Forms Equivalent to Curvatures

Horacio Porta and Lázaro Recht

Abstract

The 2-forms, Ω and Ω' on a manifold M with values in vector bundles $\xi \to M$ and $\xi' \to M$ are *equivalent* if there exist smooth fibered-linear maps $U: \xi \to \xi'$ and $W: \xi' \to \xi$ with $\Omega' = U\Omega$ and $\Omega = W\Omega'$. It is shown that an ordinary 2-form equivalent to the curvature of a linear connection has locally a non-vanishing integrating factor at each point in the interior of the set rank $(\omega) = 2$ or in the set rank $(\omega) > 2$. Under favorable conditions the same holds at points where the rank of ω changes from =2 to >2. Global versions are also considered.

Forms equivalent to curvatures

The 2-forms Ω and Ω' on a manifold M with values in vector bundles $\xi \to M$ and $\xi' \to M$ are equivalent, $\Omega \sim \Omega'$, if there exist smooth fibered-linear maps $U: \xi \to \xi'$ and $W: \xi' \to \xi$ such that $\Omega' = U\Omega$ and $\Omega = W\Omega'$. Examples: a) If Ω is a symplectic structure on M, the Lagrangian submanifolds of M depend only on the equivalence class of Ω ; b) If $\eta \to N$ is a vector bundle with a connection ∇ , the notion of ∇ -homotopy $\phi: M \times [0, 1] \to N$ depends only on the equivalence class of the curvature of the induced connection $\phi * \nabla$ on $\phi * \eta \to M \times [0, 1]$. For details see [PR].

The second example motivates this work where we consider an ordinary 2-form equivalent to the curvature of a linear connection. The conclusion is that locally it is also equivalent to a *closed* 2-form (i.e., the curvature of a connection on a 1-dimensional bundle; for related matters see [K], [T]; in other words, a 2-form equivalent to a curvature has an integrating factor locally.

(1) **Theorem.** Let ω be a 2-form on M equivalent to a curvature. For $x \in M$ suppose that one of the following holds:

- (1.a) rank (ω) = 2 near x; or,
- (1.b) rank $(\omega) > 2$ at (hence also near) x.

Then ω has an integrating factor near x, i.e., there exists a nonvanishing smooth function f satisfying $d(f\omega) = 0$ on a neighborhood of x.

We make the following basic assumptions throughout: $\theta \to M$ is a smooth vector bundle with a conection ∇ and ω is a 2-form on M not zero at all points. The curvature $R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X, Y]}$ of ∇ is considered as a 2-form on M with values in the bundle $\xi = \operatorname{End}(\theta)$ (of smooth fibered-linear self-maps of θ), and it is equivalent to ω , i.e., $UR = \omega$, $W\omega = R$ for appropriate U and W (from ξ into the trivial one-imensional bundle $M \times \mathbb{R}$ and back). Denote by A the image under W of the constant section 1/2 on $M \times \mathbb{R}$. Thus, A is a global section of ξ and

(2)
$$R(X, Y)v = 2\omega(X, Y)Av$$

for $v \in \theta$ and $X, Y \in TM$. If $\theta = M \times V$ is trivial (V a vector space) and

$$\nabla_{\mathbf{Y}}\sigma = X(\sigma) + \Gamma(X)\sigma$$

with Γ and End (V)-valued 1-form, then $R/2 = d\Gamma + \Gamma \wedge \Gamma$ and (2) reads:

(3)
$$\omega A = d\Gamma + \Gamma \wedge \Gamma.$$

(A is now a function from M into End (V).) In this and similar formulas we use the canonical bilinear maps $\xi \times \xi \to \xi$ (composition) and $\xi \times \theta \to \theta$ (evaluation) to extend the exterior calculus to forms with values in \mathbb{R} , ξ , and θ (as long as the mixing is meaningful). In particular

$$(\Gamma \wedge \Gamma)(X, Y) = (1/2)[\Gamma(X), \Gamma(Y)].$$

We write $\alpha \wedge \beta - \beta \wedge \alpha = [\alpha, \beta]$ for ξ -valued forms α, β of arbitrary degree, which includes $\phi \psi - \psi \phi = [\phi, \psi]$ for sections ϕ, ψ of ξ . The identity

