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1. Introduction

Familiar tools in Fourier Analysis such as the Littlewood-Paley theory and the
Cotlar-Stein lemma lead us to believe, very roughly, that if we take an operator
T, and decompose it somehow into its «lacunary pieces» T;, then to a large
extent the different pieces T;and Ty, j # k, act «independently» of each other.
For example we may be dealing with the Hilbert transform on L*(R) with
convolution kernel 1/x. If now T} is the operator with convolution kernel 1/x
Xjx| ~ 24> the operators T, are uniformly bounded on L? (because their kernels
are uniformly in L') and an application of the Cotlar-Stein lemma (see for
example [8]) allows us to conclude that indeed the Hilbert transform is bounded
on L*(R). One drawback of the Cotlar-Stein lemma is that it is only valid in
the setting of Hilbert space. On the other hand, we may be dealing with a Fourier
multiplier m on L”(R"). Crudely, the content of the Hormander multiplier
theorem (see [12]) is that if each «piece» m;=mxXy _,-; has enough regulari-
ty to guarantee via the Sobolev embedding theorem that the m st are uniformly
bounded L'-multipliers, then we may conclude that m is a multiplier of L?(R"),
1 < p < . However, examples abound to show that we cannot weaken the
Hormander theorem so as to totally avoid the regularity condition: Littman,
McCarthy and Riviere [10] produce a very nice example where the m; are
uniformly bounded L!-multipliers but m fails to be a multiplier of any L” other
than L2

The last decade or so has seen a flourishing of the study of certain operators
in Fourier Analysis which are closely related to the singular integrals of
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Calder6n-Zygmund theory, but somehow seem to fall just outside the scope
of that theory —for example singular integrals along curves, Stein’s spherical
maximal function and the Bochner-Riesz operators. Fairly recently it has been
observed by Duoandikoetxea and Rubio de Francia [7] and Christ and Stein
[4] that if one is a little more flexible in one’s point of view as to what con-
stitutes «classical» Calderén-Zygmund theory, many results on these
operators hitherto regarded as «exotic» may be very easily obtained.

The purposes of this paper may be described as follows:

(i) to provide a useful substitute for the Cotlar-Stein lemma for LP-spaces
(the orthogonality conditions are replaced by certain fairly weak
smoothness assumptions);

(ii) to investigate the «gap» between the Hérmander multiplier theorem
and the Littman-McCarthy-Riviére example-just how little regularity is
really needed?

(iii) to simplify and extend the work of Duoandikoetxea and Rubio de
Francia and Christ and Stein, which sometimes has unnecessarily
strong assumptions, and to introduce a sensitivity to different L?”-
spaces which does not appear in their work.

In §2 we deal with the decomposition of an integral operator into lacunary
pieces on the kernel side, introducing some smoothness conditions which are
L?-analogues of Hormander’s condition. In §3 we look at pseudo-differential
and multiplier operators: theorem 2 may be regarded as a sharper version
of the Hormander multiplier theorem as applied to pseudo-differential
operators, and theorem 3 is a multiplier theorem which is sensitive to different
L”’s. Roughly, theorem 2 may be paraphrased as: let 0 € L”(R" X R") be the
symbol of an L?-bounded pseudo-differential operator. If for some e > 0,

0\ iy o=
<—55—> 0'(2 X, 2 E)X|f| ~1

have uniformly bounded L!-operator norms, then o is of weak-type 1. In §4
we look at some results for the maximal operators which fall under the scope
of the theory, but, for simplicity, we do not present them in the sharpest possi-
ble form. Although all our statement are in terms of the usual isotropic dila-
tions of R", analogous statements hold for parabolic dilations.

We proceed to set up some notation. Let ¢ be a non-negative radial C*
bump function of compact support in {|x| <1}, with j ¢ = 1; convolution
with ¢,; =27 n$(277s) is denoted by P;. Let y be a non- negative radial C”
bump function of compact support in { 1 < |£| < 4}, such that Z YH =1
on R" — {0}; let Q F®) = 79 f(¥). Let J denote a generic radlal non-
-negative member of the Schwartz class $ with ¥(0) = 0 and correspondingly
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define Q,. If K(x, y) = K is an integral kernel, K denotes Ky’ where y’ € § is
defined by

. xX—-y
Yix, p) = ¢< 57 >
If T is the singular integral operator corresponding to X, T; is the operator
corresponding to K;. If o(x, £) is a symbol (possibly independent of x),

0,(x, §) = o(x, HUR'D),

and
oxp(x, %) = J o(x, Me(§ — n)dn

for p € S(R™). A is the usual Lipschitz space as defined for example in [12].
Finally, L”-operator norms are denoted by |K|,, |T|,, |o|, or |m]| on, a5 ap-
propriate.

