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Introduction

Recently, Baily has established new foundations for complex multiplication in
the context of Hilbert modular functions; see [1]-[4]. However, in his treat-
ment there is a restriction on the class of CM-points treated. Namely, the
order of complex multiplications associated to the point must be the maximal
order in its quotient field. The purpose of this paper is two-fold: (1) to remove
the restriction just mentioned; (2) to recover a result of Tate on the conjugates
of CM-points by arbitrary Galois automorphisms of @ (the algebraic closure
of @). This is done without the use of moduli. )

An important feature of our approach is that, at the outset, we introduce
a projective system of disconnected arithmetic quotients (Hilbert modular
varieties) and a Q-structure compatible with certain automorphisms of the
system; see [10]. On each connected component, projective co-ordinates are
given by Hilbert modular forms with cyclotomic Fourier coefficients. Affine
co-ordinates are weight zero quotients of these and are called «arithmetic
Hilbert modular functions».

The CM-points are naturally grouped into orbits of certain idele class
groups. Our main result describes how these orbits are permuted by Galois
conjugation. It follows quickly that the value of any arithmetic Hilbert
modular function at a CM-point z is abelian over the reflex field K’ attached
to z. Combined with recent, deeper work of Baily, which provides congruence
relations among such values, our results lead to a complete description of the
conjugate o(z) for every CM-point z and every ¢ € Gal (Q/K"). On the other
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hand, if o is a Galois automorphism that does not fix K’, then the complete
description of o(z) involves a connected component ¢ in a group of finite idele
classes; our results lead to Tate’s description of ¢2; see Chap. 7 of [11].

Notations
i: a totally real number field of degree » > 1 with distinct embeddings
ert->R for j=1,2,...,n @ =(e},...,00.
0: the ring of integers in f; = 0 ® Z, where Z = invlim Z/mZ.
A Q ®,2, and for any number field L, L(A) = L @ o .
G: Weil’s ground field restriction of GL, from f to @, i.e., the group
scheme

A — GLy(A®,0)

for every commutative ring A with 1.

Z: the center of G; Z = the closure of Z(Q) in G(&).
9: the complex upper half plane.
X: X = (C — R)" has 2" connected components, one of which is " = X ;..

G(R)*: the connected component of 1 in G(R); G(Q)+ = G(@Q)NG(R)*. Via
®°, G(R) is isomorphic to GL,(R)", which acts transitively on X by
linear fractional transformations in the components.

U(o): stabilizer in GL,(R)" of a point o in §".

IK: a (varying) compact open subgroup of G(&') such as

K@) = (g€ G2):g - 1ev- M®)},

where » is a finite idele.

V= G@Q)+\(X+ X G(A)/K) = G@Q\(X X G(~)/KK); see 2.1.2 in [8].

V= G@+\(X+ X GA)/Z) is the limit of the projective system of
V,’s. Given 3 in X and x in G(~') we let [3,x] denote the corres-
ponding point of ¥ and let [3, x],, denote its image in V.

W,= G@Q+\(GLy (R)" x G()/K) = G@Q\(GL,(R)" X G(A)/K).

1. Galois Action

The idea used in [10] to introduce Q-structure on ¥, in case f = Q has been
extended by Baily to an arbitrary totally real field f and to the subgroups
K = K(»); see [3, §5]. We wish to treat arbitrary open compact subgroups K
of G(A).
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Define the automorphy factor j(g, 3) to be the functional determinant: if
a b
= GL,(R)", X,
g [c d} € GL,(R) 3€
then
N
J(&3) = j];_']; (stj + dj)—z(ajdj - bjCj).