$$d(\Gamma \wedge \Gamma) = d\Gamma \wedge \Gamma - \Gamma \wedge d\Gamma = (\omega A - \Gamma \wedge \Gamma) \wedge \Gamma - \Gamma \wedge (\omega A - \Gamma \wedge \Gamma)$$
$$= \omega \wedge [A, \Gamma]$$

and differentiation of (3) give

(4)
$$(d\omega)A + \omega \wedge (dA + [\Gamma, A]) = 0$$

In terms of a basis of V this translates into n^2 relations of the form

$$a_{ij}d\omega + \omega \wedge \alpha_{ij} = 0.$$

Since $A \neq 0$ (because $2UA = \omega \neq 0$) some quotient α_{ii}/a_{ii} is defined near each point, whence

(5) locally there exist 1-forms α such that $d\omega = \alpha \wedge \omega$.

We can prove now the following proposition which contains Theorem 1 under hypothesis (1.a) (cf. Corollary, 3.6, of [BCG]).

- (6) **Proposition.** Let ω be a 2-form defined on a neighborhood U of the origin 0 of \mathbb{R}^n satisfying on U:
- (6.a) $d\omega = \alpha \wedge \omega$ for some 1-form α ;
- (6.*b*) rank (ω) = 2.

Then there exist local coordinates $y = (y_1, \dots, y_n)$ and a smooth function h such that $\omega = h(y)dy_1 \wedge dy_2$ near 0. A fortior $h \neq 0$ and therefore f = 1/h is a local integrating factor for ω .

PROOF. First, (6.a) implies that the kernel of ω

$$N = \{ Y; \omega(Y, Z) = 0 \text{ for all } Z \}$$

is an integrable distribution of planes, for if X, Y are vector fields in N and Z is an arbitrary vector field,

$$\omega([X, Y], Z) = -X\omega(Y, Z) - Y\omega(Z, X) - Z\omega(X, Y) + \omega([X, Y], Z)$$
$$+ \omega([Y, Z], X) + \omega([Z, X], Y)$$
$$= -3 d\omega(X, Y, Z)$$
$$= -\alpha(X)\omega(Y, Z) - \alpha(Y)\omega(Z, X) - \alpha(Z)\omega(X, Y) = 0$$

so $[X, Y] \in \mathbb{N}$ as claimed. Apply now Frobenius' theorem to get local coordinates $y = (y_1, y_2, \dots, y_n)$ such that N is spanned by $\partial/\partial y_3, \partial/\partial y_4, \dots, \partial/\partial y_n$ at each point near 0, and define $h = \omega(\partial/\partial y_1, \partial/\partial y_2)$. Clearly ω and $h dy_1 \wedge dy_2$ vanish on all pairs $(\partial/\partial y_i, \partial/\partial y_j)$ with i = 1, 2 and $3 \le j \le n$, and they coincide on $(\partial/\partial y_1, \partial/\partial y_2)$ so that $\omega = h \, dy_1 \wedge dy_2$ as claimed. This proves (6).

The proof of Theorem (1) under hypothesis (1.b) is as follows. We interpret $dA + [\Gamma, A]$ as the covariant differential of A for a connection with curvature zero to obtain a parallel local section of the type A/f and then use the fact:

(7)
$$A/f$$
 parallel implies $d(f\omega) = 0$

which is proved below. Here are the details. Let $\tilde{\nabla}$ denote the conection on ξ defined by $(\tilde{\nabla}_X \phi) \sigma = \nabla_X (\phi \sigma) - \phi \nabla_X \sigma$ for ϕ a section of ξ and σ a section of θ . Direct calculations show that the curvature \tilde{R} of $\tilde{\nabla}$ is given by

(8)
$$\tilde{R}(X,Y)\phi = [R(X,Y),\phi] = 2\omega(X,Y)[A,\phi].$$

Also, if $\nabla \sigma = d\sigma + \Gamma \sigma$ in a trivialization then for a section ϕ of ξ , $\tilde{\nabla} \phi = d\phi + [\Gamma, \phi]$. In particular, (4) reads

(9)
$$(d\omega)A + \omega \wedge \tilde{\nabla}A = 0.$$

Next, denoting by $\xi^0 \subset \xi$ the one-dimensional subbundle spanned by A, we show that A is «recurrent» in the sense of [S]. Precisely,

(10) **Proposition.** On the open set where rank $(\omega) > 2$ the subbundle ξ^0 is invariant under ∇ and the curvature of the induced connection vanishes identically.

