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Introduction

The purpose of this paper is to study nonnegative solutions u of the nonlinear
evolution equations

(1.1) C;;—L;=A¢(u), xeR", 0<t<T< +o.

Here the nonlinearity ¢ is assumed to be continuous, increasing, with ¢(0) = 0.
The equation (1.1) arises in various physical problems, and specializing ¢
leads to models for nonlinear filtrations, or for the gas flow in a porous
medium. For a recent survey on these equations see [9].
The main object of this work is to study the initial value problem for (1.1).

Before stating our results, we will recall the known results in the linear case,
i.e., the equation of heat conduction

a
1.2) —a-’ti —Au in R"x (0, Tl
In this case, the Widder theory ([14]) gives a complete description of all the
non-negative solutions of (1.2). To each non-negative solution # of (1.2),
there corresponds a non-negative Borel measure x on R” such that
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1. i =
(1.3) lim jw u(x, 1)0(x) dx j _,6du,

for all continuous functions 6 in R", with compact support. We will call the
measure p the trace of u. Furthermore, the trace u satisfies the growth condi-
tion

(1.4) Jwe‘c”“z/rdu(x) < o,

where C is an absolute constant.

The trace p determines the solution uniquely, i.e., if u, v are two nonnegative
solutions of (1.2) in R" x (0, T'], with equal traces, then u is identicallly equal
to v. Finally, for each non-negative Borel measure p on R", satisfying the growth
condition (1.4) there is a non-negative solution « of (1.2) in R” x (0, T'] with
trace u. Of course, by the uniqueness result mentioned before, this solution
is unique.

Our aim in this work is to find the analogues of the results of the linear
theory mentioned above, for a wide class of non-linearities ¢.

In the case of pure powers, i.e., (1) = u™, m > 1, (1.1) becomes the well
known porous medium equation, which has been studied extensively. In fact,
a combination of the results in [1], [3] and [S] gives the complete analogue of
the Widder theory for this case. To simplify the description of these results,
we will do it for the case when T'= + . Aronson and Caffarelli ([1]) showed
that for every non-negative solution of du/dt = Au™, m > 1 in R” X (0, «),
the initial trace u exists and satisfies the growth estimate

(1.5) %Lxlstu(x) = o(R¥™"1) as R—w.

Furthermore, Bénilan, Crandall and Pierre ([3]) showed that for every measure

pon R” satisfying (1.5) there is a non-negative solution u of du/dt = Au™, m > 1

in R” x (0, c0). Finally, Dahlberg and Kenig ([5]) established uniqueness, i.e.,

two non-negative solutions of du/df = Au™ with equal traces are identical.
The main estimate established in Dahlberg and Kenig [5], was that for all

non-negative solutions of the porous medium equation in R" X (0, ) we have

the pointwise growth
(1.6) u(x, 1) < C,)(1 + [x[»*" 1,
where

n

— =X\ —
C =0, N=goo

as t10.
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These results constitute a very complete generalization of the Widder
theory. However, from the point of view of the general equation (1.1), the
proofs of the results mentioned above are not very satisfactory. This is due
to several facts. The first one is the use of the scaling properties of the porous
medium equation, i.e., the fact that if du/d¢t = Au™ in R" X (0, ), then
v(x, ) = (B/a)™ 'u(ax, Bt) also solves the same equation for any o, 8 > 0.
Another important fact used in these proofs is the existence of an explicit for-
mula for the solution whose initial trace is the 6 mass at the origin. This is the
Barenblatt solution

2 1/m—1
c|x|
- -1 2)/
B(X,t)=t[ (m )"+]"[<a—t2+l/n(m—l)>+:, ’

where a, ¢ depend only on m, n.

In this work we are able to extend the above results for the following class
of non-linearities ¢. We work with continuous, strictly increasing ¢ on
0 < u < + 0, that are positive on 0 < u < + o, with ¢(0) = 0. We also impose
the growth conditions

! 1
O<a<u¢(u)<—, O<u<ow
e(u) a
(1.7)
1+a<u¢(u) for u>u,,
e(u)

for some constant @, 0 < a < 1, and some %, > 0. We will denote by I', the
cass of ¢’s that satisfy (1.7) and the normalization conditions u, = 1, ¢(1) = 1.
For a ¢ as in (1.7) we say that u is a solution of (1.1) in aregion @ C R* X R
if u is continuous, and non-negative in Q, and u solves the equation (1.1) in
the distribution sense.
We will base our study of solutions of (1.1) for ¢’s verifying (1.7), in finding
the analogues of (1.6) for them. Our key estimate is that, in this case, we have

W) e + 1xP),

1.8 <
(-8 14+u

where C,(1) = O(t~ 1 *?) for some & = 6(¢) > 0. (In fact, this is a corollary of
a more precise growth estimate, Theorem 5.5.) Using (1.8) we establish the
existence of a trace u for all non-negative solutions of (1.1) in R" X (0, ). We
also prove that the solution is uniquely determined by its trace. The main new
feature of our approach is that we treat all ¢'s satisfying (1.7) simultaneously.
We thus recover the important scaling properties of the porous medium equa-
tion and we dispense with the use of the explicit form of special solutions of
the equation.
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Finally, in Section 7 we obtain several results about solutions of the initial
value problem. First, the trace pu of a positive solution of (1.1) in R” X (0, ),
with ¢ verifying (1.7), satisfies the growth estimate

1
(1.9) = [ v <x 00 = 0AR?) as R,

where A is the inverse function of ¢(u)/u, u > u,. Also, if p is a non-negative
measure on R”, which satisfies (1.9), there is a unique solution # > 0 of (1.1),
with trace p. We also establish corresponding results for finite strips
R"” X (0, T], T < o0, together with «blow up» results at 7. We refer the reader
to the body of the paper for these results.

We would like to conclude these remarks by pointing out that using the
estimates in this paper, one can carry out the program of [4] to obtain point-
wise limit theorems as ¢! 0 (Fatou type theorems) for non-negative solutions
of (1.1), when ¢ verifies (1.7).

We have also obtained a complete description of the non-negative solutions
of (1.1) in @ x (0, T'], which vanish on dQ, where Q is a bounded Lipschitz
domain C R, and ¢ verifies (1.7). We will return to these questions in future
publications.

In the rest of this work we will restrict ourselves to ¢’s in the class I',. The
general case of a ¢ which verifies (1.7) easily follows from this by dilation and
division.

2. Preliminary Results

In this section we will establish a preliminary version of the maximum principle.
This will be used to give an approximation procedure that justifies our use
of the a priori inequalities that we will establish in Section 4. Set B = {x e R"™:
|x — x| <r}, 7, < 7,, and let Q = B X (7, 7). Denote by d,Q the parabolic
boundary of Q, i.e., 3,0 = O\(B X {7,}).

Let pel’,,0<a< 1, andlet ge C(3,Q) be a given non-negative function.
Consider the boundary value problem

ov ]
@.1) Br T4 i Q

v=g on 4,0

A function v(x, t) is said to be a weak solution of (2.1) in Q, if v e C([ry, 7],
LY(B)) NL*(Q) and v > 0 satisfies the integral identity
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dn (" dn
JIJQ {qo(v)An + UW] dxdt = .L J;B go(g)a—Nda dt

(2.2)
+ L v(x, T(x, 75) dx — L &(x, T)n(x, 7,) dx

for all smooth functions # on Q, which vanish on 8B X [7;, 7,]. Here /0N
denotes the exterior normal derivative on 4B, and o denotes the surface
measure on dB.

We have the following comparison principle for weak solutions of (2.1).
The corresponding result for the case of the porous medium equation was
established in [2].

Lemma 2.3. Let g, g, € C(3,Q), and let v, v, be weak solutions of (2.1),
with boundary values g, and g, respectively. If 0 < g, < &,, thenv, < v, in Q.

Proor. The main difference between this case and the porous medium case
is in the treatment of the situation when the values of the solutions are close
to zero.

Fix s € (11, 5], and let A = (¢(v,) — ¢(v,))/(v; — v,) whenever v, # v, and
A = ¢'(v,) elsewhere. Putting b = v; — v,, we see from (2.2) that whenever
7 is a non-negative test function, with » = 0 and d4/dN < 0 on 4B X [y, S],
then

2.4) J b(x, s)n(x, s)dx < jj b[éz +A An} dxdt,
B ow | 0t
where Q(s) = B X (14, S].

