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The importance of the symbol homomorphism for the theory of singular
integral equations is an old-established fact. In particular Gohberg [Gol] pro-
ved in 1960 that in a certain algebra of singular integral operators over R” it
is a necessary and sufficient condition for an operator to be Fredholm if its
symbol does never vanish. A similar criterion holds for singular integral
operators on a compact manifold, and has served as the analytical foundation
of the Atiyah-Singer index theorem [ASj], j =1, 3,4, 5. The above are only
two examples of a long list of papers on the subject (cf. for example [Gil],
[Mil], [CZj], j =1, 2, [Sel)).

In all cases mentionned it proves important that the corresponding operator
algebra, as a subalgebra of £(C), for some Hilbert or Banach space &, has
compact commutators. In fact the criterion was proven to be a direct conse-
quence of the Gelfand representation of commutative Banach algebras (cf.
[Gol], [Sel], [CS], [BC1, 2], [Hel], [CHI]).

On the other hand, in some cases of algebras where not all commutators
are compact results were obtained involving multiple symbol chains. For
example in [CS2], [CC1], it was shown that a certain algebra @ of singular
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integral operators on a half-space R”*?! (in the Hilbert space 3¢ = L*(R"*1))
has a two-link ideal chain

0.1) @ D & D X(X),

where & denotes the operator norm closed ideal generated by the commutators
of @, while X (3C) is the ideal of compact operators. The point is that both
quotients @/& and &/X(3C) are function algebras, giving raise to two sym-
bols: (i) A complex-valued symbol ¢, € C(M) is defined for all A € @ over a
certain explicitly given compact space M. Also (ii) a compact operator-valued
symbol v, € CO(E, #) with the class £ of compact operators on the Hilbert
space & = L%(R*) is defined only for E € & on a different (only locally com-
pact) space E. If g, # 0 then A is invertible mod &. The equation Au = fthen
can be reduced to two equations of the form (1 + E)v = g, with some E € &.
Then the compact-valued &-symbol serves to decide invertibility of
1 + Emod X, i.e., the Fredholm property.

In [CE] such criterion was used to discuss the elliptic boundary problem
over the (noncompact) half-space R”* !, Necessary and sufficient criteria in
the form of Lopatinski-Shapiro conditions were obtained (For a detailed
discussion cf. [C1], V).

Similar multi-link ideal chains were obtained for certain algebras involving
Wiener-Hopf operators [Dyl], [Upl], and for an algebra of singular integral
operators over R with periodic coefficients [CMel].

In the present paper we will consider an algebra on a non-compact Riemann
space of the form

0.2) Q=R" x B, dimB = n", n'+n"=n,
with a compact Riemannian space B of dimension n” and metric
0.3) ds® = di* + dp?,

with the Euclidean metric d¢? of R" and the metric dp? of B. Such space will
be called a poly-cylinder.

We will analyze the simplest nontrivial case: The Hilbert space
3¢ = L*(Q, dS), with the surface measure dS of (0.3), and an algebra @ of
operators acting on complex-valued functions, not crossections of vector
bundles. We believe that extensions of our results to LP-(Sobolev-) spaces are
possible, but offer only more complications and are slightly less perfect. (For
similar LP-investigations cf. [I11], [AN1], [LM1].) On the other hand our pre-
sent LZresults may be combined with results of [C2] to obtain straight
generalizations as follows.

(a) (cf. [C2], VIII) Algebras on a general non-compact Riemann space Q
with a finite atlas {Q,,...,Q,]} subordinate partition of unity 1 = ij,
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supp w; C (Zj, such that for each j we have either supp w; compact and Qj
charted on R" or QJ. charted on a polylinder Qj of the form (0.2) and w y contained
in the cqrresponding polycylinder algebra C ; discussed below (with metric of
Q and @’ coinciding in supp ;).

() (cf. [C2], X, 3) Operators acting on crossections of vector bundles on
Q as described under (@), where the vector bundles have to be suitably
restricted at infinity. !

(¢) (cf. [C2],IX) Subalgebras of L*Sobolev spaces JC, over Q, using
A®: 3C — 3C, as an isometry, where A = (1 — A) ™ '/2, with the Laplace operator
A of the metric (0.1).

(d) (cf. [C2], X, 6) More general L2-Sobolev spaces, such as those using an
operator ¢pA*: JC— JC, ; as an isometry, with a function ¢ € C*(2) such as the
spaces W% ; of [LMI], in case of p = 2, (but general real s).

As in the case of the space with boundary R".*! we obtain a 2-link ideal
chain C D & D X(3C) for our algebra C. Again the two quotients /& and
&/X(3C) are function algebras. However the result (thm. 3.2) appears to be
more perfect, for the following reason: A major difficulty in applying the
Fredholm inversion is the matter of checking (quasi-) invertibility of the &-
symbol. While the symbol o, of 4 € C often is directly given as an explicit
function over M, the inversion of (1 + E’) can only be attempted after an &-
inverse B is obtained and E (or v,) is obtained explicitly.

This difficulty is avoided by obtaining an extension of the homomorphism
v from & to € again. Then the two symbols o, and v, of an operator 4 can
be directly obtained. (o, coincides with the ordinary symbol of a singular
integral operator, but v, is defined over E, a space of infinite points, (i.e.
points over infinity of a certain compactification of Q). A necessary and suffi-
cient condition for A € C to be Fredholm is that ¢, # 0 and that v, be inverti-
ble and the inverse bounded on E.

