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Abstract

The 2-forms, 2 and Q' on a manifold M with values in vector bundles § = M
and & — M are equivalent if there exist smooth fibered-linear maps U: £ — £
and W: & — £ with @' = UQ and Q = W', It is shown that an ordinary 2-form
equivalent to the curvature of a linear connection has locally a non-vanishing
integrating factor at each point in the interior of the set rank (w) = 2 or in the
set rank (w) > 2. Under favorable conditions the same holds at points where
the rank of w changes from =2 to >2. Global versions are also considered.

Forms equivalent to curvatures

The 2-forms Q and Q' on a manifold M with values in vector bundles § > M
and & — M are equivalent, Q ~ ', if there exist smooth fibered-linear maps
U:£— ¢ and W: ¢ — £ such that ' = UQ and Q = WQ'. Examples: @) If Q is
a symplectic structure on M, the Lagrangian submanifolds of M depend only
on the equivalence class of Q; ») If = N is a vector bundle with a connec-
tion V, the notion of V-homotopy ¢: M X [0, 1] = N depends only on the
equivalence class of the curvature of the induced connection ¢ *V on ¢ * 9 —
M x [0, 1]. For details see [PR].

The second example motivates this work where we consider an ordinary
2-form equivalent to the curvature of a linear connection. The conclusion is that
locally it is also equivalent to a closed 2-form (i.e., the curvature of a connection
on a 1-dimensional bundle; for related matters see [K], [T]; in other words,
a 2-form equivalent to a curvature has an integrating factor locally.
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(1) Theorem. Letw be a2-form on M equivalent to a curvature. For xe M
suppose that one of the following holds:

(1.a) rank (w) = 2 near x; or,
(1.b) rank (w) > 2 at (hence also near) x.

Then » has an integrating factor near x, i.e., there exists a nonvanishing
smooth function f satisfying d(fw) = 0 on a neighborhood of x.

We make the following basic assumptions throughout: § — M is a smooth
vector bundle with a conection V and w is a 2-form on M not zero at all points.
The curvature R(X, Y) = [V,, V,] - Vix,y; of V is considered as a 2-form on
M with values in the bundle £ = End (f) (of smooth fibered-linear self-maps
of ), and it is equivalent to w, i.e., UR = w, Ww = R for appropriate U and
W (from £ into the trivial one-imensional bundle M X R and back). Denote
by A the image under W of the constant section 1/2 on M X R. Thus, A4 is
a global section of £ and

) R(X, Y)v =2uw(X, Y)Av

for vef and X, Ye TM. If 6 = M X V is trivial (V a vector space) and
V0= X(0) + I'X)o

with T" and End (V)-valued 1-form, then R/2 = dT + ' AT and (2) reads:

3 wA =dT + T AT.

(A is now a function from M into End (¥).) In this and similar formulas we
use the canonical bilinear maps ¢ X £ — £ (composition) and £ X § — 4 (evalua-
tion) to extend the exterior calculus to forms with values in R, &, and 0 (as
long as the mixing is meaningful). In particular

T AD)X, Y) = (1/2)[I'(X), (V)]

We write A8 — BA«a = [a, 8] for &valued forms o, 3 of arbitrary degree,
which includes ¢y — ¢ = [¢, ¥] for sections ¢, ¥ of & The identity

dTAT)=dI'AT —=T'AdT = (wA —TAT)AT =T A(wA —TAT)
=wA[A4,T]

and differentiation of (3) give

C)) (dw)A + wA(dA + [T, A]) =0
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In terms of a basis of V this translates into n? relations of the form
aijdw toha; = 0.

Since A # 0 (because 2UA = w # 0) some quotient aij/a,.j is defined near each
point, whence

) locally there exist 1-forms o such that dw = o A w.

We can prove now the following proposition which contains Theorem 1
under hypothesis (1.4) (cf. Corollary, 3.6, of [BCG]).

(6) Proposition. Let w be a 2-form defined on a neighborhood U of the
origin 0 of R" satisfying on U:

(6.a) dw = aAw for some 1-form «;
(6.b) rank (w) = 2.

Then there exist local coordinates y = (¥4, . . .,¥,) and a smooth function h
such that w = h(y)dy, Ndy, near 0. A fortiori h # 0 and therefore f = 1/h is
a local integrating factor for w.