It is a pleasure to thank the Analysis Group at Yale University for their kind
hospitality during March and April 1986, when the final stages of this research
was being carried out, and particular thanks are due to José Luis Rubio de
Francia who pointed out that commuting two steps in the proof of theorem
1 led to much nicer statements all round. Thanks are also due to the referee
who made several useful suggestions which have improved the exposition of
the paper considerably. Some of the results presented here have also been in-
dependently obtained by A. Seeger, [11].

2. Singular Integrals

In this section we study singular integral operators of the form
Tf() = [ K(x, ) () dy.

Theorem 1. Suppose that T is bounded on L?, and that for some 1 <p <2
satisfies

D, sup

keZ jeZ

Z Qj+k 7}+1(1_ Pj)

=0

< . (1)
P

Then T is of weak-type p — p. .

Corollary 1. Suppose that T is bounded on L?, and that for somer,1 <r<2,
satisfies

sup | T, < oo, r<p<2.
i
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If moreover
sup 19T/ = P2 < C2<Ukl+D
Jje

Jor some ¢ >0 (k€Z, | >0), then T is bounded on I”, r<p <2. -

Remarks. (i) Theorem 1 should be compared with the classical Calderén-
Zygmund theorem, which, upon replacing (1) by the Hérmander condition

3T, ,d-P)

=20

sup
JEZ

< o (H)
1

gives the weak-type 1 of 7. It would be very interesting to know whether L2
boundedness of T together with

sup | 2 7., (I ~ P)

J

< ©
p
is sufficient to imply the weak-type p of T.

(i) If Qj +xand TJ +;commute for all j, k, /, (in particular if T'is a convolu-
tion operator), then we may replace (1) by

su T.. 0. + su T..,0.| <o, 2
kgo jp l§) AR AR jp|1220 “'Q’p @
since
I-P — . =0..
- 5,00
If now

o) =sup|T,, A~ P)|,, |T;,,0,,p<Call—k) if 130, k<0,
J

and so T is of weak type p in the convolution case if

>3 la(l) < .

120

(iii) The corollary follows immediately from the theorem, because under
the hypotheses of the corollary, the hypotheses of the theorem are satisfied
for each p > r, by interpolation. A very similar result to this in the case r = 1
had previously been obtained by M. Christ and E. M. Stein, [4]. Their result
is that if 7 is bounded on L?,

sup [T}, <, |T*#T|,<C27¢¥~* and |T; (- P),<C27°,
J

then T is bounded on L?, 1 < p < 2.
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(iv) Suppose that T is a convolution operator and that

sup | Tjl, < C.
J

Then the smoothness hypothesis
1@ i Ty = P)y<C27<¥I*D 130, keZ,  (somee>0)
is equivalent to
T, -P),<C27% [>0 (somee>0)
and to
IT,,,Ql:<C27¢ 120  (some e>0).

Each of these conditions is also clearly equivalent to the decay condition
|KJT(£)| < CQ/IED ¢, 27)¢)) = 1, all j, (some e > 0) which has previously ap-
peared in [2] and [7].

ProoOF oF THEOREM 1. Fix fe L” and a > 0, and apply the standard Calderén-
Zygmund decomposition. (See [12].) Thus, we decompose fas f= g + 2, b;,
with |g]. < e, b; supported in a ball B; of radius 2/®, the supports of the
b; pairwise disjoint,

ZIBl < CaI 15, 1B ], b < Ca,

and the doubles B¥having bounded overlap. Let
G=g+ Zi]b,-*%m
be the good part; exactly as in the standard theory, L?-boundedness of 7T gives
that |{x| |TG(x)| > a}| < C| f|5/a”. So it suffices to treat
T(; [b: - bi*¢2f<i>]> = Zl: ,g Tiay+1d = Bye)bi + Z,;,; Ty +1d = Pigbi-
The second term is supported in U B¥*, whose measure is at most
2B < C LB < Clflp/e”.
We shall show that