The result is easily applied to certain realizations of a given differential
expression over Q, for certain expressions L. One finds that A = L(1 — A) =2,
for L of order N with suitable coefficients in an operator in €. Thus Z =
= A(1 — AY? defines an unbounded operator and a realization of L on 3C
which is Fredholm if and only if A € C is Fredholm. This clearly makes thm.
3.2 applicable to study the Fredholm property of the realization A. Also the
symbols o, and v, are easily obtained explicitly, using the ¢-Fourier transform
and the symbol of £ as a differential operator. We get o, # 0 if and only if
L is uniformly elliptic.

For a uniformly elliptic differential expression L of order N the y-symbol
of A defines a family {L,O(T): t,€0Q, 7€ R} of N-th order elliptic differen-
tial expressions depending continuously on ¢, (over an infinite boundary Q)
but analytically on 7€ R". (In fact, the L,O(T) are polynomials in 7.)
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A very simple device of Agmon and Nirenberg [AN1] (together with the
(interior) Sobolev estimate on compact manifolds) may be employed to show
that v, is invertible for 7€ R" with large |7|. This (and a result by Gramsch
[Gr1]) implies that the famlly L, (T + i6), i.e. 7v,, is invertible for all real 7
whenever the real 6§ e R" av01ds a certain countable set Z without finite
cluster points. For n’ = 1 this coincides with the result of Lockhart McOwen
regarding the operator e®Le~° (i.e. of L relative to the weighted L? norm
with weight e®). For n’ > 1 the exceptional set depends on the infinite point
to. Thus the set Z, of 6 to be avoided is more complicated, unless one assumes
L,( independent of 1, at each end of Q.

The results on differential operators are discussed in more detail in
[C2], IX, X.

Finally we want to point to a variety of results by Bruening and Seeley [BS],
Melrose-Mendoza [MMI1], Choquet-Bruhat and Christodolou [CBC], all
related in general aim, but different in method and approach. In particular
it is clear that results on the Fredholm index (i.e., an index formula) are im-
plied, as we also shortly indicate in sec. 3.

1. A C*-Algebra on a Poly-Cylinder

First we look at a Laplace comparison algebra with noncompact commutator
on a poly-cylinder @ = R" x B. Here B denotes a compact Riemannian space
of dimension n” with metric dp? = gj dx’dx*. Accordingly, for the metric
and the Laplace operator of Q we get

(1.1)  ds’=d* +dp®>, A=A+4, A, =(g) '9,Vee’ 04

where A, is the Laplace operaztor on B. In (1.1) we are using the Euclidean
metric dt> =dt' +---+dt"" of R" = {t=(t',...,t"): /e R}, and the
Euclidean Laplace operator A, = 2, afi. The summation convention often will
be used from 1 to n”, as will be clear from the context. We set n = n’ + n",
so that  is n-dimensional.

Let JC be the Hilbert space L*(Q) = L*(Q, dS), with the surface measure
dS = dS'dS" = Vgdtdx of the metric (1.1). Let C C £(3C) be the smallest
C*-subalgebra containing the (5 types of) operators

(1.2) ae@f, s()=1t/), A=(1-2)""2
9,;A, DA, D,e®Df, j=1,...,n
Here (1) = (1 + £)"/%; we write @) = C™(B) while D} denotes the collection

of all C*-vector fields on B. Also A is the unique positive inverse square root
of the (unique) self-adjoint realization (1 — A) of the Laplace differential
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expression A. There is a unique such self-adjoint realization because Q is a
complete Riemannian space (cf. [Gal], [CWS], [Chl]). The functions 2 € @ g
and s;(f) in (1.2) represent the corresponding multiplication operators on
functions u(z, x) € 3¢. Correspondingly we denote by @* and D the algebra
finitely generated by C{’)" and the first two kinds of generators, and the linear
space spanned (mod @*) by {1, d,,,9,}, respectively. The operations d,;Au
and D,Au are well defined for ueA“IC?)"(Q), a dense subspace of JC (cf.
[C2], V) and have continuous extensions to JC, as easily seen (cf. also (1.6),
below).

We notice that 3C = 4, ® f, is the topological tensor product of the Hil-
bert spaces £, = L*(R™), and &, = L*(B) (cf. [C1],V,8). Let us write £,
= LK), k= K@K, £, = £(ﬂ) k= 3(2(?1) It may be observed that the topo—
Ioglcal tensor products £, ®£ £, & ®K = X(30), £, ®ﬁ =
&, ® £, =X, are all well defmed C*-subalgebras of £(30), where CK?(SC) C
cCX,, ;'K?, C £X, C £(3C) all are proper inclussions. In.fact, X and X, are
proper closed two-sided ideals of £, , and, of course, X(JC) is a proper closed
ideal of all the others. Evidently £, (but not X, or X ) contains the identity
operator I.

Note that we may write 3C = L*(R", 4,) as the space of all functions over
R" with values in &, = L*(B) such that

[ dtlut, ) < e,

(1.3) Jul? =

by Fubini’s theorem. Correspondingly, if CB(R", £,) and CB(R", £,) denote
the classes of bounded norm continuous functions over R", taking values in
£, and &£,, respectively, then a function ¢ € CB(R", £,) has a natural inter-
pretation as an operator in £(JC), defined by u(t, «) — ¢(¢)u(t). Moreover,
this operator is in X, whenever ¢ € CO(R, £,) (cf. [C1], V, 8). (We indicate a
proof of this fact in cor. 1.4.) This establishes an isometric *-isomorphism of
CB(R; L,) (as a Banach algebra with norm

(1.4) sup { |A(n)[: 7€ R},

where |A(7)] is the norm in £,) into £(3C). In the following we will use this
interpretation of functions as operators in £(3C). '

In order to find the commutator ideal & of the unital C*-algebra € with
generators (1.2) we conjugate the generators with the Fourier transform in the
t-direction. In detail we have
(1.5 Fu() = @m~"" [ e "u@dt,

Rn

which defines a unitary operator of #,. By conjugation with F, we, of course,
mean conjugation with F, ® I, where I denotes the identity operator.
(However, we will write this as F, 1AF,, for A € £(3C).) First consider the



220 H. O. CorDEs

F-conjugations of A, D,;A, p A:
(1.6) AT =(n?-a) "% 7A@, DA (),

with D,; = —id,; and above interpretation of a function as operator.