Let now he C5(B), h > 0. For E€ C*(Q), E> 0 in Q, let n = S(E) solve
the equation

an :
EAy + T in Q)
2.5) n=0 on 0B X [r,s]

n(x,s) = h(x), xeB

By the maximum principle, 7 > 0 in Q(s) and dn/dN < 0 on 4B X [74, 5], and
so (2.4) holds. We also have that

1
(2.6) H E(An)dxdt < — j |Vh|* dx,
0 2 J)s
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since

H E(Ay) dxdt = — U Anﬂdx dt
o0 o) 0t
= - j hAhdx + j (x, 7)An(x, 1) + j‘j n&ﬂ
B B o) Ot

<j |Vh|* — U E(An)*dxdt.
B Q)

Because of (2.6), an approximation argument shows that if we only assume
that 0 < ¢ < E < Cin Q(s), then there is an 5 = S(E) with d7/dt, Ay € L*(Q(s))
such that (2.6) holds, a9/t + EAn = 0 in Q(s) and

J b(x, s)h(x) dx < j b[—a—n— + AAn} dxdt.
B o | 9t

Choose now a sequence ¢, {0, and put

_ Je@) = e(w)|

k — ’ Ak=ak+ek.
€ + [V — vy

Letting 7, = S(A;) we have that
2.7 I= LB h(GO)b(x, s) dx < j j o DA — AAn, dxdt

From (2.7), it follows that

2
Max (1, 0)* < <“ A (Any)* dx dt)(ﬁ -4 b* dx dt)
() o  Ax

1 2 A-A) >
<<2 lehl ><Hg(s) Ay brdxd )

Observe that

1 A
—A-AP<A-o)l+e2, and A—qp=——" .
3 ( k)" < ( )" + €k, an O [0 — 03] + €&
Hence
2.8) (A — op)? b2 < €2 A%b? < erA|b|
Ak Ak(|v1 — Uzl + ék)z |U1 - Uz| =+ €k

< Ekl‘P(Ul) - ¢(vz)| < Ce,
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since v,, v, € L*(Q). We also have

€2b?

2.9 A,

s Ekbz g Cék,

and so, letting k — o, it follows that
jB h()b(x, s) dx < 0.

The lemma now follows since # was an arbitrary non-negative function in
Co(B).

Corollary 2.10. Let ge C(3,Q) be non-negative, and suppose that v is a
weak solution of (2.1). Assume also that v is continuous in Q, and that
G, € C*(R" X R) have been chosen so that g, = lea are strictly positive,
& < 8k+1 < &, and g, converges to g uniformly. Let gak e C*([0, )), ¢ €T,

and ¢, — ¢ uniformly on compact subsets of [0,). Let v, solve
/0t = Apy(vy) in Q, with vy = g, on 8,Q. Then, each vy € C*(Q), and v,
converges to v uniformly on compact subsets of Q.

Proor. The existence and smoothness of each v, is well known, since
inf g, = m; > 0 (see e.g. [7]). From the maximum principle 0 < m; < v <
M= max, o8- By the results of Sacks ([11]) it follows that for each compact
subset K C Q, the family {v;} is equicontinuous. If w is locally the uniform
limit of a subsequence of {v;}, then wis a weak solution of (2.1) with bound-
ary values g. Hence, by Lemma 2.3, w = v, which yields the corollary.

Corollary 2.11. Suppose that u'is a non-negative continuous solution of
ou/ot = Ap(u) in D'(Q), R C R X R, where peT',. Let ¢, € C7([0, ©))NT,
and ¢, — ¢ uniformly on compact subsets of [0, «). If

O={(x0:|lx—x|<rrn<t<n)

and Q C Q, there are non-negative solutions v, € C*(Q) of dv;/dt = A (vy)
in Q, that converge uniformly to v on compact subsets of Q.

Proor. It is easy to see that v| is a weak solution of (2.1) with boundary
values v, L0 (see e.g. [1], Theorem 3.1). The corollary follows easily then
from Corollary 2.10.

The next preliminary result that we need is an extension of M. Pierre’s
uniqueness theorem ([10]) to our class of non-linearities I',. The proof by
Pierre requires a modification to include non-linearities ¢ whose derivative is
unbounded near 0.
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Our general uniqueness result will ultimately remove all the extra conditions
in the following lemma.

Lemma 2.12. Let ¢ €T',, and suppose that u and v are continuous, non-
negative weak solutions of 0u/dt = Ap(u) in R” X (0, ), n > 3. Suppose that

sup j [u(x, t) + v(x, )] dx < ,
t>0 JR"

and that u,v € L(R" X [1, ©)) for each > 0. Suppose also that

lim j [ux, ) — v(x, O]n(x)dx = 0
t—o YR BN

for all e C3(R™). Then, u=v in R x (0, ).

Proor. As in Lemma 2.3, set A = (¢(1) — ¢(v))/(u — v) when u # v and
A = ¢'(u) elsewhere. Pick now ¢, in LY(R")NLZ(R")NC*(R"), ¢ > 0, and
sup, €,(x) 2 0, together with er,, e (x)dx 2 0. Define Ay = oy + ¢, where
oy = |eu) — ¢(v)|/(ex + |u — v|). Notice that A, is continuous and strictly
positive on each compact subset of R” X (0, «). Fix now 0 < € C5(R"), and
R > 1 so large that suppn C By = {x€R": |x| <R]}. Let 6, be the Green’s
potential of 5 in By, i.e., 6, solves the equation Af, = —7 in Bg, 6 =0 on
0B . Fix T > 0, and let, for o > 0 and smooth in R"*1 ¢ = S(a, R) solve the
equation

]

a—'f+aA¢=0 in B x (0, T)
2.13
@19 Y(x, T) = 6x(x), x€Bg
v=0 on 0By x[0,T].

Letting & = Ay we observe that

oh
T3 +A(eh) =0 in B, x(0,7)

@.19) h(x,T)= —n9(x) xeB,
h=0 on 9B, x [0, TI.

From (2.13) it follows that

(2.15) H a(Ay) dxdt = ” ah?dxdt <
Bpx[0,T] B x[0,T]

j V|,
Rn

| =
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From the maximum principle it follows that

(2.16) 0<Y< 0l and h<O.
Hence,
9 oh 3(h)
— h(x,t)jdx=—| —dx= >
5 Bkl (x, 0| dx LR o7 dx LBR N do =0
SO
@.17) fBR|h(x, Dldx< | nx)dx for 0<i<T.

Since dy/0t = —aAy = —ah we have that ¢ is increasing in ¢, and so
0<Y(x, 1) <6x(x), 0<t< T. Hence

< CHR' ™™
L=(Bg)

(2.18) “%

Our next aim is to solve (2.13) with o = A. The problem is that A may be
unbounded in R" X (0, ) at points where u and v are zero. From (2.18) and
(2.2) it follows that if b = u — v, then

2.19) E= | bt T)p)dx— [ blx, D(x, ) dx
= HBRX(T, b — )AYdxdt + H,
where
0<7<T and |H|< C(n)Rl"‘”aB vy [P0 + o] dodt,

where C(n) is independent of . Our assumptions on ¢ imply that there exists
1 > 6> 0 such that o(u) < Cs(u® + u'/%). Using the fact that

u,ve L*(R" x [1, T),
we see that

1-n 1-n
R ”aaR x[r,T] [e(w) + o)) dodi < C; T[R J (u + v)dodt

3B x 7, T]

+ (RI_"IaBRx[T,T] u+ v)dadt)a].

Let now o, € C*(R" X [0, «)), a, be such that o, > A; uniformly on each
compact subset. Let y,, &, solve (2.13), (2.14) with @ = ¢,. For each sequence
{1;}, T=1>7,>--->1;10, and each R, there is a sequence of measures
{)\j(.k’R)}, where each )\J(.k'R) is the weak limit in By of —A,(x, 7)) dx, as v = .
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Let y**® be the Green’s potential in By of the positive measure \{*®. By the
weak convergence of —h,(x, ‘rj) dx, we see that for a.e. x,

PP = lim ¢, (x, 7).
Also, since each y{“®(x) is a Green’s potential, we have, for every x that

1
& R(x) = lim
Vi =11 o

[5.0 YR a,

where B,(x) is the ball of center x and radius r. Hence, the fact that ¥, (x, ¢)
is increasing in ¢ gives

(2.20) 0 <Y P) <y Px) <0, for each x in Bg.
Also, (2.17) yields
(k,R) [
(2.21) jBR d\&P s, 7(x) dx.
Furthermore,
’ jBR b(x, T)f,(x) dx — jBR b(x, IV P dx| <EP,
where, by (2.15)

*) —1p204 _ 2
B <G|, 45 074 - A et

1-n
+R ”aBRx[-rj,T] u + v)dodt

+ (Rl-"ﬂmhj,ﬂ u + v)dadt)'*].