For arbitrary open compact subgroups K of G(~”), one defines as in [2, §5.1]
the graded algebra @(IK) whose components Q(IK, w) are the spaces of func-
tions f on W, with values in C such that, if g€ GL,(R), xe G(AY):

(@) f(gu,x) = f(g, x)j(u, 0)" for all u in U(o);
(ii) the functions \,f: g(o) - f(g, x)j(g, 0) ™" are holomorphic in §" and
have Fourier expansions of the form

MSQ) = 2] a(0)e*™ED,
¢

where ¢ runs over a lattice in ®°(f") C R” intersected with the cone of
squares in R”, and (4, 3) is the scalar product in C".

By Q(K; @Q,,) we denote the subalgebra of forms with Fourier coefficients
a,(f) € Q,;, the maximal abelian extension of @, for every x € G(A’). Among
the arithmetic forms are certain Eisenstein series; namely, those forms f on
W such that each \,f is a Q,;-linear combination of the classical Eisenstein
series introduced by Kloosterman; see [1, 5.2] and [2, 4.3].

1.1 Lemma. If m e G(&), then R(m) gives an isomorphism from Q(K) to
Q(mKm ™) and maps Q(K; Q) onto R(mKm™'; Q,p).

This follows at once from the following identity for x in G(&/) and f in
Q(K):

(1) >‘xR(m)f= )\xmf

1.2. We define Q-structure in two steps: (1) @(K; Q,;) spans G(K) over C,
so there is a natural Q,-structure on V¥ (and the action of G(A”) on V by right
translation is defined over Q,; according to Lemma 1.1); (2) there is a semi-
linear action of Aut(Q,;) on @(K; Q,,) that commutes with the action of
G(#Y) and with the natural inclusion maps. This has already been done in case
K = K(»); see [3, §5] and [10, §2]. Therefore, it will suffice to show for K
containing IK(V) that (1) holds and that the action of A.ut (Q,;) on @(K; Q)
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preserves @(K; Q,p). The latter is obvious: since the action of o € Aut (Q,;) on
G(KWV); Q,p) commutes with the action of G(AY), the stabilizers of f and of
of in G(A) are the same.

To show that ®(K; Q,;) spans @(K) over C, first define a projection

T QK@) — Q(K)

by averaging the finite set of operators R(m), m € K/K(N). Then, by Lemma
1.1, = maps Q(K(N); Q,p) onto R(K; Q,p) so

Q(K) = m(Q(KIN); Qzp)) ® € = Q(K; Q) ® C.

Since the Galois action is semi-linear, i.e., o(af) = o(a)o(f) for a € Q,;, and
f€Q(K; Qgp), the algebra of invariants, call it @(K)®, spans Q(K; Q,;) as a
vector space over QQ,,; see [5], AG, §14. By the Fundamental Theorem of
Invariant Theory, @(K)® is finitely generated, so Q(K)® is a Q-structure on
Q@(K) and determines a Q-structure on V, . For every nested pair of open
compact subgroups K ¢ K’, the covering map ¥V, = V. is defined over Q,
and for every m in G(&), the maps R(in): Vi = V- 1xm are defined over Q.
Thus, the projective system of V,’s along with all the automorphisms R(m),
m e G(~), has a Q-structure.

1.3. Originally, the action of Aut (Q,;) on Q(K(»); Q) was defined with the
help of Eisenstein series. Having established its existence, we can give a
natural description of this Galois action. Define the cyclotomic character

x: Aut (Qgy) = 2%
by X = ¢ for every root of unity ¢ € C. Let

X(o) O

-1
0 1] in GA).

u=u(o): = {

Then, for every x in G(~) and every f in G(K; Q)
1) M(af) = N f)’s

where the superscript o replaces each Fourier coefficient a,,(f) of \,,(f) (at
the cusp ) by its image a,,(f)° under o. To prove (1), it suffices to treat the
special case where f is an Eisenstein series g@, in the notation of [3, §5.1],
because every automorphic form is a quotient of isobaric polynomials in the
Eisenstein series attached to sufficiently small subgroups K. In view of 1.1(1),
since R(x) commutes with the action of ¢, we may take x = 1. When f = E~§@
and x = 1, then (1) results from a routine calculation using, in the notation
of [3, §5.2] (where x(o) is written §), the transformation laws:
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@) Xl(ég)" = M50
(i) R@Es =8, -

The main point of the calculation is that u(6 - €) = 6 - u(S).

