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Abstract

We consider real analytic finite-dimensional control problems with a scalar
input that enters linearly in the evolution equations. We prove that, whenever
it is possible to steer a state x to another state y by means of a measurable
control, then it is possible to steer x to y by means of a control that has an
extra regularity property, namely, that of being analytic on an open dense
subset of its interval of definition. Since open dense sets can have very small
measure, this is a very weak property. However, it is absolutely general,
depending on no assumptions other than real analyticity. This shows that real
analyticity alone suffices to imply some regularity, and leaves open the ques-
tion of how much more regularity can be proved in general. To show that real
analyticity is essential, we prove, by constructing a class of examples, that no
such theorem is true in the C* case. The regularity result implies a similar
regularity theorem for time-optimal controls.

1. Introduction

Existence theorems for optimal controls usually give existence of such a con-
trol in some large function space (e.g. the space of all bounded measurable
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functions on an interval). However, in problems where one can actually com-
pute the solutions explicitly, they often turn out to be much more regular than
might have been expected from the existence theory. This raises the question
whether optimal controls really can be as pathological as the general theory
appears to allow, or perhaps there are general regularity theorems that limit
the possible pathologies that can occur.

The purpose of this note is to argue that there exists a fundamental distinc-
tion between systems of class C* and real-analytic systems. In the former
case, we show by means of a simple example that no a priori restriction on
the pathology of optimal controls is possible, in the sense that, given any
measurable control 7, then one can construct an optimal control problem of
which 7 is the only solution. For real-analytic systems, on the other hand,
general regularity theorems exist. We establish this by proving one such
theorem. The precise regularity property of optimal controls obtained in the
theorem is rather weak: if a control u(-) is defined on an interval [0, T], let
us say that u(-) has property (R) if there is a relatively open dense subset Q
of [0, T'] such that u(+) is real-analytic on 2. Our regularity theorem asserts
that, whenever it is possible to steer a point x; to a point x, with cost ¢, then
this can also be done by means of a control that has property (R). This state-
ment can obviously be applied if c is the optimal cost, in which case we get
the conclusion that, if there is an optimal control that steers x; to x,, then
there is one that has property (R).

We believe that our formulation of the regularity problem («find a class
® such that, whenever x; can be optimally steered to x,, then this can also
be done by means of a control in ®») is more natural than the simpler one
of asking for a class ® such that every optimal control is in ®. The reason
is that there are problems that have very pathological solutions because they
are very degenerate. (The most extreme case is that of problems where every
control is optimal. This can happen, e.g., if the control does not appear
at all in the dynamical equations and the cost functional.) For these problems,
the appropriate question is not whether al/ solutions are «nice», but whether
there is at least one «nice» solution. This is precisely captured by our formula-
tion. Naturally, when the optimal controls are unique, both formulations
agree.

The particular class ® given by our theorem is still very large since, for
instance, the complement of the set Q could have Lebesgue measure arbitrarily
close to 7. However, the main point we wish to make here is that real
analyticity alone, in the absence of any other hypothesis, already has some
nontrivial regularity implications. At the moment, it is an open question
whether stronger regularity properties can be proved under the same
hypothesis. The gap between the worse pathology that has been found in
examples (e.g. Fuller’s problem, cf. Marchal [9]) and our positive result is
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quite large. On the other hand, some partial knowledge is available which, for
some cases, gives better regularity. (E.g. bang-bang theorems for linear
systems, cf. Lee and Markus [8], nonlinear bang-bang theorems, cf. Krener
[7], Sussmann [14], and a general piecewise analytic regularity theorem for
time-optimal control of real-analytic systems x = f(x) + ug(x), |u| < 1, in the
plane, cf. Sussmann [15], [17], [18], [19].)

For simplicity, we will confine our discussion to time-optimal control of
systems of the form

1 X =f(x) + ug(x), lul <1,

where the state x evolves in a finite-dimensional manifold M of class C®, and
f, g are C™ vector fields on M. We call such a system real-analytic if M is a
real-analytic manifold and f, g are real-analytic vector fields. Our theorem is
actually true for more general systems x = f(x, #), with more general cost
functionals, but the proof is much more delicate and requires the use of dif-
ficult stratification theorems for subanalytic sets. The case considered here is
much simpler, but sufficient to show the main ideas. The general proof will
appear elsewhere.