From (2.8) it follows that A 'b*(A — A;)* < Ce; on By X [r;, T, and so
-1p20 4 _ 2 N
”BRx[Tj,nAk bYA — A, dxdt 0 as k— o.
Since

supj (u(x, t) + v(x, 1)) dx < o,
t>0 JR®

it follows that

R,l'"j (u + v)dodt—~0 when R,— o,
3Bg, X [0, T]

for a suitable sequence R,.
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Arguing as in the proof of (2.20) and (2.21), we see that by taking a suitable
subsequence k, — oo, the weak limits \; of )\J(.""R’) exist, and if y; is the Newton
potential of )»1., then

2.22) [ B0 TIOCIdx = [ blx, 7)Y,(x) dx,

(2.23) 0 <Y, 1) <¥;(x) <0(x) = Nyg(x) forall xeR"
and

2.24) [wdN < [, n0 ax.

Next, we remark that the non-negative measures \; have a weak limit A\.,
as j — oo. For, if A is a weak limit of a subsequence kjk, then y,, = lim, , ,¥;
exists and —\ = Ay_ in the distribution sense. This easily yields the existence
of \,.

Because of our assumptions on #, v and ¢, Pierre’s argument ([10]) gives
the existence of the initial trace of ¥ and v. Let their common initial trace be
p. Let w be the Newton potential of u. We observe that

(2.25) %"— — —p(u) <0.

In fact,
e(x, 7, T) = wix, T) — wx, 7) + fga(u(x, 1) dt

is harmonic in x whenever 0 < 7 < T. Since w(x, ) is the Newton potential of
an L' function, it follows that

n-2
Lxl<R wx,t)dx<R""°, 7<t.
Since ¢ €T, it follows that
[Totue, 1y dt e PR
for some p € (1, «). Therefore,
j le(x, 7, T)| dx < CR"~?
x| =R

for some 6 > 0. The harmonicity of e now shows that e = 0, which establishes
(2.25). Since w(e, 7) is increasing as j — o, its limit F is superharmonic and
F = Nu. Hence, whenever k = j,

fute v, dx = [wix, 1) AN 2 [ wex, n) N, = [utx, rg, ) dx.
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By monotone convergence we then have

liminf [ u(x, 7),(0 dx > [ u(x, T¥ulx) dx.

Jjoo

Also, Y, = N\, since N\, = N\, as j = o, pointwise, where N\ = k@ ),
where k(x) = c,,lxlz’” is the kernel for the Newton potential, and

k9(x) = min (K(x), c,e>™"), 0<e<]l.
Because NJ\J. < N)\j and N \,{ N\, as e 0, the claim follows. Hence,

lim inf j u(x, TV, dx > j u(x, TINNL(X) dx = j W, 7) A\ (3).

j—o o
By monotone convergence we obtain

liminf [ u(x, 7)¥,(x) dx > [ N(w) d\.

Jjoeo

The conclusion will now follow by an argument due to Pierre ([10]). For s > 0,
let vy(x, 1) =v(x,t+5), and put b,=u — v,. Let W(s,t) = Nv(-,t) and
notice that 0 < W, < C; in R” X [0, ).

lim sup f v,(x, Tj)r,bj(x) dx = lim sup | wy(x, ) d)\j < lim sup | w(x, 0) d)\j

Jjow jow 1j—ooo

= lim sup [ u(x, S)Y;(x) dx = j U(x, S)¥e (X) dx

Jj—®©

= j v(x, )N (x) dx = j w,(x, 0) dt..,
since ¥, = N\, a.e. in R”. Thus,

lim inf [ b,(x, 7)¢,;(x) dx > [ INu(x) ~ Wi, 0)] dAol) >0

P
by (2.25). Letting s{ 0 yields
j b(x, T)0(x) dx > 0.
Reversing the roles of u and v yields
: j (u(x, T) — v(x, T)Ny(x)dx = 0

for all non-negative test functions n. This easily shows that u(x, 7') = v(x, T)
for all T > 0, which concludes the proof.
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3. A Priori Estimates

We shall first deal with smooth, non-negative solutions of du/dt = Ap(u),
where ¢eI',NC> ([0, ©)), 0 <a<1. Our aim is to establish pointwise
estimates of u in terms of spatial averages. This will be established by a variant
of the Moser ([8]) iteration technique, along the lines used by the authors
in [5].

Lemma 3.1. Let u be a smooth, non-negative solution of the equation
du/ot = Ap(u) in Q* = ((x, 1) e R"*1: |x| <2, —4 <t <0}, where peT',N
C*([0, ). Let Q= {(x,)e Q*: |x| <1, -1 <t < 0}. Then,

. . < D 0/p
(3.2) [4] ;oo c{l + j JQ*u dxdt] ,
where C, p, 0 are positive constants which depend only on n and a.

To establish Lemma 3.1, we shall first deal with a slightly more general
situation. Let 0<r<p, 0<T<7, S=B.,Xx(-T,0], R=B,x(-10],
where B, = {xe R": |x| < r}.

Lemma 3.3. Let v > 0 be a smooth non-negative solution of dv/dt < Ap(v)
in R. For o > ¢, there is a constant C, = C/a, n), such that

JB’ ad (v(x, 0)) dx + j j (VP dxat
<SCl =07+ (= DY [[ [0%@) + adew)] dxadt),
where

a+1
2

¢a(0) = [* lo(©)]*ds, and B =

ProOF. Choose y € C®(R"*1), 0 < ¢ <1, such that y¥(x, ) =0 whenever
|x| = port< —7,and ¥(x, ) =1 for (x, ) € S. This ¥ can also be chosen so
that

|V¥(x, 1) < Clo — )1

3-4) ‘%(x.t) <Cr-T)"

Whenever 7 >0, ne C*(R** 1y is supported in B, x R, we have

0
HR [n;l} +Vn- Vw(v)] <0.
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Choosing 7 = V20%(v),

j j ¢“(v)ﬂ¢2dxdz +a ﬂ 2@~ D()|Veo(v)|*Y? dx dt
R ot R

-2 jj 0*(V)Ve(V)VYY dx dt
R

Hence, for all 6 > 0, we have
H w(u)ﬂ‘pz dxdt + aﬁzj |VoP(v)|*y?* dx dt
R at R
< -2871 H PPW)\VeP(v) - VY - Ydxdt
R

<2681 U |VoP()|*¢* dxdt + 2(66) ~* “ 0% (v)|Vy|* dx dt.
R R

Choosing 6 = a/483 and combining terms, we find that

-2
H o) 20 2 axdr + 2P
. ot

j IVeP(v)|*y* dx dt
R

< 87! U o*P(v)|Vy|* dx dt.
R

Integrating by parts in # now gives

-2
f &, (v(x, 0)¥2(x, 0) dx + °‘52 H |VoP(v)| >y 2 dx dt
Br R

sa“lﬂ ¢Zﬁ(v)|v¢|2dxdt+2U ¢a(v)1,b‘i¢— dxdt.
R R at

This easily yields the lemma.

Corollary 3.5. Let v be as in Lemma 3.3, and o > ¢ > 0. Then

[ sup @ ¢a(v(x t))dx] US|V¢B(U)|2dxdt

te(—
<Clle =072+ = D[] [0%0) + ag. ] dxat]

Proor. Pick #,€[0, T such that

o, (V(x, —1y)) dx> 3 sup jq& (v(x, 1)) dx.

Br te(=
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Now, use Lemma 3.3 with R replaced by R’ = Bp X (—1, t,], and S replaced
by §' = B, X (—T, 7,].

To complete the proof of Lemma 3.1, we need the following variant of
Sobolev’s inequality.

Lemma 3.6. Let w > 0 be smooth in R = Bp X (—1,0). Let g* = q/(q — 1),
qg=n/2 forn>3, and q =2 for n = 1,2. Then, for 1 < k < q*, we have

ot [ wHdrdt< Clomm [ WP + o7V dxdt]

sup ( p" J wix, £)2 - D/ dx) Ve
te(—1,0) Bp

where C depends only on n.

Proor. By rescaling, it is enough to treat the case p = 7 = 1. Letting B =
B, = {xe R™ |x| < 1}, we see that

JB w(x, t)dx = L; w2(x, OYw* ~1(x, 1) dx
< (LB w2 (x, 1) dx) l/q*(jB w@-Da(x 1) dx) g,
But, by the standard Sobolev inequality
’ (L; w22 (x, t))l/"* < C,,UB |Vw(x, £)|2 + w2(x, £) dx].

We can now pass to the proof of Lemma 3.1.

Proor oF LEMMa 3.1. For « large, let k() be determined by

1
1+—

k= q.
1+

1
o

If « >2q,then 1 <k<1/(g+ 1) <g*. Assume now that Q C SC R C Q%,
where S and R are as in Lemma 3.3. Let v = max (4, 1), so that Lemma 3.3
applies to it. Combining Corollary 3.5 and Lemma 3.6 with w= o(v),
B = (o + 1)/2 yields

3.7 HB o(v)*P* dx dt
< C,,F[ HR o) + ag, (v)dx dt] sup (”B o(v)?P%-De dx) Vg,

te[-T,0]

where F=(o— 12+ @ -T)"L
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We observe that ¢(v) = v for v > 1 and ¢,(v) = J'g 0%(s) dx < vp*(v) for all
v > 0. Hence,

(3.8) 6. (0) < p**lv), wv=1.