2. CM-Points

Recall that & € X is called a «CM-point (= special point) of X» if there is a
totally imaginary quadratic extension K of f and a f-algebra embedding g of
K into M,(¥), the algebra of 2-by-2 matrices over {, such that % is an isolated
fixed point of g(K*) C GL,(f) = GL,(R)". Then q is the regular embedding
with respect to a basis (7, 1) of K over f; call it g,. View g = g, as a map of
algebra varieties over ¥, so it alo embeds K(2~/): = K ® Z, the finite adele ring
of K, into Mz(f(Af )). Let T be the maximal Q-torus of G containing g(K ™),
so g(K*) = T(Q). Note that T(R) is the isotropy group of % in G(R).

A dlifting to K» of ®°: " > R" is an embedding ®: K" — C", of algebras
over K, that restricts to ®° on f". View K as embedded in K" diagonally. To
h e X fixed by q,(K*) associate the pair of complex conjugate liftings {®, ®}
such that & = &(7) = ®(7) for some 7€ K — f. Write K;, = K and &, = ®.
Observe that if [®(7), x] = [®'(7'), 1], then for some ¥ € G(Q), ®'(y - 7') = B(7),
so either v+ 7' = 7 or v- 7' = 7, but not both; thus = ® or & = ®, so the
pair {®,, ®,} depends only on [A, x].

By «CM-point (= special point) of ¥» we mean a point z = [A, x] in V with
x e G(~) and h a CM-point of X. To such a point [4, x] with & = &(7), assign
the «CM-type» (K, ®,) = (K}, ®,> and the embedding g*: K(&) = M,({(~))
defined by b — x~'g,(b)x. Since vg,vy" ' = Gy for all v € GL,(¥), it follows
that g7 depends only on z = [®(7), x], so we write r,: = g7.

Suppose that ¢ € Aut (C). Then there is a unique map =, permuting coor-
dinates so that ¢ o 7,8° = ®°. The map ® ~ ¢®: = ¢ o 7,® permutes the
liftings ® of ®° to K.

Main Theorem. Let h = &,(7) be a CM-point of X of type <K, ®,). For
each o € Aut (C) there exists b € K(~) such that

olh, x] = [0®4(7), ¢, (b)x]

for every x e G(A).

3. Proof of the Main Theorem

3.1. The Main Theorem will be proved using two technical lemmas. Since
the action of ¢ € Aut (C) on ¥V commutes with right tra:-lations by elements
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of G(~'), we can suppose x = 1. Also, since [A, 1] is right-invariant under
q(K*) = T(Q) C G(~)), sois a[h, 1]. In fact, every element [®(7), u] € V, with
® lifting ®° to K and u in T(A), is right-invariant under T(Q) because if
A e T(®), then [®(7), u] = N®(7), Au] = [®(7), u\]. Our first lemma is a con-
verse to this.

3.2. Lemma. If z€ V is right-invariant under every t € T(Q) C G(&), then
z = [®(7), u] for some lifting ® of ®° to K and some u e T(2).

Proor. It is well known and easy to check that z is a CM-point, say of type
(K',®'y = (K', ®'). Write z = [®("), u'] with 7’ in K’ — {, u’ in G(&). Let
q' = q.:K'—= M,(), and let A’ = ®'(7'). The proof involves three steps:
@) K'=K;
(ii) one can choose 7’ = 7;
(iii) if 7' = 7, then u’ € U(T)(Q) - T(A), where IU(T) is the normalizer of
T in G, so one can choose u € T(A).