2. An example

Let 7 > 0, and take an arbitrary measurable function »: [0, T] = [—1, 1]. We
will exhibit a system of the form (1), an initial state x; and a terminal state
X,, such that 5 steers x; to x, in time 7, and no other control does.

Define a function 6: [0, 7] — R by

) 0(t) = L’) n(s)ds, 0<t<T.

Let K = {(¢,0(2)):0 < t < T'}. Then K is a compact subset of R%. Therefore
there exists a C* function ¢: R>—> R such that ¢ =0 on K and ¢ >0 on
R? — K. We then take our system to be

(3.1 x=1,
(3.ii) y=u,
(3.iii) Z = ¢(x,),

where X, y, z are real variables, and the control u satisfies |u| < 1.

Letx; = (0,0,0), x, = (T, 6(T), 0). Then 7 steers x, to x, and, if 4": [0, T'] —
— [—1, 1] is any other control that steers x; to X, in time 7", then necesarily
T' = T and n' =  almost everywhere.
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3. The theorem

We now consider a control system of the form (1), where the variable x takes
values in a finite-dimensional, real-analytic manifold M, and f and g are real-
analytic vector fields on M. An admissible control is a measurable function,
defined on some interval of the form [0, 7] for some T >0, which takes
values in [—1,1]. If u(e):[0,T]—[—1,1] is an admissible control, and
v¥(+): [0, T] = M is a trajectory for u(+), such that ¥(0) = x;, ¥(T) = x,, then
we say that u(e) steers x; to x, in time T. If there exists a u(e) that steers x;
to x, in time 7, we say that x is reachable from x; in time 7. The set of all
such x is the time T reachable set from x,, and will be denoted Reach,(x,).
We will prove:

Theorem. Let f, g be C vector fields on the C* manifold M. Suppose that,
Jor the system (1), x,, x,, T are such that x, € Reach(x,). Then there exists
a control u() that steers x, to x, in time T and is such that u(+) is real-analytic
on some open dense subset of the interval [0, T].

Proor. We first show that, without loss of generality, we can make some ex-
tra assumptions and simplifications. Let L be the Lie algebra of vector fields
on M generated by f and g. For xe M, let L(x) = {X(x): XeL}. Since L is
a Lie algebra of real-analytic vector fields, M can be partitioned into maximal
integral manifolds of L, i.e. connected real-analytic submanifolds S such that
(i) whenever x € S, then the tangent space of S at x is L(x), and (ii) S is not
properly contained in any connected submanifold S’ that satisfies (i) (cf. [10],
[11], [16]). If S(x,) is the maximal integral manifold through x;, then the
vector fields f, g have well defined restrictions f, g, that are tangent to S(x;).
Moreover, every trajectory that goes through Xx; is entirely contained in S(x;).
Hence it suffices to prove the theorem with S(x;), f,g insteady of M, f, g.
Equivalently, we may assume that

(1) L(x) is the tangent space to M at x for every x € M.

This assumption will be made from now on.

Let us call a control u(e): [0, T]1 — [—1, 1] nice if u(+) is real analytic on
an open dense subset of the interval [0, 7']. Call a trajectory nice if it cor-
responds to a nice control. We are trying to prove that, if x, can be reached
from x, in time T, then x, can be reached from x; in the same time by means
of a nice trajectory. We claim that it is sufficient to prove the weaker state-
ment:
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(II) whenever x, € M, x, € M are such that x, can be reached from x,, then
X, can be reached from x; by means of a nice trajectory.

Indeed, if (II) holds, then we can consider, for given M, f, g, the «system
obtained by adding time as a new variable». That is, we let M = M X R, and
we let (x, £) € M evolve according to

(4.i) X = f(x) + ugx),

(4.ii) £=1.

Then Xx, is reachable from x; in time T for the old system if and only if
(x,, T') is reachable from (x;, 0) for the new system. Therefore, if we apply (II)
to the new system, we obtain the desired conclusion.

We now show

(11) if x, is an interior point of the set reachable from x,, then x, can be
reached from x, by means of a bang-bang control with a finite number
of switchings.