PROOF. To show that for each $X \in TM_x$ the endomorphism $\tilde{\nabla}_X A$ of θ_x is a scalar multiple of A it suffices to use (2.3) and (2.4) to obtain

$$\omega \wedge (\tilde{\nabla} A + \alpha A) = \omega \wedge \tilde{\nabla} A + (\omega \wedge \alpha) A = \omega \wedge \tilde{\nabla} A + (d\omega) A = 0,$$

and then use the following cancellation lemma from linear algebra.

Lemma. Let T, E denote vector spaces, ω a (real) 2-form on T with rank $(\omega) > 2$ and $B: T \to E$ a linear map. If $\omega \wedge B = 0$ then B = 0.

Assuming now hypothesis (1.b) we can use (10) to conclude that ξ^0 has locally a parallel section ϕ with $\phi = A$ at x, i.e. $\phi = A/f$ for some f with f(x) = 1 (and then $f \neq 0$ near x) which in view of (7) implies $d(f\omega) = 0$. To prove (7) simply go back to (3) and observe that for any $f \neq 0$,

$$(f\omega)(A/f) = d\Gamma + \Gamma \wedge \Gamma$$

implies the following analogue of (9):

(12)
$$d(f\omega)A + \omega \wedge \tilde{\nabla}(A/f) = 0.$$

This concludes the proof of Theorem 1.

The following improves (7):

(13) **Proposition.** For $f \neq 0$ an arbitrary C^1 function defined near $x \in M$ suppose that

- (13.a) rank (ω) = 2 at x; then $d(f\omega) = 0$ at x if and only if $\tilde{\nabla}_{x}(A/f) = 0$ for all $X \in N_r$.
- (13.b) rank $(\omega) > 2$ at x; then $d(f\omega) = 0$ at x if and only if $\tilde{\nabla}(a/f) = 0$ at x.

PROOF. From (12) follows that $d(f\omega) = 0$ is equivalent to $\omega \wedge \tilde{\nabla}(A/f) = 0$ and so when rank $(\omega) > 2$ it is also equivalent to $\tilde{\nabla}(A/f) = 0$ by the lemma above. Suppose rank $(\omega) > 2$ at x and let X_1, \ldots, X_n be a basis for TM_x with N_x spanned by X_3, X_4, \ldots, X_n . If i, j, k are distinct then one of them, say i, is 3 or larger. Hence, by (12) again

$$Ad(f\omega)(X_i,X_j,X_k) = -\omega(X_j,X_k)\widetilde{\nabla}_{X_i}(A/f)$$

and so $d(f\omega) = 0$ at x if and only if $\tilde{\nabla}_{X_i}(A/f) = 0$ for i = 3, 4, ..., n. A global version of (1.b) follows.

- (14) **Theorem.** Let ω be a 2-form on M with rank $(\omega) > 2$ everywhere. Then
- (14.a) ω has a local non-vanishing integrating factor if and only if $d\omega = \alpha \wedge \omega$ for a closed globally defined 1-form α .
- (14.b) ω has a global never vanishing integrating factor if and only if $\alpha = dg$ for a smooth globally defined function g. In particular, if $H^1(M) = 0$ (real cohomology), ω has a global never vanishing integrating factor if and only if $d\omega = \alpha \wedge \omega$ for a closed globally defined 1-form α .

Suppose $d(f\omega) = 0$ on an open set V. Then $d\omega = \alpha \wedge \omega$ with $\alpha = d(-\ln |f|)$, which is clearly closed on V. Using the cancellation lemma proved above, we conclude that α is unique, hence one implication in (14.a) follows. Conversely if $d\omega = du \wedge \omega$ locally then $d(f\omega) = 0$ for $f = \exp(-u)$, and (14.a) follows. This last remark also proves one implication in (14.b). To complete the proof suppose $d(f\omega) = 0$ globally. Then $d\omega = (-df/f) \wedge \omega$ and by the cancellation lemma again we get $\alpha = d(-\ln|f|)$. This finishes the proof.