Step (). The conjugation Int (u'): x = u'x(u’) ~ ! takes g(K ) into ¢'(K") *)Z C
q'(K'{(AN)) C q'(K'(WY)) because if £ € g(K™), which is embedded in G(4), then
[#', u't] = [A', u'] only if Int (u")t € YZ with v € G(Q) such that Y4’ = A’. Since
Int (') acts trivially on g(f(&)*) = Z(A) = q'(F(~)>),

Int (u): (K @ )~ ¢'(K' @ A)

induces an isomorphism m of f(A')-algebras from K(A) to K'(~). In par-
ticular, for each finite place v of k, then

K®L,=K'Qf,,

Since K® f, = @ K,,, (w ranges over the places of K over v), and similarly
for K’, a prime of f is totally decomposed in K iff it is totally decomposed in
K’. An easy application of Cebotarev’s Density Theorem shows that K’ = K;;
see Ex. 6.1 on p. 362 of [6]; since K and K’ are quadratic extensions of f, they
coincide. For the case at hand, the result is Satz 18 of Hilbert’s paper [9]; cf.
[2, pp. 86-87].

Step (ii). Since G(Q) acts transitively on K — f, one gets
[®'(7), u'] = [®'(7), vu']

for some vy € G(QY). Therefore, we can choose 7/ = 7.

Step (ili). Suppose that 7’ = 7, so ¢’ = q. Fix e K —  with A> € £*. Then
m(N) and m(\ + 1) both lie in KX c£(£*), where «cf(f*)» is the closure of £*
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in #(A)* . Write m(\) = N'¢ with N’ €K, { ed(t*)and similarly m(\ + 1) = \, {,.
Then N’ = a\ + b for some a, b in f with a # 0; however, (\')*> = \2/¢2 lies in
KN¥HA) =1, 50 2ab\ = 0; hence N’ = a\, {2 = 1/a?, and we may assume @ = 1,
ie., N =X\, {?=1. Write \; = ¢\ + b, with a;, b, in . Since m(: + 1) =
= m()\) + 1, it follows that b, {; = 1, and { = a;{; must lie in f. Therefore,
m(\) = £\ and m must be either b ~ b or b — b. Since T(2) is its own cen-
tralizer in G(2), it follows that «’ must lie either in 7(~") or in q()T(A), where

-1 7+7
Q(n)-=[ 0 1 J

represents the non-trivial coset of T(Q) in IU(T)Q).
If u’ = g(n)u with u in T(A), then [®'(r), u’] = [®'(7), u] and we set & = &',
otherwise we set ® = &', u = u'.

Note. Lemma 1 of [4,§2.3.1] implies a stronger version of Lemma 3.2
above. Namely, one can weaken the hypothesis of Lemma 3.2 by assuming
only that z is right-invariant under a single non-central element of 7(Q).

3.3. Henceforth, the variable ® will denote a lifting of ®° to K. If
D= (155 Pn)s
then one defines the «type-norm» N,: K — C to be the product of coordinates, so
Ng:b - @1(b)- - - @u(D).

Let B_ , be the projection of &(r) X T1 () into V, and let B, be the union
of all the orbits B, ;. Thus far, we have shown that ¢ preserves B,: in fact,
0B, s, = B_ ; for some ¢. We must show that & = 0®,.

Let K be any open compact subgroup of G(2/). One sees easily that there
exists a Q-rational holomorphic modular form y for K, of non-zero weight
w, such that the zeros of y, viewed as a subset of Vj,, are disjoint from
pr(B,). Fix ¥, w. As in [4, §3.4], one defines for m in G(A):

Az = gedy(m) ~*(det (m)),
where (b) denotes the ideal associated with b € f(&)*,
gedy(m) ™' = {(bet:mbeM,()}
is an ideal of f, and one defines a modular function y,, by:

Ym((8(0), u]): = NQ™ (g, um)/¥(g, u), (g€ GLy(R)", u e G)).
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Suppose that ze B, 5. Let
M=r,(b) =q() with beK*.
Then
0)) d’M(Z) =r". Nq;(b)w

for some rational number r independent of z € B,; see [4, §3.4].