To see this, we first apply Chow’s Theorem (cf. [7], [16]) to the system

) X = —f(x) — ug(x),

whose trajectories are those of the original system traversed backwards. We
take e > 0 so small that every point reachable from x, by means of a trajectory
of (5) in time <e is in the reachable set from x; for the system (1). By the
positive form of Chow’s Theorem, there exists a nonempty open set Q such
that every x5 € Q is reachable from x, in time <e by means of a trajectory of
(5) which is bang-bang with finitely many switchings. Then Q is contained in
the set reachable from x; for (1). Let x, € Q be reachable from x; by a trajec-
tory ¥(e) of (1) that corresponds to a control u(e), defined on [0, 7T]. Let
{u,(+)} be a sequence of bang-bang controls, defined on [0, 7], which con-
verge weakly to u(s). Let {7,()]} be the corresponding trajectories of (1), with
initial condition v,(0) = x;. Then v, (T') € Q if n is large enough. Pick » such
that v,(T) € Q, and let x5 = v,(T). Then xj is reachable from x;, and x, is
reachable from x5, by means of bang-bang trajectories of (1). Therefore, x,
is bang-bang reachable from x;, and (III) is proved.

In view of the preceding observations, it suffices to prove that, if (I) holds,
then every point x, that can be reached from x; and belongs to the boundary
of the reachable set from Xx; is reachable by a nice trajectory.

Let such x,, x, be given. We can then apply the Pontryagin Maximum Prin-
ciple, which we first state in the form that will be needed here. Let T*M
denote the cotangent bundle of M, and let T# M be T*M with the zero section
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removed, i.e.
©) T*M = {(x,p):xeM,pe T*M,p # 0},

where T}FM denotes the cotangent space of M at x. Let

(M X+=f+g X-=f-¢g
Let

8.1) H.(x,p) = {p, X+ (),

(8.1i) H_(x,p) = {p, X-(x)).

Then H,,H_ are real-analytic functions on the symplectic manifold
T#M. Therefore, H. ,H_ give rise to Hamiltonian vector fields X %, X # on
T#M. The system (1) can also be written as

® x=vX_-0)+(1-vX.(), 0<v<l,

where the control v is related to u by
10) v= ! a-
= u).

We can then consider the Hamiltonian system associated to (9), i.e. the
system

an z=vXl@+ (1 - 0Xi,

where z = (x, p) € T# M. If () is a trajectory of (9) for a control v(s), on an
interval [0, T'], then any trajectory of (11) which is of the form ¢ — (v(¢), p(?)),
0 <t < T, is called a Hamiltonian lift of v. A trajectory (=) = (v(*), p(+)) of
(11), and corresponding control v(+), are called null-minimizing if, for almost
every t€[0, T], we have

(12) <p@), v(O)X-(v(®) + (1 — v@ONX + (v(1))) =
= min1 (p(@®), wX-(v(®)) + (1 = W)X+ (v(1))).

O=sws=s

The Maximum Principle says that if v(s) is a control on [0, 7], and v(») is
a corresponding trajectory of (9), such that ¥(7) is on the boundary of the
reachable set from ¥(0), then (v(¢), v(+)) has a Hamiltonian lift which is null-
minimizing.

Now let x;,x, be as above, and let v(e) steer x; to x, in time 7. Let
¥(*): [0, T] = M be the corresponding trajectory. Let-t — p(¢), 0 <t < T, be
such that (v(e),p(e)) is a null-minimizing Hamiltonian lift of (). Let
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(@) = (v(2), p(t)). We will show that v(e) is nice. In order to do this, we first
have to construct a stratification of 7'# M which has some special properties.
We partition 7*M into five sets S}, S,, Ss, Sy, Ss by letting

x,pes8, if Hi.(x,p)=H_-(x,p)=0,
x,p)es, if Hi(x,p)=0 but H_(x,p)#0,
x,p)esS; if H_(x,p)=0 but H.(x,p)#0,
x,pesS, if H,(x,p)H-(x,p)>0, and
x,p)esSs if H.,(x,p)H_(x,p)<O.

Each of the sets S; is semianalytic. Therefore there exists a real-analytic
stratification I, of 7% M such that the strata of I, are semianalytic subsets
of T*M, and each stratum of X, is entirely contained in one of the S;.
(cf. [3D).