We next observe that we can choose o, large enough so that there is a constant
M such that, for a > o, and v > 1, we have

3.9 P =7 < Mag,(v).

In fact,

s

_ 1 o 1 a/a
do() = | ¢ ds > [ s ds > —

and for v > 1,
02 [Mag,(0) ~ Coloy™* 1]

> aMve*(v) — Cla + 1)(k — 1)ge(v)©@+ P& -Da
since vep'(v) < Ce(v). Note that £ > 1 and that for a > 2g, we have

alg+1)—qgla+1) <a
gla + 1) =

28k — 1)g = (o + 1)(1[
and so, forv>1,
v% Mag, (v) — Co()** DY > o*(v)[aMv — Cla — )] 20

for M large. This yields (3.9), which together with (3.7) gives that

(3.10) [ o@?*™ dxdt < aCF( ([ e dxdt) sup ( [, asa() dx) oz

te[-T,0]"

< CleF)'* 1/qv(”R o(v)? dx dt) 1+1/q

Define sequences ay, o5, . . . , and By, B;, - . . inductively by letting «, be as
in (3.9),

=221, B, = k)8,

Put

2(1 + ) s
= — = . y — <0
=12, R,=((xt):|x|<r,, —-r,<t<0}
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and
M, = ( jR go(U)zB”) 126,

Observe that, since lim,, ., , k() = 1 + 1/q it follows that E” £ a, < (E*)” for
some numbers 1 < E < E* < o0, (3.10) yields

M,

14

‘1 < e"/vav

where 0, = (1 + 1/9)/k(c,), and 0 <7, < C(v + 1)E~”. Note that 1 <6, <
1+ CE™", and so, it easily follows that limﬁsup M, < CME, which yields
Lemma 3.1. ’

We will also need to estimate the maximum of a solution in terms of spatial
averages. In order to do so, we need some preliminary estimates.

Lemma 3.11. Let u be a smooth, non-negative solution of the equation
ou/dt = Ap(u) in Q* = {(x,1): |x| <2, —4 <t < 0}, where o €T, N C>([0, )).
Let Q= {(x,)eQ*:|x| <1, -1<t<0}. Then

(.12) ||u||L,(Q)<C{l+ sup Lxldu(x,;‘)dx},

-4<t<0

where C and o are positive constants which depend only on n and a.

Proor. Let S=B,x(-T,0], R=B,x(—7,0] satisfy QC SCR C Q%,
and set v = max (¢, 1). Combining Corollary 3.5 with Lemma 3.6 gives, for
ke(l, g*), that

HQ o*P* W) dxdt < CF( ”R o*P(v)dx dt) ( sup | o(v)28%—Da dx) /g .

te[-7,0] 4

Here 8 = (o + 1)/2, and « is_chosen so that v” < ¢(v)**, for v > 1, where p
is as in Lemma 3.1. As before, Fequals (p — r) "2 + ( — T) ~!. We have that
o(v) < v™ for some M > 1 and all v > 1, and so, if we now pick ke (1, g*)
so close to 1 that 238(k — 1)gM < 1, then '

(3.13) ﬂs 2% (v) dx dt < CFIY? HR 02 (v) dx dt,

where

I= su v(x, t)dx.
t.e[—?,o]'[|"|<2( )

For 1/2<r<2, let L(r) = B, x [-r%,0], and for s > 0 let

m(r,s) = ”L(r) wdxdt,



284 BrorN E.J. DAHLBERG AND Carios E. KENIG
where w = ¢(v)?. (3.13) now shows that for 1/2<r<p <2
(3.14) m(r,k) < C(p — r)~*I'"m(p, 1).

For 0 < s < 1, m(r, 1) < m(r, k)**m(r, s)® =95, where 0 = (1 — s)k/(k — s) €
(0,1). For vy>1, 1/2 < r< 1, (3.14) gives that

1
3.15) log m(2r", k) < 4108 +logC + log4(r - %

+ %log mQr, k) + log m(2, s),

s

since m(r, s) < m(2,s), 1/2 < r < 1. Integrating from R = 3/4 to 1, we see that

1

(3.16) 'y‘l‘[ logm(2r,k)%

R1/v

1
di
< Clogl+ Cylogm(2,s) + C; + % j log mQ2~, k)Tr-
R

Choose now s so small that ¢(v)*** < v for all v > 1, and v so close to 1 that
v~ > 0/k. We now distinguish two cases. The first one is when m(3/2, k) < 1.
In this case, Lemma 3.1 shows that |u|,«, < C, and our Lemma follov&{s.
If, on the other hand, m(3/2, k) > 1, log m(2r, k) > 0 for re[R, 1], and so,
since RYY > R, it follows from (3.16) that

0 1
<v‘1 - ;) J. log m(2, k)% < ClogI+ Cylogm(2,5) + C;
R

which yields
2Bk o 28s o
”L(s/z) e(0)™" dxdt < CT 1(”Q,,‘P(U) dth> 2,
where C, g,, 0, depend only on #n, s and a. By our choice of s, it follows that
28k -
ﬂm 1y PO dxdt < CI°,

which together with Lemma 3.1 concludes the proof. The main result in this
section is the next improvement of Lemma 3.11.

Theorem 3.17. Let u be a smooth, non-negative solution of the equation
ou/ot = Ap(u) in Q* = {(x,1): |x| <2, —4 <t <0}, where ¢ €T',N C7([0, )).
Then, there are positive constants C, v and o such that if Q = {(x, 1): |x| < 1,
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—-1<t<0}, then
(3.18) [lullL,(Q) SC{I’+1},
where

I=" sup kalu(x, t)dx.

-4<t<0

Proor. Lemma 3.11 implies that whenever 7 > ¢, > 0, then (3.18) holds with
a constant C depending on ¢,. We also remark that if 0 <7< ¢ <1, then
0<u<Cy=Cylry) in Qy= ((x,1): |x| <rg, —rd<t <0}, for 1<ry<2.
We now claim that there is an ¢, € (0, 1) such that if I < e, = €y(ry, 1), then
0<u<1inQ; = {(x,0): |x| <r;, —r3<t<0},1<r <ry<2.This follows
from the results in [11], where it is shown that there is a modulus of continuity
w in Q,, which depends only on C,, a, n for all solutions of du/dt = Ap(u)

in Q*. .

Hence, it is enough to show that if 0 <u<lin Q* t'hen
(3.19) |4] =gy < CI°, for some o = a(a,n),

Observe that there is an n = n(a) > 0 such that v > ¢"(v) for 0 < v < 1. For
a >0, let k = k(c) be defined by k = 1 + [(a + 1)/g(a + 1)], where g is as in
Lemma 3.6. Note that lim,,_, . k(o) = 1 + 1/g € (1, g*), where g* = g/(q — 1).
Choose ay > 0 such that 1 < k < g* for o > «y. From Corollary 3.5 and
Lemma 3.6, it follows that, for o > o

(3.20) ”S 02 (u) dx dt < CF j jR [o()?® + ap, ()] dxdt -

sup ( f ()%~ Da dx) 1/q
te[-T,0] \JlxI<r

Here QC SC R C Q%

S={x0:|x|<r,-T<t<0},
R={(x1):|x| <p, —r<t<0},
F=(p-n72+@-T)"},
B=(ax+1)/2, and

$a) = [0 ds.

By our choice of k, it follows that, for 0 <u <1,

u—d% [aM,(u) — (u)*°*~ D] > aMup™(¥) — cla + 1)k — 1)ge()**" >0
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for o 2 aq if M is large enough. Since ¢, (¥) < up*(U) < (W) for0<u <1,
it follows from Corollary 3.6 and (3.20) that

@3.21) [y @ dxdt < C@Fy* ([ o*wydxdr)+ 1.

(Here we used the fact that ¢?*(u) < ¢%(u) for 0 < u < 1.) Arguing in a similar
manner to the deduction of Lemma 3.1 from (3.10), it now follows from
(3.21) that

H u " L>(Q) < C(JTQ* ¢“(u) dx dt) o/a

for o 2 o and some o = o(a, n). Choosing now a > « such that ¢*(u) < u,
0 < u < 1 finishes the proof.