To show that & = ¢®, we construct a coordinate function fthat is constant
on each orbit B, 3 and has value there N, (b)”. 1t is necessary first to choose
b such that N (b)” # N (b)” unless & = ®'. According to [3, §6.3], for some
b, in K, the 2n images of b, under the embeddings of K into C are pairwise
relatively prime. One can take b = b,.

With M = g, (b), let K': = KNM-K-M™!, and let f: = r~"Y,,. Then fis
defined over Q on V., and restricts to the constant Ny (b)” on pri(B_ 4), s0
the orbits prlK,(BT’ ) for distinct ® must be disjoint, and therefore the orbits
BT,{I, must also be disjoint.

3.4. Lemma. If o[®,(7), 1] = [®'(7), u] for some u e T(~), then & = ad,.

Proor. Choose b and f as in section 3.3 and write K in place of K’, so that
S(®(7), 5]) = N4 (b)" for every s in T(~) and every lifting ®. We claim that
if ® = 0P, then

) N, (b)” = N(b)".
Indeed, the left side is
o(Ng, (0)") = af ([2(1), 1])s
while the right side is
S(2'(7), uly) = fo((®,(n), 11,),
but gf = fo. Since ® — N, (b)” separates liftings & of ®° to K, it follows that
' = 09,

3.5. Summary. Since G(2/), acting on the right, commutes with o, we may
suppose by section 1 that z = [®,(7), 1], so that z is invariant under 7(Q)
acting to the right. Then o(2) is also invariant under 7(Q). Thus, by Lemma
3.2, 0(z) = [®'(7), u] for some &’ lifting ®° to K and some u in T(~A'). Then
Lemma 3.4 shows that ®' = ¢®,, which proves the Main Theorem:

a[24(7), X] = [024(7), g.(b)x]

for some b in K(A). In other words, o(B, 4) = B, 5.
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4. Conclusions
We now derive some consequences of the Main Theorem.

4.1. LetT = Aut(Q), and let z € ¥ be a CM-point of CM-type, say, <K, ®).
From the Main Theorem, since the B, 4 are distinct, the isotropy group of z
in T', call it T',, is contained in the isotropy group of &,

I'y:={oel:o® = ®}.

Thus, the field L, generated over @ by the co-ordinates of z must contain the
field K, of all algebraic numbers fixed by I',. The field K, is the reflex field for
the CM-type (K, ®) i.e., the subfield of @ corresponding to the isotropy group
of tr,, the linear form given by the sum of the co-ordinates of ®; see [11, p.
23]. We can now show that L /K, is abelian. Let

IK): = K(A)* JL(K™).

4.1.1. Theorem. The field extension L,/K, is abelian. Moreover, its Galois
group is embedded naturally into I(K).

ProoF. Note that J(K)=K(A')*/K*(t*) and define b,:T —I(K) as
follows: for o €T, let b (o) be the unique element b of I(K) that satisfies

0] o[®(7), x] = [0®(7), q.(b)x] = [0®(7), xr,(D)].

Using the transitivity of G(Q) on K — f C X, one checks easily that b, (o) is
independent of 7. Moreover, by straightforward calculation,

) bg(00") = b,.5(0)bg(0").

Thus, b, restricts to a homomorphism on Iy, and one sees at once that the
kernel of b,|T", is I',. Thus, L, is abelian over K, and b, embeds the Galois
group I'y/T", into I(K). For a more classical argument, see [4, §4]. Note that
I', and hence L, depend only on the CM-type of z.