We now define a sequence of stratifications I, X4, . .., each of which is
obtained from the preceding one by refining it in a suitable way. The procedure
for refining a stratification is as follows. Let ¥ be an arbitrary C* stratifica-
tion of T#M, whose strata are subanalytic sets. Let Se€ L. We partition S
into five sets B;(S), Bx(S), B3(S), B4(S), B5(S) as follows: if (x,p)eS, we
let (x, p) € B,(S) if both vectors X %(x, p), X .(x, p) are tangent to S; we let
(x, p) € By(S) if X %(x,p) is tangent to S but X #(x,p) is not, (x,p) € B4(S)
if X*(x,p) is tangent to S but X %(x,p) is not, (x,p) € B,(S) if X%i(x,p)
and X ?(x, p) are not tangent to S but some convex combination of them is,
and (x, p) € Bs(S) if no convex combination vX *(x,p) + (1 — v)X D),
v e|[0, 1], is tangent to S. It is clear that the By(S) are subanalytic subsets of
T* M. Moreover, on the set B,(S) we can define a function Uy, 50 B4(S)— (0, 1)
by letting v, s(x, p) be the unique v such that 0 <v <1 and vX #(x,p) +
+ (1 — )X %(x, p) is tangent to S. The function Uy, 5 is obviously subanalytic
(i.e. its graph is a subanalytic subset of 7#M x R). Moreover, U4, s is real-
analytic, in the sense that, if (X, p) € B4(S), then there is a neighborhood W
of (¥, p) in S, and a real-analytic real-valued function won W, such that v, s = w
on WN B,(S). (To see this, choose a C* coordinate chart (z;, - . . , Z,,) that maps
a neighborhood W of (%, p) in T # M diffeomorphically onto the unit cube in
R™, in such a way that (%, p) is mapped to 0, and the set W = {ziz;=--- =
z, = 0} is, for some r, a neighborhood of (¥, p) in S. Relative to (zy, . . ., Zm),
the vector fields X %, X * have components o7, ..., 0, and oy, ..., 0,,. Since
(%, P) € B4(S), there exists a j such that 1 <j < rand o;" (¥, p) # 0;(X, p). Then
we can assume, after shrinking wif necessary, that o;" (z) # o/ (z) forallze w.
For ze W, let

Uj+ (2)

(13) W(Z) = 6j+ (z) _ Uj_ (z) '
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Then W is real-analytic on I7V, and

(14) wo; + (1 — W)o/'= 0.

If (x, p) € By(S)N W, then v, s(x,p) also satisfies

(15) Vs, s(x, D)o (x, p) + (1 — vy, 5(x, P))oj" (x, p) = 0.

Therefore v, 5(x, p) = W(x, p). Hence we can take w to be the restriction of
w to W.) In particular, if B4(S) = S, then v, g is real-analytic on S.

We now describe the procedure for refining a stratification. If X is a real-
analytic stratification of T#M by subanalytic sets, we call £ good up to
codimension k if every stratum SeX of codimension <k is such that
S = By(S) for some i€ (1,2,3,4,5). We call £ good if £ is good up to
codimension », where » = dim T*M = 2dim M. If ¥ is good up to codimen-
sion k, we can refine T by letting & be the set of all sets B;(S), where S ranges
over all the strata of £ of codimension >k, and ie {1,2,3,4,5}. Then & is
a locally finite family of subanalytic subsets of T#M. Therefore there exists
a C* stratification £ of U (E: E€ &} by subanalytic sets, such that every E€ &
is a union of strata of £. We then define L to consist of all the strata of X
of codimension <k, as well as all the strata of £. Then L is a C* stratification
by subanalytic sets. Moreover, I is good up to codimension k£ + 1. (Indeed,
if SeX and codimS <k, then SeX and so S = B;(S) for some i. If
codimS = k + 1, then S € E for some E€§, i.e. S < B;(F) for some i and
some F € X such that codim F > k. But then codim F = k£ + 1 and S is relative-
ly open in F, so that B;(S) = B;(¥)N S, and then B;(S) = S.)

We apply this refining procedure successively, starting with X, and con-
struct C* subanalytic stratifications X;, X,, ... such that X; is good up to
codimension k for each k. If » = dim T#M, we let T = £,, so that I is good.
Hence L is a C* stratification of T#M by subanalytic sets, such that every
stratum S € X is subanalytic and satisfies S < S; for some #, and S = B;(S) for
some j. ‘