4. A Harnack Inequality

In order to show the existence of an initial trace for non-negative solutiops
of (1.2), we will establish a suitable Harnack inequality which controls the size
of spatial averages in terms of the value of the solution at one point. For the
porous medium equation du/dt = Au™, m > 1 this was established by Aron-
son and Caffarelli ([1]). Their proof used, among othe things, the explicit
formula for the solution of the porous medium equation with initial trace the
Dirac measure. Ughi ([12]) extended this proof to a class of non-linearities
that were asymptotically the pure power u™, m > 1 both at ¥ =0 and at
u= oo,
The idea in our proof is to use scaling properties of solutions of

% = Ap(u),
¢eT,, combined with compactness properties of solutions of these equa-
tions. The main point is that solutions of (1.1) with yeT',, 0 < a < 1, with
initial trace the Dirac mass at the origin, have u(0, T) uniformly bounded
from below by a positive constant C,, for a suitable choice of Tj.

To explain the scaling properties of solutions of (1.1), and our compactness
result, we need to introduce some notation. S(y) will denote the class of con-
tinuous weak solutions of (1.1) in R” X (0, ).

P, (M) = {ueS(ex: sup [ ux, ydx < M.

We remark that Pierre’s proof ([10]) shows that all solutions u € P, (M) have
an initial trace.
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For ¢ €T',, ¢(u)/u is monotonically increasing on [1, ), and

lim 2% -

u—co U

+ o0

Let A = A, be the inverse of ¢(#)/u on [1, ©). A computation shows that if
du/dt = Ap(u) in R” x (0, ) and o > 0, 8 > 0, then

“4.1) % =Ay(w) in R" x (0, )
where
o, ) = ““""T‘”) and () = Be(vs)a 2y,

If o> then the choice ¥ = A(a?/B) is possible, and with this choice
Y¥(1) = 1. It is also easy to see that with this choice of v, ¥ €', whenever
vel,.

Lemma 4.2. Let oeT', and ue P,(M). There is a constant C = C(a, M, n)
such that u(x,t) < C fort>1, and, for 0<it<1,

u(x, 1) < CA(p%/1), xeR",

where p = p(t) € [Vt, 1] is determined by p"A(p?/t) = 1.

Proor. If £ > 1 we have
Joo e wBndE<M

for t— 1< 1<t and so u(x,t) < C= C(a, M, n) by Corollary 2.11, and
Theorem 3.17. If 0 < t < 1 we put ¥ = A(p?/1), and v(&, 7) = ¥~ *u(x + p&, t7).
By (4.1), dv/dt = A¥(v), where ¥ eT',, and for 0 < 7 < o, v € Py (M) since

EPOES B
[ & nde=v"1"" [ u(y,tdy< M.
By the argument above

ux,t)

YO0 =Ky

< C(a, M, n),

which completes the proof.

In what follows, the restriction to n > 3 is purely technical, and will be
removed later, once Lemma 2.12 has been established for n = 1,2.
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Corollary 4.3. Let n>3, pel',, u,ve P, (M) have the same trace. Then
= v in R" X (0, ).

Proor. If follows immediately from Lemma 4.1 and Lemma 2.12.

We can now give our compactness result.

Lemma 4.4, Suppose that ¢ €l',, 0<a<1, and that uker,k(M ),
k=1,2,... Suppose also that if u, is the trace of u,., then p, converges weakly
to a non-negative measure p, and that ¢, converges uniformly on compact
subsets of [0, ) to a ¢ €T',. Then, there is a unique u € P, (M) such that u
converges to u uniformly on compact subsets of R"” X (0, ), and u has trace p.

Proor. The uniqueness follows from Corollary 4.3. From Lemma 4.2 it
follows that {u;} is locally bounded in R" X (0, ). It follows then from
Sacks ([11]), that {u, ] is locally equicontinuous. To conclude the proof of the
lemma, it follows from the uniqueness in Corollary 4.3 that it is enough to
show that whenever w is locally the uniform limit of a subsequence of {u;},
then we P,(M) and has trace p.

To this end, first notice that if ¢ €T, then A (s) > s” for all s > 1 and some
v¥=7v(). It now 0<¢<1, and p is as in Lemma 4.1, then

1 =p"A(p*/8) = p" "2t

and so p < 1/**)_ Thus, for 0<t<1, ueP,(M), peT, we have the
estimate

4.5) o) <1+ Cut™1*e,

where the positive constants C and « can be taken to depend only on n and
a. From (4.5), it follows that whenever 0 < 7< T < 1, 7 € C5(R"), then

(4.6) [ a8, TG A = [ e, Iy dx + 1,

where
1] = | [} m00Ag s, 53 dieds|
< [7]. 1ane)leiue e, 5)) dx ds

<SO(T =) [ 1A dx + CM(T* — 7°)| A1 ogien,
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In the limit, we have that
‘ [, wee, Tyneo dx - jwndui =O(T% as T—0,

for any 7 € C5(R"), and hence w has trace p.

As was mentioned before, our proof of the Harnack inequality will be based
on the following estimate for the solution of (1.1) with initial trace 6, where
6 is the point measure of unit mass at 0 € R".

Lemma 4.7. Let peT',, 0<a< 1, and let n > 3. Then, there is a unique
Q = Q, € P,(1) with initial trace . Furthermore, there is a T, > 0 that can be
taken to depend only on a such that inf¢era 0(0, Ty) > 0.

Proor. It is standard (see e.g. [7]) that if £ > 0 is smooth with compact sup-
port, and if ¥ e C*([0, ©))UT,, with ¥'(x) >e>0 for 0<x< 1, then. a
smooth solution u of du/dt = A¥(u) with u(x, 0) = f(x) will exist. Further-
more,

LR" u(x,t)dx = JW Sf(x) dx,

and hence, the existence part of the lemma follows from Lemma 4.4 and an
approximation argument. The uniqueness part follows from Corollary 4.3.
Also, from the results of Vazquez ([13]) it follows that Q is radial and decreas-
ing in |x|, for each ¢ > 0. Let now 7 € Cg(R") be non-negative, with

7(0) = maxy =1 and jwn(x)dx: 1.
From (4.6) it follows that v
| [ Qo g dx 1| < cre,
where o = a(@) > 0. Hence

0,0, T) > [19Q, () > 1/2 if 0<I< Ty,
and Ty is chosen sufficiently small, which concludes the proof of the lemma.
We will also need a slight variant of Lemma 4.7.
Corollary 4.8. Let pel',, 0<a< 1, and let n > 3. Then, for every M >0

there is a unique solution Q, ), € P,(M), with trace Mé. Furthermore, there
is an M = M(a, n) such that inf {Q,, 3,(0,1): p€T',} > 0.
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PRroOF. Arguing as in the proof of Lemma 4.7, we see that we only need to
establish the bound from below. This can be seen by observing that if T} is
as in Lemma 4.7, 8 = T; ! and o"A(e?/B8) = M, then -

U(X, t) =7 1Q¢,M(ax’ Bt) Equ(l)s
where
v =A,(?/B) and Y(v) = o(YV)/e(V),

belongs to I',. Since QM,¢(0’ 1) = vv(0, T;), and the trace of v is 6, the corollary
follows from Lemma 4.7.

We are now in a position to give a preliminary version of our Harnack
inequality.

Lemma 4.9. Suppose that peT',, 0<a <1 and n = 3. Suppose that u is
continuous, non-negative in R" x [0, 1], and solves du/dt = Ap(u) in R" x (0, 1).
Let H,(x) be 1 for 0 < s < 1 and s[¢(s)/s1"’? for s > 1. Then, there is a cons-
tant C = C(a, n) > 0 such that

(4.10) jlxl - u(x, 0)dx < CH (u(0, 1))

Proor. We will first establish (4.10) under the additional asumptions that
ues, and

supp u(+,0) C {xe R": |x| < 1}
4.11
( ) sup |u(x,t)dx < .
0<t<o
We will proceed by a contradiction argument. If (4.10) does not hold, then
for each k =1,2,... thereis a ¢, €', and a continuous, non-negative u; in
R” X [0, o), u, eS¢k, u,, verifying (4.11) and such that

I, = JW up(x,0)dx > kH,, (u,(0, 1)).

Notice that I, > k. Let A, = A, and define oy > 1 as the solution of the
equation

ap M (@) = /M

where M is as in Corollary 4.8. Set v, = Ax(a2), and ve(x, £) = ug(ouX, 1)/ Yk -
Then, 0v,/0t = A¥,(vy) in R” X (0, ) where

(Vi u) .

V(1) = Ye Oli
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Observe that ¥, €I, and

{j 00, 0)dx = Loy ™y =M
Supp v (x, 0) C {x: oy |x| < 1}

and that v, € P\I,k(M ). Since I = o, ay — o0, and so v, (x, 0) converges weak-
ly to Mé. By the compactness of I',, we can extract a subsequence, which we
again denote by ¥,, such that ¥, converges uniformly on compact subsets to
avYel,.