The manifold B is compact, therefore A~ (7) of (1.5), for fixed 7, as operator
in £(#,), is compact (cf. [C2], III, cor. 3.9.). Moreover, this defines an operator
function A™ (7) € CO(R, £,), which even is analytic, in norm topology of £(4,),
and we have [A~(7)| < {(7) 'aswellas [A~(0)"'A~(7)| <1, so that TA7(7),
D, A" (1) = (D, A)(A; 'A™ (7)) are functions in CB(R", £,) C £(3C), confirm-
ing the boundedness of the last two types (1.2). Also, writing A, = A~ (0),
T(7) = (1 + 7°A%)~ 2, the generators (1.2) correspond to

1.7) alx),  wx, AT,  (r;A)T(1), (D A)T(7),

with p, = F's; and p* = convolution in &,.

Proposition 1.1.  The operator functions AT(7) and |7|' ™ A, T(7), for each
fixed e, 0 < e < 1, are in CO(R, &,).

Proor. Just note that A~ = A, T(7) € CO(R, #,), while T(r) and |7|A,T(7)
belong to CB. All operators are positive self-adjoint, so that A;7(7) =
= ANT(1)! ~“eCO, |7]' A, T(r) = A(|7|A, T(7))' ~“ € CO, as products of a
bounded function and a function with limit 0, g.e.d.

Now we first will describe the algebra generated by the commutators of the
F-conjugated generators (1.7).

Proposition 1.2. A/l commutators of the F-conjugated generators and their
adjoints are contained in the algebra

(1.8) G = CO(R™, K(h) + K(3C) C X,.

Here a function C(r) e CO(R", X(&,)) must be interpreted as an operator in
X, in the manner described above.

Proor. We will use the resolvent integral technique used in [C2], V. Let the
operators (1.7) be denoted by Gy, . . ., Gs, in the order listed (we write ¢ = ¢,
9,=0,, 7= T etc.). Clearly [Gy, G,] = [G;, G4] = 0.

We get (D,A”)* — D¥A~ = [A~, D] e CO(R", ), by (1.14) below, and
adjoint invariance of I g. All other generator (classe)s are self-adjoint.
Hence the adjoint generators need no special attention.
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For the commutators [GJ., G, j #2, we use the well known resolvent
integral representation of A~ = G;: Let R(s) = (s + (7> — A,)~'. Then we
have

1.9) Gy=A"(1)=AT()=(n*=A) > =1/r J:R(S) ds/Vs,

(cf. [C2], IX, (5.13)), with a norm convergent improper Riemann integral, in
the algebra £(4,). We get

(110) [039 GS] = [A~ s ‘Dx]A~ s [G4a GS] = [A~ s Dx](TA~),

where A™, 7A™ € CB, so that it suffices to show that [A™, D,] € CO(R, £,).
Similarly,

[Gy, G5l = [a, A", [Gy, Gal = (7A7)A™ ~'a, A7),

(1.11) _ e _
[GI’ GS] = prA + (D\'A )(A [axa A ])s

with p, = [a,, D,] € C*(B). Accordingly we also must show that A~ ~'[a,, A" ] €
€ CO(R, £,). Both these facts are consequences of prop. 1.3, below. Before we
discuss it we turn to the commutators [G,, G,]. There we find it practical to
work without the Fourier transform (1.5), writing

(1.12) A=1/x J':S(r) driNr, S =(+1-4A,-A4)""

Instead of «diagonalizing the ¢-variable by using the Fourier transform» we
will consider the x-variable diagonalized later on. Let A ;= F,Gth'I be the
generators (1.2). Then we have

(1.13) [4,,A] =pA+ @0V, [4,A]=DAV,
V=A""[A,,4,], p,eC”.

Note that p,eCO(fR”') hence p,A e X(3C), by a well known result (cf.
[C2], 111, thm. 3.7). We claim that all 3 commutators [A,, A;], [ = 3,4,5, are
in J(JC). Again this is a trivial consequence of prop. 1.3 below, so that all
of prop. 1.2 has been reduced to prop. 1.3.