We now show that £ contains no stratum S such that S € S; and S = B,(S).
Indeed, suppose S € S;, S = B,(S), Se X. For each C® vector field X on M,
we can consider the lifted Hamiltonian vector field X # i.e. the Hamiltonian
vector field that arises from the Hamiltonian function (x, p)— {p, X(¢)).
Then X = X * is a Lie algebra homomorphism. Since X # and X # are tangent
to S (because S = By(S)), it follows that X # is tangent to S for all XeL.
(Recall that L is the Lie algebra generated by f and g.) If X€ L, then X *is
tangent to S. Therefore the derivative of H_ in the direction of X # vanishes
throughout S (because H_- =0 on S). So (p,[X-,X](x)) =0 for all
(x,p) € S. Similarly, {p, [X+,X](x)) =0 for (x,p)eS, XeL. Finally, we
know that (p, X-(x)) = (p, X+(x¥)) =0 if (x,p)€ S, and so {(p, X(x)) =0
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for all (x, p) € S, X € L. But then, if we pick (x, p) € S, we have {p, X(x)) = 0for
all XeL,i.e. (p,0) =0 forall § € L(x). Since L(x) = T,,M, we have (p,0) =0
for all 6 € T, M, and so p = 0, contradicting the fact that (x, p) eT* M.

Let us now return to our null-minimizing 'Hamiltonian_ trajectory (), that
corresponds to a control v(+). Let {(+) and v(s) be defined on [0, T']. For each
t, ¢(¢#) belongs to a stratum S(¢) of L. Let k(¢) = dim S(¢). Since £ is a
stratification, every ¢ has a neighborhood I such that k(T) > k(t) for 7el.
(Otherwise, there would exist a sequence {¢,} such that ¢, — ¢ and k(¢,) < k(¢).
Since I is locally finite, we may pass to a subsequence and assume that all
the S(t,) are one on the same stratum S. Then dim S < dim S(¢), but {(¢) € S(¢)
and ¢(¢) € Clos S. So S(¢) < Clos S, and then dim S(¢) < dim S, which is a con-
tradiction.)

We now let Q be the set of those ¢ € [0, T'] such that, for some € > 0, the
stratum S(7) is the same for all 7€ (f — ¢, ¢ + )N [0, T]. Then Q is relatively
open in [0, T]. We claim that Q is dense. To see this, let £€[0, T], € > 0.
7' €(t — e, t + €)N[0, T] be such that k(') = max {k(7): |7 — t| < e, 7€[0, T1}.
We know that k(7) = k(') for 7€, where I is some interval that contains
7’ in its interior relative to [0, 7], and 7 < [0, T']. We can also assume that
IS (t — ¢t + €), and then k(7) = k(') for 7 € L. It then follows that S(7) = S(7')
for 7 € I. {Otherwise, there would exist a sequence {7,} suchthat r, e, 7,— 7,
rel, and S(7,) = S for some S such that S # S(7). But then {(7) € Clos S but
¢(7) ¢S, and so S(7) € Clos S, S(7) # S. Therefore dim S(7) < dim S, con-
tradicting the fact that k(7) = k(7,).) Then 7' € Q, and so Q is dense.

We now prove that v(e) is real-analytic on Q.

Let t €Q, and let I be an interval such that t e I < [0, T], I is relatively open
in [0, T, and S(7) = S(¢) for all re L. Let S = S(¢). Let {, ¥ be the restrictions
of {,vto L.

We know that S is contained in one of the sets S;. Since ¢ is null-minimizing,
at least one of the functionals H ., H- vanishes at {(¢). Hence S is contained
inS;or S, or S;. If SS S, then H, =0 on S and H_ never vanishes on S.
Since { is contained in S and is null-minimizing, it follows that = 0. If
S € 8,, it follows that ¥ = 1. Finally, we must consider the case when S € S;.
In this case, we know that S = B;(S) for some i. Also, we know that X contains
no stratum S’ such that S’ € §; and S’ = By(S). Hence S = B;(S) for some
i€ {2,3,4,5)}. Since { is contained in S, the tangent vector {(7) (which exists
for almost every 7 e I, and is a convex combination of X %(£()) and X *(£()))
is actually tangent to S. This excludes the possibility that S S Bs(S). Hence
S = B;(S), where i=2 or i =3 or i = 4. If i = 2 then ¥(7) must be equal to
0 for all 7el. Similarly, if i =3 we have #(r) =1 for 7el. If i =4, then
(1) = v,, 5(£(7)). But then { is an integral curve of the vector field V' given by

(16) V(x, p) = vy s(x, D)X E(x, p) + (1 = vy s(x, p))X L(x, )
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for (x, p) € S. Since v, g is real-analytic on S, the vector field V is real-analytic
on S, as well as tangent to S. But then 7 — {(7) is real-analytic, and so ¥ is real-
analytic.

This completes the proof.
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