;,Za T, .- P)f;| <Clfliray ©)

p

If we apply (3) with
j:j = Z bi’

i@ =J
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we see that

’Z 2 Ty = Pj(i))bi” - NZZ T;. 0 = P)
i 1>0 D j i

2| 2 b

7 i@ =i

<C(X[Ibir) < Co(S1BI) 7 < CLS L,

V4

<C

<]

which completes the proof.
By duality, (3) is equivalent to

<Clely- “4)

.

sup ‘lg (- P)T*, g

)

We decompose

ZU-B)Tr = 5[ S~ B)T1.0,.]

kezZ

and treat each term in the k-sum using Littlewood-Paley theory. Thus,
2, I~ P)T7, Q. 48

<(Z] 9k
P’ 7Y li=0
ZU-PT.0. (B[10.8)”
= p'

p“g"p"

Sup ,2)(1_%)Tf+1 j+k8
J >

< Csup
J

< Csup‘ Z Qj+ij+1(I_ Pj)
Jj 1=z0

Hence (4) and (3) hold for a given p if (1) does.

Remark. The above proof is nothing but a minor variation on the classical
Calderén-Zygmund theme. Indeed, the Calderén-Zygmund theorem follows
by observing that (4) in the case p’ = o is equivalent to the Hormander condi-
tion (H), and the result of Christ and Stein [4], follows by observing that (4)
holds for all p’ < e provided that |7}, ,(I — P)|, < C and that

(310778272 <C2”lals.

By the Cotlar-Stein lemma this latter inequality will hold if
|- PJ-)TJ’-"HT,(H(I — Py, < C2 <+ 1i=kD,

(or, in the case of convolution operators, if |Tj - Pj)|2 <C279.

+1
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3. Multipliers and Pseudo-Differential Operators

In this section we study pseudo-differential operators of the form
T = [o(x, 9/ @™ tdt

and multiplier operators when a(x, £) = m(%) is independent of x.

Theorem 2. Suppose that T is a pseudo-differential operator which is bounded
on L*(R") and satisfies lo(x, &)| < C vx, £€R". Let 0;(x, §) = o(x, HY(R’Y),
and suppose that |o;* (), |, < ali — j) with 2k <o lkla(k) < . Then Tis of
weak-type 1 — 1, and bounded from H" (the real Hardy space) to L.

Theorem 3. Suppose that T is a multiplier operator which is bounded on
L*(R") and satisfies |m;=({),_,, < ali — j) for some 1 < p< 2. If

2. |klatk) < oo,
k=0
then T is of weak type p — p.

Corollary 3. If T is a multiplier operator which satisfies
”mi(z_i’)"sm, + "mi(z_i')"AE <G

for some ¢ >0, some 1 < p<2,al p<r<?2, then T is bounded on L" for
p<r<p'.

Remarks. (i) The case p = 1 of theorem 3 is of course contained in theorem
2; there is a variant of theorem 2 in which L”-hypotheses produce a weak-type
p operator, but because we have to use condition (1) instead of condition (H),
some cancellation and minimal x-smoothness is also needed. This matter will
be discussed in detail in a forthcoming paper of the author and A. Seeger.

(ii) Corollary 3 follows immediately from theorem 3, once we notice that
|m;27%)|, < Cis equivalent to |m;x(¥),_,| o, < C2¢~9),

(iii) Hormander’s classical multiplier theorem (see [12]) and some of the
things which are obtainable from it by interpolation (see for example [5]) are
contained in theorem 3. To see this we merely observe that the hypothesis
of the Hérmander theorem implies that |m;*(§), | 2 < C2¢¢=) for some
B > n/2 and e > 0 and then the Sobolev embedding theorem allows us to apply
theorem 3 with a(k) = 2. Recently, Baernstein and Sawyer have proved a
sharp H'-variant of the Hérmander theorem, (see [1]). Their result is that if
a(k) is as above, and 2 . o a(k)w _ , < o for some nondecreasing sequence wy
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satisfying > » o wg 2 < o0, then m is a multiplier of the real Hardy space H'.
Thus all the multipliers covered by the case p = 1 of theorem 3 are also
H'-multipliers, since they satisfy the Hérmander condition (H ), and also the
Baernstein-Sawyer condition.