Proor. First, (6.a) implies that the kernel of w
N={Y;w(Y,Z)=0 forall Z}

is an integrable distribution of planes, for if X, Y are vector fields in N and
Z is an arbitrary vector field,

(X, Y], Z) = —Xw(Y,Z) - Yu(Z,X) - Zu(X, Y) + (X, Y], Z)
+ o([Y, Z], X) + w([Z, X],Y)
~3dw(X, Y, Z)

—a(X)w(Y,Z) — a(Y)(Z, X) — a(Z)w(X,Y) =0

so [X, Y] eN as claimed. Apply now Frobenius’ theorem to get local coor-
dinates y = (31, ¥», - - - » V) such that N is spanned by 8/0y3, /0y, . . .,0/3y,
at each point near 0, and define # = w(8/dy;, 8/3y,). Clearly w and hdy, Ady, -
vanish on all pairs (3/dy;, 9/dy;) with i = 1,2 and 3 <j < n, and they coincide
on (3/dy,,8/dy,) so that w = hdy, Ady, as claimed. This proves (6).

The proof of Theorem (1) under hypothesis (1.0) is as follows. We interpret
dA + [T, A] as the covariant differential of A for a connection with curvature
zero to obtain a parallel local section of the type A/f and then use the fact:

©) A/f parallel implies d(fw) =0
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which is proved below. Here are the details. Let V denote the conection on
¢ defined by (Vy¢)o = V,(¢0) — ¢Vy0o for ¢ a section of £ and o a section of
6. Direct calculations show that the curvature R of V is given by

@® R(X,Y)¢ = [R(X, Y), 8] = 20(X, Y)IA4, ¢].

Also, if Vo = do + I'g in a trivialization then for a section ¢ of &, V¢ = d¢ +
[T', #]. In particular, (4) reads

(&) (dw)A + @ AVA = 0.

Next, dencting by £° C & the one-dimensional subbundle spanned by A4, we
show that A is «recurrent» in the sense of [S]. Precisely,

(10) Proposition. On the open set where rank (w) > 2 the subbundle £° is
invariant under V and the curvature of the induced connection vanishes iden-
tically.

Proor. To show that for each X € TM, the endomorphism VXA of 6, is a
scalar multiple of A it suffices to use (2.3) and (2.4) to obtain

WA(VA + 0d) = wAVA + (wAWA = wAVA + (dw)A = 0,

and then use the following cancellation lemma from linear algebra.

Lemma. Let T,E denote vector spaces, w a (real) 2-form on T with
rank (w) > 2 and B: T— E a linear map. If o AB =0 then B = 0.

Assuming now hypothesis (1.5) we can use (10) to conclude that £° has
locally a parallel section ¢ with ¢ = A at x, i.e. ¢ = A/f for some f with
f(x) =1 (and then f# 0 near x) which in view of (7) implies d(fw) = 0. To
prove (7) simply go back to (3) and observe that for any f# 0,

(fw)A/f)=dT + ' AT
implies the following analogue of (9):
(12) d(fw)A + o AV(A/f) = 0.

This concludes the proof of Theorem 1.
The following improves (7):

(13) Proposition. For f# 0 an arbitrary C' function defined near xe M
suppose that
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(13.0) rank (w) = 2 at x; then d(fw) = 0 at x if and only if V,(A/f) = 0 for
all XeN,.
(13.b) rank (w) > 2 at x; then d(fw) = 0 at x if and only if V(a/f) = 0 at x.

Proor. From (12) follows that d(fw) = 0 is equivalent to w AV(4/f) =0
and so when rank (w) > 2 it is also equivalent to V(4/f) = 0 by the lemma
above. Suppose rank (w) > 2 at x and let X, ..., X, be a basis for TM, with
N, spanned by X3, X,, ..., X,. If i, ], k are distinct then one of them, say i,
is 3 or larger. Hence, by (12) again

Ad(fo)( X, X, Xi) = — (X, XV, (A/S)

and so d(fw) = 0 at x if and only if V, (4/f) =0 for i=3,4,...,n.
A global version of (1.b) follows. '

(14) Theorem. Let w be a 2-form on M with rank (w) > 2 everywhere. Then

(14.a) w has a local non-vanishing integrating factor if and only if dw = a A w
Sor a closed globally defined 1-form a.

(14.b) w has a global never vanishing integrating factor if and only if « = dg
for a smooth globally defined function g. In particular, if H'(M) = 0
(real cohomology), w has a global never vanishing integrating factor if
and only if dw = aAw for a closed globally defined 1-form o.