Proposition 1.3. For e with 0 < e < 1 we have
(1.14) A~ "'"a, A" 1€ CO(R", &), A~ "D, A" 1€ CO(R", &),
(1.15) A~ s (1), Ale K(30),  s,(0) = £/<t>

Remark. As a consequence of prop. 1.3 the algebra’ C satisfies condition
(m,) of [C2], VIII, 3, as required later on (cf. thm. 2.3).
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For the proof of prop. 1.3 we use (1.9) for
(1.16) A~ 1 G,, Gyl = 1/ f:A” ~17¢R(s)L,R(s) ds/Vs,

L, = [a(x), A,]. The integrand in (1.16) is a norm-continuous (even analytic)
function F(s, 7), with values in k,. Indeed, one may write

(1.17) F(s,7) = (A~ "' RG)L, A )A] 'R($s)/Vs),
and use the estimates
(1.18)  [A;"R(@| <A +s+ 7)1, JA™""R(s)] < (1 + 5271,

0 < 9 < 2, easily derived from the spectral decomposition of the self-adjoint
operator —A, > 0 of 4,. Note that L, is a folpde on B independent of s, 7, so that
the second factor in (1.17) is a constant in £(#4,). Analyticity of the first and
third factor is a consequence of analyticity of the resolvent R(s). These fac-
tors are O((1 + $)“~ P?)and O(s = 2(1 + s5) ~'/?), respectively. Thus F(s, 7) =
= O((1 + s)~'*“2/\s) uniformly for all 7e R"". Also both factors are in £,
since B is compact, insuring the compactness of the resolvent R(s) of the Laplace
operator A, ([C2], 111, thm. 3.1). This implies existence of the improper Riemann
integral (1.16) in norm convergence of £(#,) and uniformly so, for 7€ R"". Thus
the integral is in CB(R", £,). (For more detail in such a proof cf. [C2], V, 3).
Moreover, since 0 < € < 1 is arbitrary, one may use this for e + 6 < 1, with
some 6 > 0. This gives a factor A~° e CO, whence the first (1.14) is CO, not
only CB.
Similarly we may use (1.9) for

(1.19) A” ‘(Do A7) = 1/m [T(A™ A7 'RENALD, AJANAT RN/,

where the integral exists for analogous reason. (Now the second factor contains
the second order operator [D,, A,] over B so that again the factor in a constant
in £(4,).)

For (1.15) we use the other resolvent integral (1.12), for

(1.20) A™'"9[s(?),A] = 1/7 j:A-"fS(r)MIS(r)dr/x/i-', M, = [s(t), A

Now, with respect to an orthonormal base of the Hilbert space 4, consisting
of eigenfunctions of the self-adjoint operator A, the operator S(r) is
diagonalized, with respect to 4,, in the tensor product decomposition of 3C.
Its diagonal components are

(1.21) S =0+ —-4)"",
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with the eigenvalues )xf of the positive self-adjoint operator A, on B. In
analogy to (1.18) we conclude that, with A, = (1 —A)~ "2,

(1.22)  JA7TS,()| <A +r+ N2 [ATIS() <A+ 7P

forj=1,2,...,and A, = (1 = A)" "% A = (1 + A7+ 4)" "%
Notice that the entire relation (1.20) is «x-diagonalized», i.e., decomposes
into a set of countably many relations, involving A{ and SJ. instead of A,

J=1,2,... . Again one may write the integrand Fj(r) as a product of three
factors:
(1.23) Fi(r) = (™' S;00)(M M)A 'S, () /NT),

where the second term is a constant in £(JC). For the first and third term we
get estimates O((1 + r)“~""?) and O((l + r+ X))~ 2/Vr) = O((\) ~°(1 +
+ 1)@= D2p= 12y for any 0 < 6 < 1.

Thus

(1.24) IF{9)] = O((\) R T (R

The right hand side is integrable, as long as € + 6 < 1. The integral f Fy(r)dr =
=G is an operator in X(k), and we get

(1.25) IC,l = O\, 9.
Accordingly the operator (1.20) corresponds to a diagonal matrix

(C0Di,1=1,2

with diagonal components converging to 0 in norm. This indeed implies that
(1.20) belongs to J(3C). (It is limit in £(3C) of the sequence of diagonal
matrices 7, obtained by setting all C,Jj> k, equal to zero, while the matrices
T, are in X(k)® F(k) C K(h) ® X(h) C.XK(3C), with the class F(k,) of
bounded operators of finite rank over #,.) This completes the proof of pro-
position 1.3.

yae s

Corollary 1.4/1\. The C*-algebra G" and its F, . _conjugate G are subalgebras
of X, = £, Xk,

Proor. It is sufficient to show that CO(R", &,) C X,. For any orthonormal
basis {d)j:j =1,2,...}, and the orthogonal projection P, onto the span of
{by,...,0,} we get uniform convergence P,C(7)P, — C(7), 7€ R, for every
C(7) e CO(R"™, X (k,)). But the operator P,C(7)P, is a finite sum of operators
(d{i)<d>1)cj,(7), c (1) e CO(R). Thus P,C(7)P, € k,, and the limit C(7) as well,
g.e.d.
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Proposition 1.5. The commutator ideal GO of the C*-subalgebra of £(3C)
generated by the operators of the form G,, G, Gs contains the algebra
CO(R™, &,).

Proor. For a moment consider only the C*-algebra ® generated by G, G;,
and Gs. By virtue of the isometric isomorphism mentionned initially in this
section, the generators of ® belong to the function algebra CO(R", £,).
Hence the algebra ® may be interpreted as a subalgebra of CO(R", £,). For
a fixed 7 = 7€ R" the values (BTO = {A(7y): A(r) e ®} form a *-subalgebra
of £,. It is clear that &, is a *-subalgebra of the C*-subalgebra C; of £,
generated by the values of the functions Gj, Jj=1,3,5 at 7, i.e., by the
operators