By Lemma 4.4, v, converges uniformly to w = Qg 57, On compact subsets
of R" x (0, ). We notice that v,(0, 1) = v¢ "u,(0, 1). Since w(0, 1) > 0, by
Corollary 4.8, and v, — o, since «; does, it follows that u,(0,1)— o as
k— .

Next, observe that if ¢ € I',,, there are positive constans C,, C,, « and § that
can be taken to depend only on @ such that A%A (4) < A, (Au) < A"A¢(u),
whenever A, u > 1. Let F,(u) = u"A,(u?), and observe that, because of the
remark above, AF; (1) = F;(A°u) for some 0 = o(a) and all A, u €[1, ). We
have that

Iy = MFy(e) > kH,, (1,0, 1)).
Since #4(0, 1) = o,

H, 40, 1)) = F(N o (4 (0, 1)/ (0, 1)),

it follows that
g = (k/M)° [y (ur (0, 1))/ (0, D]
and hence

’}im 1, (0, v 1 = 0 = w(0, 1),
a contradiction. To remove the assumptions that u € S,, and (4.11), let >0
be continuous on R”, with A(x) = 0 for |x| > 1 and 0 < & < 1. Let wy solve the
equation dw/dt = Ap(w) in S, = {(x, ?): |x| < R,0 < < R} with wg(x,0) =
h()u(x, 0) for |x| <R, wy =0on {(x,?): |x| = R,0 << R]}. (The existence
of wy, follows easily by approximating ¢ with ¢, € C*([0, ©)) N A,, and with
(%) = ¢, using Lemma 2.3 and compactness arguments as in Lemma 4.4).
By Lemma 2.3, in {|x| <R} x (0, 1), we have wp, < w, <u if R <p, and
Wy < W, in S;. Using compactness arguments as in Lemma 4.4, it follows that

limw, e P,(M) for some M >O0.
Rteo
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Hence the previous argument applies to w and
[ wex, 0y dx = [ h(u(x, 0) dx < CH,(w(0, 1)) < CH,, (0, 1)).

Since A is an arbitrary continuous function with supp 4 C {|x| <1} and
0 < h <1, the lemma follows.

We can now give our Harnack inequality. The proof will only be given
for n > 3. However, once our uniqueness result, Lemma 2.12, is established
for n =1, 2, it will holds (as well as all the other results in this section) for
all n.

Theorem 4.12. Left pel',, 0<a< 1, and let u > 0 be continuous in DT =
R” % [0, T1, T > 0. Suppose that u solves du/dt = Ap(u) in D, and R > T".
Then, there is a constant C = C(a, n) such that

J < 406 0 dx < CLR™AR?/T) + TV H (0, T))}.

PROOF. Let v = A(R*/T), v(x, t) = u(Rx, Tt)/y and Y(5) = o(v5)/ (7). Y €T,
and by (4.1) dv/dt = Ay(v). Now observe that if v > 1, or u > v, then

() "/2[ e |~
u Y

H,(0) = o)/l = [

= [R"A(R*/T)] ™ 'T"*H ,(u).
Since Hy(v) = 1 otherwise, we have in all cases,
H,(v) <1+ [R"AR?/T)]™'T"*H (u),
and so, by Lemma 4.9,

Lx| _, U0 0)dx = [R'ARY/T ™[ | u(x, 0)dx < CHyu(0, 1)),

x|

which yields Theorem 4.12.

5. Pointwise estimates

We will now combine the a priori inequalities of Section 3 with the Harnack
inequality of Section 4, to give sharp upper bounds for the size of a solution
u(x,t) in R" x (0, T), as t— 0, and as x — co.

We need to introduce some notation. For p a non-negative measure on R”,
pel',, 0<a<1, and p > 1 we define
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_ rllx| <R}
(5.1) 1||M|||p—§£m'

Notice that for 1 <p <r, |||g|||, < |||elll,, and so

(5.2) 1l = Lim [[|pl]],

p—©
exists. We will set |||x||| = |||«|||;, and for a non-negative function f on R",
A1 = H1fdx]]-

A consequence of our Harnack inequality (Theorem 4.12) is that if o €T,
and u €S, (T) (the class of non-negative continuous solutions of (1.1) in
R" x (0, T)), then

(5.3) sup-|||u(s,D)||| < C(u, T,8) < e for all &>0.
te(0,T~8)

For,s >0 and 0 < 7 < 1, notice that the equation
R"A,,,(Rz/‘r) =1 +9"A,1 + 5)%)

has a unique solution R, (s, 7).

Lemma 5.4. For ¢el'y,, and 0<7<1, 0<s, we have the estimate
R, (s, )<+ s)r, where & > 0 can be taken to depend only on n and a.

PrROOF. Let F(x) = x"A(x?). Then, F is increasing on [1, ) and if 4 > 1,
Xx > 1, it is easy to see that AF(x) < F(A4°x), for some o = o(a, n) > 0. Since
F(R,/NT). = 7"?F(1 + 3), the lemma follows.

We are now ready to give our pointwise bound. As in Section 4, the proof
will hold for n > 3, but will become valid for » = 1,2 once uniqueness is
established in this case.

Theorem 5.5. Let ¢el',, ueS,(T). Let 0 < 7<min(7, 1) and for xe R"
set R = R,(|x|, 7). Then, for every 6> 0, there is a constant C = C(u, 8, a)
such that, for 1<t < T — 68, we have

o(u(x, 1)) < 1 + Cu(x, t)R*/7.

Proor. The estimate is trivially satisfied if u(x, ¢) < 1, and so we will assume
that u(x, ) > 1. Let

B= sup |||u(-,9)]]-
0<s<T-6



294 BiorN E.J. DAHLBERG AND Carros E. KENIG

For (£,5) € R" X (0, Tr 1), set v(,s) = u(x + RE, 7s)/v, where v = A(R%/7).
Then, by (4.1), dv/ds = AY(v), where Y(v) = p(Yv)/o(7).
For 0 < s < (T — 6)/7, we have that

e, )dE=R™™ 7 u(E s

jlslsl —t|<R

By Lemma 5.4, we have that R < C(1 + |x|), and so

JyerEDdE<RT™ ! u(g, s7) dg

Ilzl <|x|+R
S CBR™™ ™1+ [x)"A + X)) < C.

Hence, by the a priori estimate in Theorem 3.17, together with Corollary 2.10,
we see that v(0, 1) = u(x, £)/v < C, and so u(x, t) < CA(R?/7). Since A is the
inverse of ¢(u)/u on [1, ), the conclusion of the Theorem follows.

From Theorem 5.5, it follows that if u € S,(T), then
(5.6) o(u(0, 1)) <1+ Cu(0, H)p?/t,

where for 0 < ¢ < 1, p is determined by p"A(p?/t) = 1. We next want to show
that the growth retriction (5.6) is sharp. (Note that Lemma 5.4 implies that
p < 1, while o(s) >s'*7, 5> 1, 9 > 0, so that (5.6) is in fact a growth restric-
tion.)

Indeed, let M > 1 be large, and let v be the solution of dv/dt = Ap(v) with
initial trace Md, where 6 is the Dirac measure (see Lemma 4.7). By Theorem
4.12,

M = [ Mds < Clp"A0*/) + "H,(v(0, 1))},

where C is independent of M, as long as p2/t > 1. Choosing M = 1 + 2C, we
see that

(5.7) t~"?<H,w0,1), 0<t<l.

This implies that v(0, £) > 1. Also, since H,(s) = s[e(s)/s]”* for s > 1,

H,(v(0, 7)) = FN ¢ ((0, 1))/v(0, 1)) ,

where F(s) = s"A(s?). Moreover, ¢~ "% = p™t~"2A(p%/t) = F(p/Vt), and so
(5.7) can be written as

F(p/Nt) < FWN (0, 1))/v(0,1)) for 0<t<1.

Since F is increasing in [1, o), this implies that ¢(v(0, £))/v(0, t) > p*/t, which
shows that (5.6) is sharp.
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6. Uniqueness

This section will be devoted to establishing the existence of a initial trace for
any solution u in S,(T), to showing that solutions are uniquely determined by
their initial trace, and to proving a general compactness result. The proof of
the general uniqueness result follows the same strategy as in the case of the
porous medium equation (Dahlberg and Kenig [5]). The proof will be based
on the preliminary uniqueness result Lemma 2.12, and on the following
lemma.

Lemma 6.1. Let p€T',, 0<a< 1, and suppose that u,v e S, (T) for some
T > 0. Assume that

6.2) 133}1 j < g 1206 0) = 1, 1] *dx=0

for all R >0, where A™ = max (A4, 0). Then, v<u in R" x (0, T).