(iv) As an application of Corollary 3 we obtain by simple methods a result
previously obtained by Cdérdoba and Lopez-Melero, [6], and Igari, [9] using
heavily geometrical machinery. Let (T5/) (§) = (1 — (2/|¢])>)% /(9. The theorem
of Carleson and Sj6lin, [3], states that for each o > 0, there exists a py(cr) < 4/3
such that | T%f | 1pgey < Cp, | fll Loy fOr po < p < py. Write (1 - |£%)% =
= n(¢) + m(¢) with n e C7and m supported in 1/2 < |£| < 1, m e A,,. The term
corresponding to # is controlled by the Hardy-Littlewood maximal function,
and by Corollary 3, Zjez + m(2’¢) is a multiplier of LP(R?), p, < p < pb,
uniformly in the random choice of +. The usual argument with Rademacher
functions (see Stein, [12]) now shows that

“ sup | T5f|
J

SCpalfly  Po<pP<ps.
p
We return to these matters more systematically in the next section.

SKETCH OF PROOF OF THEOREM 2. We wish to apply the Calderén-Zygmund
theorem, and so we need to study the operators T;,,,(dI-P) in order to be
able to apply the Hormander condition (H). Recall that TJ . has kernel
K(x, Y)WA((x — »)/2’* ") where K is the integral kernel associated to 7, and so
Tj 4+ has symbol

[ ot @)yt =y = 3 [0, ;06 M), - = n) .

If J had compact support, the i’th term in this sum would be supported in
(|¢| ~27" /) if I>iandin {|§ <2777} if I <i. If ¢ were identically one
on a neighbourhood of 0 in R”, only those terms in the sum with i < 0 would
contribute, then, when computing 7, ,(/ — P;) for /> 0. Now

20 ¢ @il = $@| < 3 ali = D),
i< 1

i=0
and so

T 0-Ph< X Nal-D

120 i

(=]

i=0

= > a)#{G,D:i—1=k,i<0,/>0}

=<0

x

< 3 (Kl + Dak) < o,

=0

b
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by hypothesis. But of course ¢ cannot be constant near 0, nor can ¥ have com-
pact support, without violating the compact support of ¢ and ¢ respectively.
The remainder of the proof is thus devoted to this technical matter, and is ac-
cordingly postponed to §5. [J

SKETCH OF PROOF OF THEOREM 3. The proof of theorem 3 is essentially the
same as that of theorem 2, except that we wish to verify (2) instead of (H).
The second term that appears in (2)

su T, 0.
jpllzzo s+19

r
may be treated in exactly the same manner as

sup ’ > T, P)
J 1=0

p

was in the case p = 1 in theorem 2, all the L' estimates being equally valid
for L? under the hypothesis of the present theorem. To study the first term
appearing in (2), fix k < 0,/ > 0 and j € Z and write the symbol of Tj +19j 4, a8

k+1 ©
2m k@, ORI = X+ X+ X =1+H+1L
ieZ i<k-1 i=k-1 i=k+2

The main term is II; I and IIT are the error terms. To estimate |II|,, we just
use the hypothesis that |m;*({), |, < a(i —j) to obtain

|, <ok —1—-1)+ otk — 1)+ alk + 1= 1),
and so

> 2usup ||, < C ) |klak) <
; K=o

k=01z0

I and IIT are dealt with exactly as are the trivial error terms in theorem 2, and
we refer to §5 for the details. [J

4. Maximal Functions
Let K', ieZ, be a sequence of convolution kernels with corresponding
multipliers m’. We examine under what conditions the maximal operator

sup; |K'#f| is bounded on some L”(R").

Theorem 4. Suppose there exists a sequence (o) € I® such that

Im'(¢) ~ '] < CQ'|EDF &)
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and
(6) Im'(®)] < C2|g)
Jor some ¢ > 0. Suppose also that for some 1 < p < o we have

sup |m'| gy < co. ™

a) If p =2, then

“sup (K'«f]} <C|fl,, 2<r<p.

b) If p <2 and either
G K'>0 forall i€Z, or
(i) |m'@ '), <C, i leZ some e >0, ®)

Remark. It is sometimes more convenient (for example when dealing with
maximal functions along curves) to have a variant of (8) in which the kernel
rather than the multiplier appears. An example of such a condition (easily
verified in practical cases) is

then

<C|fl» p<r<2.

r

sup [K'+f]|

IKi, l,<C2™<, >0 some €>0 )

which is equivalent to [m’(2~7s)| A , < C, which, together with (6) implies (8)
(easy exercise). Condition (9) says that «most of the mass of K’ is concen-
trated around |x| ~ 2%y, while conditions (5) and (6) say that most of the mass
of m' is concentrated around || ~ 2. It turns out to be useful to study this
particular case first, which we single out as a lemma.