(1.26) ap AT (7) = (=A, + (1dP) 72, DA (7p),

where a, and D, run through all the functions (folpdes) over B. Moreover, C,
evidently is the closure of 63 . Also C, 1s just the minimal comparison algebra
in the sense of [C2], V, 1 generated by the triple { B, —A, + {742, ds}, on the
compact manifold B. By [C2], V, lemma 1.1, it follows that (‘3,0 and even its
commutator ideal contain all of £,. But commutators in C, , are compact, since
B is compact. Therefore the commutator ideal of C, equals £,. Since that com-
mutator ideal is the closure of the commutator ideal 800 of the finitely generated
algebra, we must have 8,0 dense in &,. On the other hand 8,0 clearly is contain-
ed in the commutator ideal of the algebra ®,,, and even in the localization
Q(‘) at 7, of the commutator ideal GO. Thus we conclude that the algebra GO,
of «values» of GO at 71is dense in £,, for all 7€ R

We also find that the algebra @& contains A~ (7), hence also contains every
f(z, A, for a general fe CO(R" x [0, 1]), by the spectral theorem and the
Stone-Weierstrass theorem. Hence ® contains all functions y(7)E,, with
Y € CO(R"™) and the projection operators E, of the spectral family of A '
Note that E, are of finite rank, and that EN-1, strongly, as N — co. Since
GO is an ideal of ®, it follows that GO contains

(1.27) GO, = [UDNEGAE: A(71) € GO, Y(7) € CO(R")}.

But GO is a self-adjoint algebra of (finite) j, X j,-matrix-valued func-
tions, separating points in the following sense. For every 7,, 7, € R", € > 0,
and j, X j,-matrix P there exists K(7) € GO, such that K(7,) =0 and
|K(7;) — P| < e. (This follows from the above.) By the matrix version of the
Stone Weierstrass theorem this implies that GO, = CO(R", £(€’V)). Since
this holds for all N we find that GO contains all these matrix algebras. But
for a general A(r) € CO(R", &,) we get A, (1) = EyA(1)E, € CO(R", £(CT').
Also A (1) — A(7) — 0, in CO(R™, &,) (with the norm (1.4)), since A(7) is
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compact and E), converges strongly to 1. since GO is closed we conclude that
A(7) € GO, so that indeed CO(R, &,) C GO, q.e.d.

2. Commutator Ideal and Symbol Spaces of the Cylinder
Algebra

Returning to our task of describing the commutator ideal & of the cylinder alge-
bra @ we conclude from prop. 1.5 and [C2], V, lemma 1.1 that & contains the
C*-algebras GOV = FIQGF;’ and X(3C). It is convenient again to work with
the F-conjugated ideal &" = F,” '&6F, containing the sum GO + X(3C) = 80
(which in turn contains all the commutators of the generators G,ji=1,...,5).

Notice that SO is invariant under left and right multiplication with the
(functions in CB(R, #,)) G,, G;, G4, Gs, but not under multiplication with G,.
Accordingly 8" must be properly larger than $0.

Specifically G, = s,(D) is a singular convolution operator with Cauchy-type
singular integral and kernel B= sj‘.’, so that a product K(7)G,, for
K(7) e CO(R"™, &,), appears as an infinite matrix of singular integral operators
on R", if we introduce some orthonormal base of &,.

Theorem 2.1. Let 8Q be the C*-algebra of singular integral operators over
f, generated by the multiplications in CO(R"), and the operators a(M )s;(D,),
aeCOR™), j=1,...,n" Z"hen the ideal €" coincides with the topological
tensor product 8Q, = SQ ® £,.

Proor. Notice that 8Q coincides with the minimal comparison algebra of
the triple {R", dt, 1 — A} (cf. [(;2], VI). Thus it contains the compact ideal
£, of £(4), and 8Q,, contains £, ® k, = KX(3C). Therefore it is trivial from the
above that 8Q., contains all the commutators [Gj, Gl,j,I=1,...,5and that
it is a closed *-ideal of @. Hence we have &" C 8Q... To show equality we
introduce a fixed orthonormal base ¢, ¢,, ... of the space 4, and first con-
sider K(7) € GO such that K(7) takes span {¢,,..., ¢, ]} into itself and its or-
thogonal complement to 0, for all 7. Thus the infinite matrix vanishes outside
its first V rows and columns. Let CO,, denote the subalgebra of CO(R™ , £,)
of all such finite matrices, for a given fixed N. Clearly CO, is isometrically
isomorphic to CO(R", £(C")).

Now we observe that K(7) and L(7)s(D,), with K, L € CO,, belong to &", and
generate the algebra 8Q,, = 8Q ® L£(CM), foreach N =1,2, ... . Also we again
find that 8Q, is the norm closure of U 8Q,,. Therefore indeed §Q., C &", q.e.d.

We now come to our main task: The description of the symbol chain of the
cylinder algebra ©. First let us look at the ideal quotient &/X(3C). In that
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respect we observe that the algebra $Q is a subalgebra of the algebra 89 of
singular integral operators on R" generated by S;=sD) = (n%), J=
=1,...,n’, and the multiplications with functions in C(B"), with the «ball
compactification» B" of R", having one infinite point in each direction
o - to, |to] =1 (cf. [C1],1V, 1, problems). The special comparison algebra
89 C £(k,) has symbol space

(2.1 M, = {(t, ) e C(B" x B"): |t] + |7] = =},

(cf. ex. (A) of [C2],V,4, or [CHel]). The subalgebra SQ of 89 consists
precisely of all operators in 89 with symbol vanishing at |7| = o, as follows
from the Stone-Weierstrass theorem, looking at the symbols of the
generators. {Note that the generators are written as multiplications by func-
tions of the variable 7 and convolutions by functions of 7 as well, since we
consider the F-conjugated ideal &". Accordingly we have ¢ and 7 reversed,
compared to the normal notation for space and momentum coordinates.) It
follows that 8Q /4, is isometrically isomorphic to the function algebra CO([E)
with the locally compact space compact space

(2.2) E=My=((t,DeM|t] = o, |7] <o} = 8B" x R".

