lge(x, p)]” is of period
1, so addition not only keeps you in the Hill’s case but also preserves the KDV
invariant manifold, just as in example 1. Kodaira [1949] computed the 2 X 2
spectral weight: it is pure Lebesgue with density

dF _ x1/2 [2e2(1,)\) e5(1,N) — e (1,N)
dN 1= 22 |e1L,N) —e(1,N)  —2ei(1,N)

on the bands of spec Q; the signatures alternate starting with + 1. The additive
invariant v/ det dF is easily elicited:

VdetdF  —4e,e, — (e5 — e))*
an 41 — AY

=1 on spec Q;

it determines spec Q and so also the discriminant A, the multiplier curve M,
and its Jacobian J. The use of the word addition can now be fully justified;
it will be a by-product of the discussion that repeated additions ( followed
by closure) are transitive on the invariant manifold, just as in the scattering
case.

DiscussioN. Let p; + p, + - - - be the divisor of Q introduced in art. 1, the
points being the poles of e(x, p) determined by the vanishing of e,(1,\) and
the choice of multiplier 7(p) = e5(1, ) instead of the other possibility e;(1, N),
one such to each nontrivial gap [N\;,\S] (n>1). Now the operator
QO — 2D?1ge(x, p,) produced by addition of a point p, with projection to the
left of spec Q has also such a divisor p}| + p5 + - - -, and the recipe of addition
states that the old (umprimed) divisor with*® —y, adjoined is linearly
equivalent to the new (primed) divisor with « adjoined:

—Po+ P +tptr=00+pi+ps+--- in J.

The proof is divided into several steps.

@9 _y, is the point on the sheet opposite to that of pq.
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Step 1. The points p;, p,, efc. are the poles of the function

S) = e '(1, Mm(p) - ey(1, M),

aside from an extra pole at o« which is detected by the development of f(p)
at \(p) = —oo:

e* —chk

S) = shk/k

[1+ o(1)] = k[1 + o(1)]

if k= 4+v-=N\.

Step 2. The preceding development of f(p) is applied to the operator Q.
The corresponding function is“”

m(p) — e°(1,N) _ m(p) — e, '[e,, €] taken at x = 1
e>(1,N) B e3’(1,)\)

Jo®) =

- C;

its poles are p}, p5, etc. and o, by definition.

Step 3. fy(p) takes the value —c at the points p = p,, p,, efc. of the divisor of
Q and also at —yp, in view of

e ez el atx=1 =ey(l) - cey(l) = m(p)
in the first case and

ley,e at x=1 [eelatx=0 1

eoD) o) e mpg TP

in the second.

Step 4 is to notice that f,(p) = —c has no other roots. This follows from the
evaluation (27r\/j )~ ! j dlg fo(p) = 1 for small circles about p = «; compare
step 1. The upshot is that —p, + p; + p, + efc. and © + p| + p5 + efc. are the
roots and poles of the function f(p) + ¢, which is what linear equivalence is
all about, anyhow.

ExaMPLE 3. Bohr’s case.“® I cannot do so much if Q is only almost periodic
in the sense of Bohr [1932]. Fix \ off spec Q. Then G = G,,()) is an almost

@7 gb0 — ceb0 + g5 ![e,, €5] With ¢ = e/e, taken at x = 0.
“8® Johnson-Moser [1982] and Moser-Poschl [1984] are cited for background.
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periodic function with the same frequency module as Q, and

he = /G exp [:I:(I/Z) j;‘G'ldx'],

by elementary computation®® from which it follows that addition preserves:

1) the almost periodicity,
2) the frequency module,

and

3) the rotation number
r(\) = limx~'imaglg 4 + (x, \) = the mean value of imag — 1/2G off spec Q.
xToo :

ProoF oF 3. Addition of p, changes 4. into e; '[4+, €] so that imaglgh .
is changed by the addition of

imaglg [—:i - 20},
+ 0

and this is bounded off spec Q because imag 4'; /h + is of one signature while
eg/e, is real.

The values of r(s + V=1 0+) on the line are known to determine spec Q
and the frequency module, ®® whence it is natural to conjecture that r and the
bound states (if any) determine the additive class, but this may be naive.
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