Proor. Suppose d(fw)=0 on an open set V. Then dw = aAw with
a = d(—In|f|), which is clearly closed on V. Using the cancellation lemma
proved above, we conclude that « is unique, hence one implication in (14.a)
follows. Conversely if dw = du A w locally then d(fw) = 0 for f= exp (—u),
and (14.a) follows. This last remark also proves one implication in (14.5). To
complete the proof suppose d(fw) = 0 globally. Then dw = (—df/f) Aw and
by the cancellation lemma again we get o = d(—In|f]|). This finishes the
proof.

The global integrability of « is necessary for let M = S! x R3 (S! = circle)
and let ¢ be the angle variable on S?, (x,y,z) cartesian coordinates on R>.
Also let X = 8/dY, a = dy (which are smooth and globally defined on M),
and define w = (—ydx + dz) Aa + dxAdy. Then, do = aAw, rank (w) = 4,
da =0, and « is not globally integrable.

In addition to the basic assumptions we suppose that local coordinates
(p, ...) exist near x, € M such that the resulting situation in R” is as follows:

(15.a) rank (w) = 2 for p <0,
(15.5) rank (w) > 2 for p > 0.

As above, N, (in particular N,) denotes the kernel of » at x € R” near x, = 0.
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(16) Theorem. The form w has a non-vanishing local integrating factor near
Xo = 0 in any of the following cases:

(16.a) N, is transversal to the hyperplane {p = 0};
(16.b) N, C {p = 0} for each x near 0 belonging to the hyperplane {p = 0}.

Proor. It suffices to consider the case where VA = 0 for p > 0. In fact, the
restriction of £% to {p > 0} has curvature zero (by (10) for p > 0 and by con-
tinuity at p = 0) and therefore there is a parallel section 4/f with f=1 at
0eR", and fof class C* on {p > 0}; after extending fto a smooth function
on a neighborhood of 0 we replace A by A/f (and w by fw) to obtain V4 = 0
for the new A on {p > 0}. Using now the proof of (6) and Frobenius’ theorem
we obtain a foliation & = {F} of the manifold with boundary M; N {p < 0},
where M, is a small neighborhood of the origin. For each leaf F the restriction
£°| .= F is stable under V because if xe FC M, N {p < 0}, choosing Y, Z €
T(M;), with (Y, Z) =1 and X e TF, = N,, from (9) follows that VXA =
—dw(X, Y, Z)A. Also the curvature of V vanishes on £°|, (8).

Consider the case (16.a). It is clear that each leaf intersects the boundary
M, N {p = 0} transversally. Using R = 0 on £°|F we can find parallel sections
in each E°|F extending the values of 4 on M; N {p = 0} (which are parallel
on FN {p =0} since VA4 = 0 throughout {p >0}). Thus a smooth section
A/f of £ is defined on M; N {p <0} with f=1o0on M'N{p =0} and A/f
«parallel on each leaf»:

17 V,(4/f)=0 for xeN,, xeM;N{p<0}.
Setting f=1 on M, N {p >0} gives a C! extension of f satisfying
(18) V,(A/f)=0 for XeTM,),, xeMN{p=0}.

Now (13) aplies to give d(fw) = 0 on M, (and this in turn forces fto be C%).

The proof assuming (16.b) is similar. First, each leaf is fully contained in
{p=0} or disjoint from {p=0}. Denote by X the set of points in
M;N {p <0} orthogonal to N,. Then if M, is small each leaf intersects F in
exactly one point. Consider 4 extended smoothly to T and find parallel exten-
sions along the leaves using the initial values of A4 at the point in FN X, in
each case. As above we get 4/f satisfying (17) and (18), and d(fw) = 0 follows
again.

The following results indicate how some properties of w translate into pro-
perties of A, V or V. We omit the proofs.

(19) Under hypothesis (1.a) of Theorem 1, there exist local coordinates
Yy =1,Y2 --.,Yn) and a trivialization 0 = M X RY near x such that
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w=h(y)dy,\Ndy,

I'=Bi(Y1; 7)) dy: + By(31, ) dy,
hA = [B,, B,] — (0B,/3y,) + (3B,/dy,)

where By, B, are d X d matrices depending on y,,y, only.
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(20) Under hypothesis (1.b) of Theorem 1, parallel trasport operators for ¥V
are obtained locally by conjugation with the parallel transport operators for V.
In particular, if U:0, — 0, (u, v near x) is parallel transport along any curve

Jjoining u, v, then A, = UA, U™ .
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