In case of n'=1 this space is a disjoint union of the two sets
{o} xR=E" and { -} x R=E*. Both E* are copies of R, with the
variable 7 running over R. In the general case #’ > 1 the space [E is connected,
and is a product of the infinite sphere 9B" = B"\R" with R".

Clearly this also is just the wave front space R", but with ¢ and 7 inter-
changed. We have proven the following result:

Theorem 2.2. The quotient algebra &/X(3C) is isometrically isomorphic to the
Sfunction algebra CO(E, &,), so that & is a C*-algebra with (compact operator
valued) symbo!, with symbol space E. In the special case n’ = 1 we have

2.3) CO(E, #,) = CO(E™, &) ® CO(E™, &,).

The symbols of the generators of & are given as compact operator valued
Sunctions of (t, 1), for t € dB" (i.e., t = o - Ly, ty€ R", |ty| = 1) and 1€ R", as
Sfollows:

LetA;,j=1,...,5, bethegenerators (1.2) of C, in the order listed (so that
G, are their Fourier transforms). Then [A}, A;] = 0 = [A3, A;]. The symbols
Yiay 4,0 Yia, 4, 9r€ independent of t, as t € IB"', the value given by the terms
of (1.10), respectively, where A~ (1) = A, T(7), while the commutator [A~, D,]
is obtained from the resolvent integral from (1.19). Szmz[arly Y, 4 »

= 3,4, 5, are independent of t, as |t| = ©, and, for € R", their values are
gwen by (1.11) and the resolvent integral (1.16).
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Also, forj # 2, the symbol of a product A;[A,, Al orlA,, A |1A; is obtained
by multiplying v, A with the corlespondmg Sunction G; of (1.6), Jrom the
left or right, respectwely Also, forj = 2, the symbols of rhese products equal
the product of Vi, 4 ](T) with the value of the function s(t) (extended con-
tinuously to dB"™) at t. More generally, for every function be C(B") the
operator b(t)[A,, A}l € & has the symbol

2.4) T =0y, (s k2.

Next we turn to the discussion of the quotient C/&, i.e., of the symbol and
symbol space of C.

Theorem 2.3. The C*-algebra C /& is isometrically isomorphic to the algebra
C(M) of continuous complex-valued functions over a compact space M, called
the symbol space of C. Here M is (homeomorphic to) the bundle of cospheres
with infinite radius of the compactified poly-cylinder B" x B considered as
a compact C-manifold with boundary (i.e., the product B X B of the unit
ball B" = {teR":|t| =1} in R" with the compact manifold B).

Let Ay, ...,As be the generators (1.2) again. Then the C-symbols o, =
=0, ¢, x, T, £), i.e., the functions in C(M), associated to A by the above
zsomorphzsm are given as explicit functions of (t,x, 1, £) as jollows

@5 0A1=a(x), o =t/{t), T = 0.

D e i/ D g, = G+ 1ED,
with
2.6) CE = @ mgE)? Dx = b9, + px),

in local coordinates of B, where t € B"', x € B, while (1,£) € S® .. x> the cosphere
at (t, x) with infinite radius. (Actually the last two symbols are the limits of
the full symbol quotients

2.7 T/(L+ 7+ €02, B0+ p)/( + 7 + €)Y,

as (1, £) is replaced by (o7, p§), and p — .)

Proor. We may just apply the general results of [C2], VII, first verifying the
assumptions. Let us shortly summarize these facts. First of all every symbol
space of a comparison algebra contains the wave front space W, normally
identified with the bundle of unit spheres in the contangent space 7*Q of the
underlying manifold Q (cf. [C2], VI, thm. 1.5). The space W is an open subset
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of M. It precisely coincides with the set of points (x, ¢, 7, £), with |f| < .
Essentially this follows whenever € can be shown to contain all Cj-functions
and all operators DA, for a general first order differential expression with
C*-coefficients and compact support.

In order to study the points at || = c we require the compactification P*Q
of T*Q induced by the formal symbol quotients (2.7) together with the func-
tions a(x), ae @}, and #/<¢), and (1 + 7° + |£|*)~ /2 (in other words, by the
formal symbols of the 5 types of generators (1.2)). (That is, P*Q is defined
as the smallest compactification of 7*Q onto which all above functions can
be continuously extended.) It is readily verified that P*Q is given as the com-
pactification of 7*Q obtained by adding the infinite sphere {oo(7, £): |rl2 +
+ |£]* = 1} to each fiber T}, of the cotangent bundle 7*Q¢, of the compac-
tification Q = B" x B of Q. In other words, P*Q is the disjoint union of all
balls {(¢,x)} X B” of ininite radius, as (z, x) € Q°.

Moreover, Q° coincides with the compactification 9, 4 of Q defined by the
functions a(x), 1/{t) € C*(Q), introduced in [C2], VI, and the algebra C
satisfies conditions (/77), and (mj),j =2,3,4,5,7. (We noted before that (m,)
is implied by prop. 1.3. Cdn. (m;) is trivial: We have A € C. Cdn. (), first
used by McOwen, requires that the functions

2.8) P> and g, (x)b/(x)b"(x),

are in @*, for every D, = b/(x)d_, + p(x) e . This again is trivially true,
since @ contains all of C*(B). Furthermore the conditicns (m)) involve
some separation conditions which can be satisfied by enlarging @* and D
in such a way that the generated algebra C remains the same. Details are left
to the reader.