Proor. We first remark that it is enough to prove the lemma when n > 3.
In fact, let £ = (x,n) € R**? and notice that u*(&, ) = u(x, t) solves (1.1) in
R"*2 % (0, T), if u solves du/dt = Ap(u) in R" x (0, T). If u, v verify (6.2) in
R™ % (0, T), then u*, v* verify (6.1) in R"*2 x (0, T), and thus the remark is
established. We therefore assume n > 3 from now on.

Let w = v — u, and let g denote the characteristic function of the set where
u(x, t) < v(x, t). Suppose that 0 < 7 < ¢ < T, and that 5 € C5(R"), n = 0. We
claim that

6.3 Jn(x)w t(x, 1)dx < J W (e, o) dox
+ JJO <r<s<t An(x)g(x, s)[e(v(x, 5))
— p(u(x, s))]* dxds

By Corollary 2.11, it is enough to show (6.3) when u, and v are smooth. Then,
by Kato’s inequality ([6]),

Alp(v) — W] = gAlp(v) - p(w)]

in the distribution sense. Also, since dw* /ot = g dw/dt in the distribution
sense, it follows that
aw*

57 T Al - e)]” 20
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in the distribution sense. Hence

+

“ n(X){A[so(v) — o] + ow }dxdt =0,
0<r<s<t at

and so (6.3) follows by integration by parts. Let A = (¢(v) — ¢ ())/(v — u) if
v > u and zero eisewhere. We first observe that if v > 2, then for 0<é< T

6.4 A<CA+ |xPee?,

where ¢ = a(a, n) > 0, and C = C(u, v, 8). To see (6.4), we observe first that
if 0 Su<v/2, and v >2, then A <20®)/v < C(1 + |x])2°~! by Theorem
5.5 and Lemma 5.4. If v > 2 and 4 > v/2 then A = ¢'(¢) for some £ € (u, v).
But ¢'(§) < Co(£)/¢, and again Theorem 5.5 and Lemma 5.4 yield (6.4).

Forr>1,let M,(¢) = |||w* (s, 0)|||,, 0 < < T. By letting 710 in (6.3), we
see that, from (6.2) we can conclude that, for € (0, T),

6.5) jw*(x, Hn(x) dx < ”0<s<tA(x, W™ (x, s)|An(x)| dx ds.

Choose R > r such that
1
J wt(x, ) dx > —M,()R"AR?),
x| sR 2 )
and pick 0 <7< 1,7€C5(R", n=1o0n {|x| <R}, and |Ay| < CR™ 2% Then,
1 n 2 +
SMORAR) ([ ACo)w* @, 9)|An(0)] dxds

< J.J\{O<s<r, v=2} ¢(U)|A17(x)1 dxds

2\,0—-1,. +
+Cff__ P Wt (x,9)| 0] dxds
Since 1 < r < R it follows that
I e

for0 <t < T — &. Here C = C(u, v, 8) for every 6 € (0, T). (6.6) implies that if
d
F@) = j; s° M (x)ds, then 71: < Clat® + t°7'F()},

where a = (F?A(?) !, for 0<t< T - 6.
It is then easy to see that

6.7 F(t) <Ma, for 0<t<T-5,
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where M = M(u, v, 6, T). Hence, by (6.6),

M, (t) < Ca, for 0<t<T-5, C=Cu,v,6,T).
In particular,
(6.8) J|xl<rw+(x,t)sCr"‘2, 0<t<T-8.

Our next step will be to use (6.8) in (6.5). Since ¢€I',, there is a
0 =6(a)€(0,1] such that if 0 <u <wv <2, then o) — ou) < Clv — u)°,
C = C(a). If now R > r is chosen so that

1
— M,()R"AR? < j wr, t)dx, 0<t<T-34,
2 x| =R

and 7 is chosen as before, then
+ — +
j.lxlst &, D) dx < ”.0<s<t{¢(v) o)) " |An| dxds

< CR™A(R?) Lt)s"' 1M (s) ds + CR-Zj w* (x,5)? dxds

0<s<tj.|x|<2R

Dividing through by R"A(R?) and using Holder’s inequality and the fact that
R > r, we see that

M,(t) < C[!s" "M (s)ds + CRT2AR?) 'R™™ [ (Lxl A dx)”ds
<C Lt)s"‘lM,(s) ds + CtA(r?) = 1r=2-2°
Using (6.7) again, we find this time that
(6.9) insrwwx,t)dxgCr"~2-2", r>1, 0<t<T-3.
Let
hx, 1) = [ [o(v(x, ) = o(u(x, N * ds.
Then

—-n t —n + [
r j,xlsrh(x,t)dxscjor Lxlsrw (x,s)’ dxds
2-n [t o-1 +
+ Cr Jos Lxlsrw (x,s)dxds

< Ctr=9¢+20 4 cpop—28,

However, 4 is subharmonic in x for every ¢ € (0, T), since, if € Cg, 7 >0,
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j n(X)AA(x, t)dx > j n(x)% wt(x,s)dxds = J 2wt (x, t)dx > 0.
0

Hence, as

he ) S Cur ™[ h(y,0)dy =0,

r—oo

h is identically 0, which easily yields the lemma.

We will now show that all solutions of (1.1), with ¢ €', have an initial
trace.

Theorem 6.10. Let peT'y, 0<a< 1, and let ueS,(T) for some T > 0.
Then, there is a non-negative measure p on R" such that

6.11) p{|x] <R} = O(R"A(R?) as R- o,
and

lim [ uCe, n( dx = [ ndw,
Sfor all 5 e Cg(R").

Proor. First notice that given 6 > 0 there is a constant C = C(u, 6, T) such
that whenever R > 1, 0 < ¢ < T — 6 we have that

6.12) j IR CHLESS CR"A(R?)

When n >3, this was established in (5.3). For n= 1,2, notice that
u*(x, £, t) = u(x, t), (x, ) e R" x R? solves (1.1) in R"*2 x (0, T'), and so

2 * n+2 2
R JlxlsRu(x’t)dxgcfllzllzﬁu (x, £ 1) dx df < CR"*2A(R?).

Thus, there exists a sequence tjl 0 and a measure . > 0 on R”, verifying (6.11),
and such that u(x,#;)dx converges weakly to dp on R". If ne C3(R™,
0<7<t<T, then

j[u(x, 1) — u(x, Din(x) dx = f An(x)p(u(x, s)) dx ds

0<7<s<t

From Theorem 5.5 and (6.12) it follows that

| [ e 1) = ute, Dineey ax | < Ciee - 77,
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where ¢ = o(a, n) € (0, 1). Hence
lim j u(x, tyn(x)dx = I" dp,
0
which completes the proof of the theorem.

Our general uniqueness result will now be proved by the approximation
technique of Dahlberg and Kenig [5].

Theorem 6.13. Let ¢oeT',, 0 <a <1, and let u, v belong to S,(T) for some
T > 0. If u and v have the same trace, then u = v in R" X (0, T').

ProOF. Notice that if #, v have the same trace on R”, so do u*, v* in R"*2,
We may therefore assume that n > 3.

Pick h e C3(R"), with 0 < A <1 and let w = w(x, ¢, h) be the unique solu-
tion in R" x (0, o) with initial trace A, and sup, o [ w(x, #) dx < oo, where p
is the common trace of # and v. (The existence of w follows from the estimates
is Sections 4 and 5, while the uniqueness follows from Section 2.) We claim
that w < u. To show this, let for e € (0, 7/2), U, be the unique bounded solu-
tion in R" x (0, ) with initial data A(x)u(x, €), satisfying

sup | U.(x,£)dx < sup Jh(x)u(x, e)dx < C,
t>0 e€(0,7/2)

where C, < « by the Harnack inequality. For any continuous function 5 we

have that

lim j ORI u(x, €) dx = j nhd,
e—0

and hence, our compactness result, Lemma 4.4 shows that

lim U,(x, t) = w(x, t) for all (x,t)eR" X (0, «).

e—0

From the maximum principle Lemma 6.1, U.(x,t) <u(x,t+¢€) for
0<t<T-ce.

Hence, w < uin R” x (0, T'). Observe next that if 0 < hj < th <1, hje C3(R™
and lim,_, _ 4,(x) = 1 for all x € R”, then w(x, ¢, h) < wix,t,h;, ) < ulx,1). Let

Jo® g
Wo = limj 1o WO T, hj). Since [wj} is locally bounded in R"” x (0, T), it follows
that [wj} is locally equicontinuous and hence w,, solves (1.1) in R” x (0, 7).
We also notice that \, the trace of w,, is between A o and p for all j, and hence

A = u. Since w,, < u, it follows that

lim j lu(x, £) — wa(x, f)|dx =0 forall R>0.
|x] <R

t—0
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Hence, u = w, by Lemma 6.1, and similarly v = w,, which concludes the
proof of the Theorem.

Corollary 6.14. Let peT',,0<a< 1, and let u,ve S, (T) for some T > 0.
Let u, v have traces p, v respectively. If p. < v, then u < v in R" x (0, T).