4.2. The Reciprocity Law. For any number field Flet NRbe the norm residue
symbol relative to F. Suppose that z is a CM-point in V of type (K, ®) and
let (K', ®') be the reflex type, so K’ = K; see [11, p. 23]. Let N, be the reflex
type norm (= product of the components of ’). Then the image lies in K. Since
@' extends trivially to K'(A) = K’ ® A/ by linearity in A/, Ny, also extends.
Take 0 € Gal (Q/K’) and a finite idele s of K’ such that NR,.(s) = 0| K.
Recent work of Baily shows that, if L,/K' is an abelian extension, then

@ Ny (5)L(K™) = by(0).
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In view of 4.1, however, L, is always abelian over X', so (1) holds without
restriction on the CM-point z. This is essentially Shimura’s reciprocity law
restricted to the Hilbert modular case.

4.3. The Type Transfer. Let p denote complex conjugation, and let [$] be the
set of components of any lifting ®. Following [11, p. 164], one defines Tate’s
«type transfer» on I': = Gal (Q/Q),

t5: T = Gal (K,;,/K).

Choose for each ¢ €[®] an element w, eI such that ¢ = w,| K, and let
W,,: = pw,. Then, for oeT,

tylay: =T w tow, - Gal(Q/Ky),  (pe[®]).

By Theorem 1.1 of [11, Chap. 7, §1], if x € K'(#~) and if ¢ € Gal (Q) restricts
to NRy.(x~ ") on K, then

(1) NR, 0 Ny (%) = 14(0).

If o fixes @, then #,(0) = NRK(bq)(o)’l) according to 4.2(1). In general, let
f(0) denote the class in K(A) ¥ /(K *) such that t5(0) = NR(f4(0) ™), and
let ¢ (0): = by(0)/f5(0).

4.4. The rest of the paper is devoted to a proof of Tate’s result: ¢, (0)*=1. We
begin by collecting properties of u, with u = b, f or c¢. Permissible values of
u are marked parenthetically. Recall that X is the cyclotomic character, defined
in 1.3.

In case u = f, the properties below are proved in [11, Chap. 7]; the case
u = ¢ follows from the other two cases.

4.4.1,. uy(o0') = u_.4(0)ug(o"), u=0>,f0).
Proor. For u = b, this is 4.1 (2).

4.4.2,. ugy(p)=1, u=>5,f0.

Proor. For u =b. Choose g, g’ in G(R) such that

g(0) = ®(r) and ¢g'(0) = p®(7).

It suffices to show that p[®(7), 1] = [p®(7), 1], i.e., if f; and f, are Q-rational
modular forms of weight w for some K, and if f,(g, 1) # 0, then

(1) p(fl(ga 1)/f2(g, 1)) =fl(g” 1)/f2(g” 1)
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By definition of G(K, w),

) J(8,0)7"fi(g, 1) = Fy(g(0))
for a holomorphic Hilbert modular form F; = \ f; for G(Q) N K acting on ",
i=1,2.

For any Hilbert modular form F with Fourier expansion

F() = Zya(N)e*™ ™9,

the function F"_(gl: = F(—}) has complex conjugate Fourier coefficients to those
of F(3), i.e., a(\) = a(\)* in place of a()\). Therefore,

3 p(F(2(7)) = F*(—p®(7)).

Let f=/f;(=of), F=N(f)andu =[5 1] (=u(p), ¢f. 1.3). By 1.3(1) with
0 = p, X = u, then \;(f)* = N\, (f), so (¢f. (2))

O] J(h, 0)"F?(h(0)) = f(h, u).
Since u € G(R), one has f(g’, 1) = f(ug’, u); hence,
) f(g's 1) = j(ug’, 0)"F*(—p®()).

Combining (2), (3) and (5) gives (1), as required.
4.4.3,. If oK = K, then ug_ _,(d") = (u4(c"))°.

PRrOOFFOR u = b. This results from transport of structure. Our construction
of Vas G@Q)\(X x G(~)/Z) depends on the action of G(Q) = GL,(f) on X,
which is determined by ®°: f —> R, so write ¥ = V(®°). Similarly, write

W(@°) = G@Q\(GLy(R)" x G(~)/Z).