As a consequence we may apply [C2], VII, thm. 3.6. The conclusion is that the
symbol space M of @€ is a compact subset of the boundary aP*Q = P*Q\ T*Q
of our compactification P*Q, containing the wave front space W, i.e., the
bundle of cospheres of infinite radius over Q.

Since M is compact, it must contain all points of the infinite cosphere bundle
over dQ° as well. Thus it remains to be shown that no other point of dPP*Q is
contained in M. In particular none of the points |¢| = o0, 7> + |£|* < ©© can
be contained in M.

This, on the other hand, is a consequence of [C2], VII, thm. 4.2. To in-
dicate at least the idea, we find that A € &, for our present algebra, while the
formal symbol of A is (1 + 7> + |£|*) ™%, i.e., is # 0 for the latter type of
points. Hence such points can not be in M, since the symbol of A € & must
vanish, while thm. 3.6 implies that symbol and formal symbol coincide for the
points of dP*Q which are in M.

This completes the proof of thm. 2.3.
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3. Extending the E-Symbol to the Algebra C; a Fredholm
Result

Our results on the symbol chain of the algebra © are not yet practical for an
application. Note that the C*-algebra CV = /X (3C) has the closed two-
sided ideal &Y = §/3(3C), and in thm. 2.2 we proved & isometrically
isomorphic to the «function algebra» CO(E, £,). Now it will prove useful to
look for an extension of this isometry mapping the left regular representation
of @Y on &Y into the function algebra CB(E, £,) D CO(E, &,).

To be more specific, every 4Y = @ + X(3C) € €V induces a continuous
operator T,,: & — &, by left multiplication 7, E" = AYE", EY € &". Clearly
this defines a continuous algebra homomorphism @V — £(8V), called the left
regular representation of €Y on &Y.

We claim that the linear operator 7,y of the B-space &" has a natural
isometric representation as a function in CB(E, £,), which coincides with the
symbol v, whenever 4 € &.

Since it is clear that §¥ = §/X is an ideal of @/X = @V it suffices to
observe the action of the generators of C¥ on §-symbols v, € CO(E, &,). Here
we again look at the Fourier conjugated generators G; of (1.7). In the order
listed G; = a(x) is given as multiplication by the L,-valued function a(x), cons-
tant in ¢, 7; G, = 5;(D)) acts on CO(E, k,) as the multiplication by the scalar-
valued function s,(e?,). For Gj, Jj=3,4,5, we find the multiplication by
A" (1) e CO(E, k), 7,A7 (1) € CB(E, k,) and DA™ (1) € CB(E, £,), respective-
ly. All the above was discussed in thm. 2.2.

Thus we now extend the isometry vY:8Y — CO(E, #,) induced by the
&-symbol v to a homomorphism from the algebra @°Y generated by finite
adjunction of the cosets of (1.2) by assigning to AJ\.’ the function just
designated for GJ.. Let the extension be called v¥ again, and let v still denote
the lifting to the corresponding dense subalgebra of C.

Note that vAi not only is in CB(E, £,) but even in CB(E, C,), with the
C*-algebra C, C £, of singular integral operators over B, the unique Laplace
comparison algebra of B (cf. [C2], VI, 3).

The map 7 is well defined: The assignment A< VAI_, Jj # 2, is directly given
by F,-conjugation and the isometry CB(R", £,) = £(3C) of (1.4). This trivially
extends to an isometry C* — CB(R", @,) of the C*-algebra C* C € generated
by A,, [ # 2. Moreover the algebra CB(R", @,) does not contain compact
operators # 0: If A(7) # 0 near 7 = 74, then {¢(7)w(x): d>eC(‘,°(9‘L,n)}, for
A(ro)w # O near I, | defines an infinite dimensional subspace of JC on which
the operator A(7) is bounded away from zero. Thus the isometry C* — CB
induces a *-isomorphism @*V, CB, i.e. also an isometry C *V — CB(E, C,), the
functions in CB(R", @,) to be considered as functions over E constant in
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t. The general (F-conjugated) element of C°Y then is a finite sum AY =
= 2a(D)A,(1) + K(3C), a;€ CS(R™), A(nec” vV, since commutators
[s,(D)), Gj] were seen compact. Clearly, for an EY = E(cot,, 7) € CO(E, k) we
get

3.D AYEY = X a(tg)A ADE(oty, 7).

Also, in view of the fact, that CO(E, &,) contains all operators of the form
d(1)(v){Ww), ¢ € CO(E), v, weh,, it is clear that

3.2) | T,| =sup { |AYEV[|:EVe&Y|EY| =1} =
= sup { H Z”j(wto)Aj(T) “ oty e dB", 7€ ne"’]

which confirms that the map vV is an isometry T(C®) — CB(E, €,). Taking
continuous extension we then indeed get the required isometry, called .v¥
again. We also extend the mapy from & to C, using the chain
'YV
C—-CY—-T(CY)~CB(L,C,
!

3.3)
£(&Y)

Theorem 3.1. The extended map~y defines a continuous *-homomorphism
C — CB(E, C,), with the unique Laplace comparison algebra C, of the com-
pact space B. All functions A(et,, 7) € im v have their C,-symbol independent
of 1. Moreover, there exists a continuous *-homomorphism .:im vy — C(M\
\W) from im v onto the space of continuous functions over the infinite points

(3.4 M\W = [(oofy, X), 0o(7, §): 1y, TER™, |1,] = 1,
(1,9 e T*B, 7> + |¢|* = 1}

of the symbol space M of C (with |¢|* = gjkfjgk) such that
(3.5) 0, |M\W) =u(y,), forall AecC.
In particular we have

(3.6) ker vy = Jo,

where §, denotes the minimum comparison algebra of @ = R" X B, i.e., the
C*-algebra generated by the multipliers of Cy(Q) and the operators DA, with
all first order differential expressions D of compact support (and C”-co-
efficients).