Proor. Let hj € C5(R™), 0 < hj < hj+1 <1, and such that lim;, _ 4,(x) = 1 for
allxe R". Let U, v; be the solutions in R” X (0, «) with initial trace hju and hjv
respectively. Then u; < v; since, by Lemma 4.4, u; = lim, o 4; _, v; = limo V)

n o
where u; _, v; _are the solutions with initial data n * (h;. ), 5_* (h;*») respéc-
tively. Here 9.(x) = ¢~ "g(x/¢), where 5 > 0, fn =1, 7€ C3(R"). By Lemma 6.1,
u;, SV, and our claim follows. Since u = lim; , u;, v=1lim, v, the
Corollary follows.

Theorem 6.15. Let o, el',,0<a< 1, and let u, € ka(T) for some T > 0.
Assume that sup, u,(0,T) < . Let u, denote the initial trace of u,, and
assume that p, converges weakly to a non-negative measure p on R". If
¢r > ¢ €Ty uniformly on compact subsets of [0, ), then thereisau e S,(T)
such that u, converges uniformly to u on compact subsets of R" x (0, T'), and
the initial trace of u equals p.

Proor. From the Harnak inequality and the pointwise estimates, it follows
that for each compact set K C R” x (0, T'), we have

S‘;P | thic] fogiey < o0-

From the continuity results of Sacks ([11]), it follows that {u,} is equicon-
tinuous on each compact subset K C R” X (0, T'). Let w € S,(T') be locally the
uniform limit of a subsequence of {u,}. Using our pointwise estimates as in
the proof of Theorem 6.10, it follows that w has trace p. By the uniqueness
result, Theorem 6.13, the Theorem follows.

Remark. Since our general uniqueness result, Theorem 6.10 has been established
for all dimensions, we can now remove the restriction » > 3 in Sections 4
and 5.

7. Existence and blow up
This section will be devoted to studying the solvability and maximum time

interval of existence for the initial value problem for du/dt = Ap(u). The
analogous problem for the porous medium equation du/dt = Au™, m > 1,
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was settled by Bénilan, Crandall and Pierre ([3]). We will use the notations
introduced at the beginning of Section 5. Our existence results will be based
on the following lemma.

Lemma 7.1, Letpel',,0<a< 1. Thereis a number 6 = d(a, n) > 0 such that
if |||ul]] < 8, there exists a unique solution u of du/dt = Ap(u) in R" x (0, 1),
with initial trace p.

Proor. Because of Theorem 5.5 and Theorem 6.15 it is enough to show that
there exists 6 = 8(a, n) > 0 such that if £ > 0 is in Cg(R"), ¢ €', N C*([0, 0)),
and u solves du/dt = Ap(u), u(x, 0) = f(x), then

(7.2) sup |||u(, 0)||| < C = C(a, n),
0<t<1

whenever ||| f]|| < 6.
Let g(t) = |||u(s, D)|||, ng(x) = n(x/R), where 0 < 7 < 1, 7€ C5(R"), n =1
for |x| <1, and # = 0 for |x| > 2. Then,

(7.3) [ ute, 100 dx = [ fOInR () dx
+ H() <7<t R™ 2<p(u(x, 7))An(x/R) dx dr.

For 0 <7< 1, R>1, let v(x,s) = u(px, s7)/v, where p = 2R, v = A(p?/7).
Then, dv/dt = AY(v) for a Y €T',, and the pointwise estimate Theorem 3.17
shows that
(7.4 sup v(x,1) = sup u(x,7)/v<C{A°+ A"},
x| <1 |x| <2R

where A = G(T)A(RZ)'y"'l, and G(7) = sup {g(s):7/2<s<7},0<7<1.

Recall now that A(bs) < b’A(s), b > 1, s > 1, for some » = »(a) > 0. Hence,
A < C7'G(1), and therefore, it follows from (7.4) that

7.5) Tup ux, 7) < Cy{7°G°(7) + ™'G"(1)},
|x| <2R
for 7e(0, 1).
Recall now that A~!(u) = ¢(u)/u whenever u >1 and that A~ (o) <
a®A~1(y) for some 6 = 0(a) whenever oy > 1, v = A(p?/7) = 1. Hence, it
follows from (7.5) that

2
sup {SD—(M |x| < 2R, u(x, 1) = 1} < CB— (7'G'(7) + T°G*(D},
u(x, 7) T

for some positive constants /, r, o, B.
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Hence, (7.3) shows that, if 0 < ¢ < 1, then
j u(x, t)dx < j Sfx)dx
x| <R |x| =2R

¢ 2
ver2 [ [ 0w e + 6% arar
0 Jixl<2R T

Next, we divide by R"A(R?) and take the supremum over R > 1. Hence,
G(1) < Cb + cj; [#71G" (1) + 27 1GP* (7)) dr.

It is then easy to see that there are M, and §, > 0 such that if 0 < § < §,, then
SUP, ¢, 1y G(7) < M, < oo, which finishes the proof of the Lemma.

Before studying the initial value problem for a general measure x> 0 in
R", we wish to make some remarks on blow up. Note that as a consequence
of our Harnack inequality, if p is the initial trace of a u €S, (T), ¢ €T,
then

(7.6) ulll < o

(see (6.11)). In order to give an estimate of the largest possible time interval
for a solution to exist, we introduce some notation. Let p €', 0 < @ < 1. Set,
forr>1,and 0<t<r?

A1) = sup [A,0)/A,(x/D)]

(7.7) B.(f) = inf [A,(x)/A,(x/1)]

It is easy to see that the limits

A(t) = A,(t) = lim A,(z), and B(f) = B,(?) = lim B,(?)

r—>oco r—co
exist. Furthermore. A, and B, are strictly increasing on (0, ), with

A,0) =B,(0) =0, lim A(?) = lim B,(¢) = + 0.
t—o

t—

Our blow up result is the following.

Theorem 7.7. Let peTl',,0<a< 1, andlet ueS, (T), for some T > 0. Let
u be the initial trace of u. Then,

(7.8) el < C/B,(T).
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Proor. Note that, by our Harnack inequality (Theorem 4.12), it follows
that, for all ze(0, T), R >V,

rllx| < R} < CR"A(R*/t) + F(¢),
where F(¢) is independent of R. Hence, for r > 1,
1elll, < CB,&)~ " + Fityr-"A(?) ™.

Letting r — o, and ¢ — T, we obtain (7.8).
We will now give our general existence result.

Theorem 7.9. Let pel',,0< a <1, and let u be a measure with |||p|||. < .
Then, thereis a T > 0 such that p is the initial trace of a u € S ,(T'). More precise-
ly, there is a constant C = C(a, n) > 0 such that A (T, (1) = C(|||x||=) "7,
where T,(p) = sup {T: p is a trace of a ueS,(T)}.

Proor. For 0< 7<p? let Y(u) = o(vu)/v(7), where v = A(p?/7). Then,
ueS,(T) if and only if UGSW(TT_I), where v(x, t) = u(px, 7t)/v. Let the
measure \ > 0 be defined by

[f@dx=p="r"" [fx/p) .

Then, \ is the initial trace of v if and only if u is the initial trace of u. For
r > 1, we have that

Mx| <7y =p7 "y ullx] < or} < |l[Klll,, o7 A, (er))Y 1,

where ||| |||, is as in (5.1), but emphasizing the dependence on ¢.
Observe now that if £ > 1 and 5 = Ay (§), then

Ee(M)/Y = Ym)e(M/n = e(yn)/1n.
Since ¢(v)/Y = p?%/7, we have that
11 = YAy (§) = A, (p°E/7).
Hence

Ny, < sup A, (2 ((/A, D)/ D) = |||y, p A0 (7)-

Suppose now that |||u|||,, . < %. Choose now 7 > 0 such that |||u|||,4(7) < 5,
where 6 = 8(a, n) is as in Lemma 7.1. We can find now a p > max (V7, 1) such
that |||xl||,,,40(7) < 8. By Lemma 7.1, we can find a v € Sy(1), with initial
trace \. Since u € S,(7), where u(x, t) = Yv(x/p, t/7), the Theorem follows.
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Finally, we will give a necesary and sufficient condition for T,(x) = + 0.
Let S, denote the class of non-negative, continuous solutions of (1.1) in
R" X (0, ).

Corollary 7.10. Letp€l',, 0 < a < 1. A non-negative measure p on R" is the
initial trace of a u€ S, if and only if |||p|||- = 0.

Proor. If ueS,, (7.8) gives |||u|||. = 0. Conversely, if |||u|||. =0, by
Theorem 7.9 there is a solution u,. € S,(T), with initial trace p for every 7> 0.
By our uniqueness result, #, = u, if 7< T, and this finishes the proof.
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