Note that of = f. Identifying G(~') with GL,(f(~)) we see that ¢ induces an
automorphism of G(A') and that 1 X o induces isomorphisms

t,: V(@%) - V(@%™") and 1, W(P%) — W(@% ).

We claim that 7, commutes with Galois action on V, i.e., ¢, commutes with
Galois action on @(K; Q,;). In the notation of §1, if fe R(K),

¢)) Mo 2y) = NS

Thus, the pullback via ¢, preserves Q,,-arithmeticity of forms. Suppose that
o' € Aut (C). Our claim amounts to

) o'(f o t,) = ('f) 0 t,.
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To check this, take any x e G(A'); recall that with u = u(c’), 1.3(1) gives
M ('f) = (N S)7'; apply A, to (2), transform the result by 1.3(1), and by (1),
and observe that the equivalent holds because Aut (C) fixes u.

Apply t,0" = 0't, to [®(7),1] to get, for ¢’ € Aut (C),

3) [0'®(7), 0(q,(by (6] = [0~ 1(0(7)), Gogry Dy~ 1 (@]

From 0(gAb)) = . (0(b)) it follows that by _,(¢") = o(bg(0")), as required.
4.4.4. cy(0)cy(0) = 1.

Proor. For u = f, the following is proved in [11]; see Chapter 7, Theorem
2.2:

(1), Uy (0)ug (0) € X(0)L (K™).

Therefore, it will suffice to check (1),.
Let 7wy (V) be the set of connected components of V. We identify 7, (V') with

mo(E(A)* /E7)/mo(Z(R)) = o (E(A) ™ /£Y)

via the determinant, as in (2.7.1) of [7]. By our definition of Q-structure on V,
each connected component is defined over Q,, . Thus, the effect of ¢ € Aut (C)
on wy(V) is determined by o|Q,,, namely, to multiply by X(¢). Thus, if
o[®(7), 1] = [0®(7), ¢,(a)], then

) aa” = det (q,(@)) € x(0)L(K™).

Since by (0) = a - L(K™), (1), follows.
4.4.5. If 0@ = 0'®, then c4(0) = c4(0").

Proor. In case ¢’ = 1, the required identity, c,(d) = 1 is equivalent to the
reciprocity law 4.2 (1); see 4.3. In general,

1) cp(07'0") = cz(c ),

since both sides equal 1. Apply 4.4.1. to conclude.

4.5. Theorem. The map b,: Aut (C) — K> Jd(K™) defined by
o[®(7), 1] = [0®(7), g, (b5 ()], (reK -1,

satisfies

NR(by(0) 1) = 1,(0).
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Proor. Having now verified the necessary properties of by (0), etc., we can
proceed as in Chapter 7 of [11]. It suffices to show that cq,(a)2 = 1. Thus, in
view of 4.4.4, one requires c (o)’ = c5(0). By 4.4.5, c,(0p) = c4(po); hence,
by 4.4.1, and 4.4.2, it follows that cgy(0) = C,5(0). Since p® = ®p, one can
use 4.4.3; to get ¢, (0)° = c4(0), as required.

Notes. (i) We used 4.4.3. only with ¢ = p, and this case is easy: apply ¢’ to
the identity [®(7), 1] = [®(7), 1], and use the Main Theorem along with
g-(a) = q.(a) to get

by(0'Y = b,4(0").

(ii) In [2], the restriction to CM-points with maximal associated order arose
from difficulty in proving that a CM-point and its conjugates have the same
associated order. We have circumvented the problem; however, it is easy to
recover this result. The order associated to a CM-point z = [®(7), x] is

R(z): = KNr; \(My®)),

where r,(b) = x"'q.(b)x. By our Main Theorem, for every o€ Aut(C),
Toy = I'z» 80 R(0(2)) = R(2).
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