Lemma. Suppose we are in the situation of theorem 4 with o' = 0 and m' of
compact support in |§| ~ 27", Then

(o)

<C|fl,, p<r<2.

ProOF OoF LEMMA. The simplest approach is to observe that Y, + m’(£) satisfies
the hypothesis of corollary 3 uniformly in the choice of + as in §3 remark
(iv) and apply Khintchine’s inequality; alternatively one may observe that
theorems 1 — 3 and their corollaries hold equally well in the context of Hilbert-
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space-valued functions-all we have used is the Calderén-Zygmund decomposi-
tion and the Littlewood-Paley theory, which works equally well in the Hilbert-
space-valued case. For this lemma we take the Hilbert spaces to be C and
*z. O

PRrOOF OF THEOREM 4. a) Let K’ = K’ — o'¢,; by the Hardy-Littlewood max-
imal theorem it suffices to prove the result for K’: this amounts to taking
o' = 01in (5). But now we are able to apply the Littlewood-Paley theory as in
the proof of (4) in theorem 1 to obtain the required estimate.

b) (i) With K’ as above, we see that K’ is essentially positive in the sense
of [2]; (5) and (6) show that the maximal operator associated to {K'} is
strongly bounded on L? in the sense of [2]; inequality (7) allows us to apply
theorem 2 of [2] to obtain the desired result.

b) (ii) Arguing as in part @), we may first assume o’ = 0 since clearly

sup |l<$(2"-)¢(-)HAF <o forall e>0.

Next, we write
i_ i
m'=2,m;,,,

leZ

with me supported in {|&] ~ 2-i=!} asin §3. For each fixed /, we have that

<Z |m::+l(g)l2>1/2 < C2—E|I|

by (5) and (6);
(210m, ) DO ) < Clmf ="+ (), | < C242,

by (8); and
“ (Z,: |[(m;:+1)k*(lﬁ)z_j]v*f|2>1/z

< Clmi o 1 /1, < CLS s
P

by (7). Hence by the lemma, or the ?-valued variant of corollary 3,

“Sup \m!, )V fl| <c2 =M fl,, p<r<2.
1

r

Summing over /€ Z finishes the proof. [J

5. Proofs of Theorems 2 and 3. Technical Aspects

In §3 we postponed some of the technical aspects of the proofs of theorems
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2 and 3. Here we give, for completeness, the full details; the significance of
theorems 2 and 3 can be fully appreciated without reading this section.

PROOF OF THEOREM 2, CONTINUED. Having dealt with the i < 0 terms previous-
ly, what remains is to show that

Z Z 0,+_,*(¢)2 —-Jj- 1[1 - ¢(21 )] =

=0

2 200, DI R O — B2 | <

120 i>0 kezZ

We write

N

i>0 ke

as

DI T DI 1SR IR )

k=<0 i=0 k=0i=0 k=0 i=k k=0 i=1I k=1i=0

=I+0+0I+1V+ V+ VL

Claim 1. For k<0,

3301+ D (W | <027,
i> 1

some € > 0.

Claim 2.

x
~

.z‘:) ]ai+j*(‘;)z—j—1]1 < 'Zo o(i — ).

Claim 3. For k < i, ]0i+j*(@)2—j—l(’)¢(2j+k')|1 < C2—e(l—k)’ so that

> LS CU—-kR¢-PgC2etm,

i=k

Claim 4. For | > k,

0

2 O j* (‘Z)z-j—l(')¢(2j+k') < C2 =P,
i=1 1
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Claim 5.

l ]
35 101, * @y < 2 ali = ).

Claim 6. For k> 1,

i

ai+j*($)2—j—l(°)¢(2j+k') . <C.

If we accept claims 1 — 6 for the moment, the proof of the theorem is quickly
concluded.