Proor. The first statement was already discussed above, and one finds that
v, , for the generators (1.2) have the C,-symbols
J
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(3.7) a(x), s(x1y), 0, 0, b/(x)/(g"™(¥)£,£,)"?,

in the order listed, with D, = bj(x)DX_, + p(x). All these functions are indepen-
dent of 7, so that the general element in im vy must have the same property.
The minimal comparison algebra J, has the generators

(38) a(t’ x)ap(ta X)A, b(ta X)D”-A, Dx(t)Aa

where a, b, pe C3(Q), and D,(¢) has compact support as well. All these
operators clearly are in ker v, since they may be written in the form A = x4,
with a suitable function x(f) € Cg(R™). Thus it follows that J, C ker v. It is
also known that A € € is in J, if and only if 6, = 0 on M\W (cf. [C2] VII,
2). (This follows from the observation that for such 4 we must have o, , =
= X,()o,, = 0, in C(M), as j = o, where X,(r) = X(t//), X(t) € C5(R"), X = 1
near ¢t = 0, is a sequence of cut-off functions, equal to 1 on larger and larger
subdomains of M. Accordingly there exists a sequence Cje X (3C) such that
[A - ;A - Cj)ﬂ — 0, while we get ;4 + C;€d,.)

In order to define the homomorphism . we first note that y@° = v is
dense in im v, with the above finitely generated algebras C° and €% = C°/X.
Hence it suffices to define such a homomorphism in YYC®'. For 4 € " we
may write v, as a finite sum

(3.9) Y, = 21 a,(®t)A, (1) + C(eoty, YC € COR™, R,),

where the last term corresponds to an operator Ee€ & with o, = 0. On the
other hand, the first term is y-image of A~ = Zaj(t)A_;e C with A7e c*.
One calculates that

(3.10) 0 ,4(0ty, X, (7, £)) = 2] a;(e019)0 4-(x, (7, £)).

Also the restrictions o|C* and v|C* are related by a homomorphism.
o|C* =10(y|C*), defined as follows: For a function A(7) take the

Ft'l-conjugation (an isometry), and then the symbol o, a contraction

map C* — C(M), where the o ', ~are independent of 7, on
J
M = {(t,x, (7, £)): t€ B", x € B, * + g™(x)E,E, = 1}.
It follows that (with o, = ¢(X), for a moment)

(Bo11) [0, ] yms vy = SUP,, - sUP,, |0 2@ (014} )|
< sup, | _, Sup { u 2. a;(010)A (1) ﬁ :teRYY,
where the right hand side is the norm of v, € C(E, C,). This shows that the

map v, ~ 0, is continuous on ¥(C%. Also this map trivially defines a
homomorphism on ¥(C°), and of course we have (3.5) satisfied for 4 € C°.
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Taking continuous extension we get the desired continuous *-homomorphism
satisfying (3.5) on all of C.

In particular (3.6) implies that o, =0 on M\W (i.e., A € J,) whenever
A ekerv. Or, kery C g,, completing the proof of thm. 3.1.

Now, regarding the Fredholm property of an operator A € € we have the
following result.

Theorem 3.2.  An operator A € C is Fredholm if and only if (i) o ,,(wm) # 0 for
all wm = (t,x, (7, £)) e M, and (ii) v,(e) is invertible in C, (i.e. in £(K,)) for
every e = (l,, 7)€ £, and *yA(e)_l is uniformly bounded on [.

Proor. The conditions are clearly necessary, since a Fredholm inverse B of
A (such that 1 — AB, 1 — BA are of finite rank) also gives inverses o, and vg
for o, and v, respectively, implying (i) and (ii) for A. Vice versa, let A satisfy
(i) and (ii). Since im< is a C*-algebra it follows then that we have
v,00)" '= Yp(f), for f€ E and some P € C. Using the homomorphism . we also
get

B12) o, =tV =0, 0 _pi=t(7,_p)=0, meMW.

In other words we get o, = 1/0, on M\W, and we then can find Q € J, such
that oy = 1/0, — 0, on all of W, since' o maps onto CO(W). Then let
B = P + Q. Conclude that v, = v,, since v, = 0, by (3.6).

In other words we get B

(.13) Yi-ap="V1-84=0
and
(3.14) 0, _ag=0,_ps=0.

Relations (3.13) imply that | — AB and 1 — BA are in kery = g,. But J, is a
compact commutator algebra, and the restriction of ¢ to J, is the symbol of
Jo- Therefore (3.14) implies that 1 — AB and 1 — BA are compact, so that 4
has an inverse mod X(3C) and must be Fredholm, g.e.d.

Remark. Thm. 3.2 has the trivial consequence that the Fredholm index of
an operator A € © must be given by a group homomorphism

(3.15) ind: (o), (V) > Z,

mapping the group of pairs of homotopy classes ({(¢), (¢)) of maps

(3.16) ¢: M = C*, ¢:E—C,, ¢ e CM), ¢ €imy,
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(with group operation induced by pointwise multiplication of functions) into
the additive group of integers. Similarly for operators acting on crossections
of vector bundles over Q. For an explicit index formula, as in case of a com-
pact manifold (cf. [ASj], j = 1, 3, 4, 5) one will have to obtain the homomor-
phism ind explicitely by calculating the Fredholm index of specific operators.
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