By claim 1,
2 < CZ 2,270 <
1=z0 0 k=0
by claim 2,
1
IHI1<02 {Za(z—l)}z <K
by claim 3,
||, < cz;z “U-kp-<k g ca24,
by claim 4,
IIVII sz el - k)2—ek<C2 eI
by claim 5,
Vi, <C 2 [Za(z—l)}Z <k,
k=1 i
by claim 6,
\VI|, < 022 “kgec2me
Hence

ST+ 1V + VI|; < C 2 27 9<

iz0
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and
k © 1
T+ V] <2 Da—02"%+ 3 Dlai-02"*
k=0i=0 k=1i=0
! © ! .
=2al-1)22"*<Cd ali— 1279
i=0 k=i i=0
thus

© !
DN+ V| <C2 X2 %i-1)
120 I1=0i=0

=C2a()279 ¥ 279<C Y a(j) < .
Jj=<0 Iz —-j Jj=0
Now claims 2 and 5 follow immediately from the definition of «(); claims
1, 3, 4 and 6 all follow from the hypothesis that ¢ € L*(R" X R") and the facts
that [8"0(s — )| < G, ,/|t|*, all ke N, if |s| < 2|¢|, and [8")| < C,. In fact,
if 7(x, £) is any symbol, then

|7(Rx,R™'9)|, = |7(x, ¥)|, for all R, p;

if now 7 is supported in {|£| ~ 1} and satisfies |0}7(x, £)| < C, 4 for all multi-
indices v, then |7(x, £)|, < CA, since the integral kernel L associated to 7
satisfies

IL(x,y)| < CA,  |L(x,»)| < CA/|x—y|"*".

So to establish claims 1, 3, 4 and 6 we examine
azf Z Ui+j(2j+ kx’ 77)(‘2)2 _-1(&2 ik 1) dn

for |£| ~ 1, (where the sum is over a range of i depending on which claim we
are proving). In any case, what we get is

j Z g, +j(2j+ kx’ 77)2(j+ Dny( - k)lvlav‘,’&(zl- kE —J+ 11]) dn.

For claim 6, we just use |0"§| < C and the fact the integrand is supported in a set
of measure < C2~Y*D" to estimate the integral by |o],2¢~®!!; under the
hypotheses of claims 1, 3 and 4 we have that (essentially) 2' ~¥|¢| > 2 - 27*/|y|
if |£ ~ 1, and thus we may estimate the integral by |o] 20 *"m2¢-R0v-0
multiplied by the measure of the support of the integrand, for each # € N. These
measures are 2 9", 27 E+)n gnd 2~ U+Dm respectively, and so in each case we
can dominate the integral by 2¢ P+ =9 for all reN. O
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PROOF OF THEOREM 3, CONTINUED. We must deal with the terms I and III from
the proof begun in §3; thus to control I we study

& j Dm0, @27~y

f > my, )29 DO gr !k — 2 iy iy
Iplz2-k-Ji+1 i<k-1 t+J

for |£] ~ 1. Now 2/%!|y| > 2/=%+1 > 2.2/~ ¥|¢| if |¢ ~ 1. Hence we may
estimate the integral, for each e N, by

G

[2(j+1)lnl]t dﬂ-

J l|m”w2(j+1)n2(l—k)|~/t
[l =2-k-Jj+1

If ¢ is chosen sufficiently large, this is dominated by | m|,2¢~®@ =+ and
s0

> 2isup ||, < .
k<0120
For III we examine
j‘ rkeres e, Man 2T = 2 ) iy
K it Ay

for |£| ~ 1. This time, 2/*/|n| < 2/~%~2 <27 12!~ *|¢| if |¢| ~ 1. Hence we may
estimate the integral by |[m|, 2 +Dm¢-Rr-0p-Kk+dn < HU-k)vi-t+m
which gives the same estimate for III as for I, concluding the proof of the
theorem. []

6. Concluding Remarks

Applications of the theory to singular integrals and maximal functions along
«well-curved» curves, classical singular integrals, and lacunary versions of
Stein’s spherical maximal function are detailed in [4] and [7], although the ap-
plication to the lacunary maximal Bochner-Riesz operator in remark (iv), §3
appears to be new. In view of the wide variety of applications of the theory,
it would be of interest to obtain analogues of our theorems in other cases of
«natural» decompositions of operators. (Some partial results in the product
domain setting have recently been obtained by the author and A. Seeger.) It
would also be interesting to extend theorem 4b) (ii) to cover the case of «full»
maximal operators - parts @) and b) (i) appear in [2]. The stumbling block here
is the use of the Litlewood-Paley theory. We can use theorem 2, which is valid
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in the general Banach-space context, to obtain results for maximal functions
valid for 1 < p < oo; but it would seem to be harder to obtain results sensitive
to different p’s in (1, 2), which might be useful in the study of the maximal
Bochner-Riesz operator, for example.
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