The global integrability of α is necessary for let $M = S^1 \times \mathbb{R}^3$ ($S^1 = \text{circle}$) and let φ be the angle variable on S^1 , (x, y, z) cartesian coordinates on \mathbb{R}^3 . Also let $X = \partial/\partial\psi$, $\alpha = d\varphi$ (which are smooth and globally defined on M), and define $\omega = (-y dx + dz) \wedge \alpha + dx \wedge dy$. Then, $d\omega = \alpha \wedge \omega$, rank $(\omega) = 4$, $d\alpha = 0$, and α is not globally integrable.

In addition to the basic assumptions we suppose that local coordinates (p, \ldots) exist near $x_0 \in M$ such that the resulting situation in \mathbb{R}^n is as follows:

- $(15.a) \operatorname{rank}(\omega) = 2 \operatorname{for} p \leq 0,$
- (15.b) rank (ω) > 2 for p > 0.

As above, N_x (in particular N_0) denotes the kernel of x at $x \in \mathbb{R}^n$ near $x_0 = 0$.

(16) **Theorem.** The form ω has a non-vanishing local integrating factor near $x_0 = 0$ in any of the following cases:

(16.a) N_0 is transversal to the hyperplane $\{p=0\}$; (16.b) $N_x \subset \{p=0\}$ for each x near 0 belonging to the hyperplane $\{p=0\}$.

PROOF. It suffices to consider the case where $\tilde{\nabla}A=0$ for $p\geqslant 0$. In fact, the restriction of ξ^0 to $\{p\geqslant 0\}$ has curvature zero (by (10) for p>0 and by continuity at p=0) and therefore there is a parallel section A/f with f=1 at $0\in\mathbb{R}^n$, and f of class C^∞ on $\{p\geqslant 0\}$; after extending f to a smooth function on a neighborhood of 0 we replace A by A/f (and ω by $f\omega$) to obtain $\tilde{\nabla}A=0$ for the new A on $\{p\geqslant 0\}$. Using now the proof of (6) and Frobenius' theorem we obtain a foliation $\mathfrak{F}=\{F\}$ of the manifold with boundary $M_1\cap\{p\leqslant 0\}$, where M_1 is a small neighborhood of the origin. For each leaf F the restriction $\xi^0|_F\to F$ is stable under $\tilde{\nabla}$ because if $x\in F\subset M_1\cap\{p\leqslant 0\}$, choosing $Y,Z\in T(M_1)_x$ with $\omega(Y,Z)=1$ and $X\in TF_x=N_x$, from (9) follows that $\tilde{\nabla}_XA=-d\omega(X,Y,Z)A$. Also the curvature of $\tilde{\nabla}$ vanishes on $\xi^0|_F$ (8).

Consider the case (16.a). It is clear that each leaf intersects the boundary $M_1 \cap \{p=0\}$ transversally. Using $\tilde{R}=0$ on $\xi^0|F$ we can find parallel sections in each $\xi^0|F$ extending the values of A on $M_1 \cap \{p=0\}$ (which are parallel on $F \cap \{p=0\}$ since $\tilde{\nabla} A=0$ throughout $\{p \ge 0\}$). Thus a smooth section A/f of ξ^0 is defined on $M_1 \cap \{p \le 0\}$ with f=1 on $M^1 \cap \{p=0\}$ and A/f «parallel on each leaf»:

(17)
$$\tilde{\nabla}_X(A/f) = 0 \quad \text{for} \quad x \in N_x, \qquad x \in M_1 \cap \{p \le 0\}.$$

Setting f = 1 on $M_1 \cap \{p \ge 0\}$ gives a C^1 extension of f satisfying

(18)
$$\tilde{\nabla}_X(A/f) = 0 \quad \text{for} \quad X \in T(M_1)_x, \qquad x \in M_1 \cap \{p \geqslant 0\}.$$

Now (13) aplies to give $d(f\omega)=0$ on M_1 (and this in turn forces f to be C^∞). The proof assuming (16.b) is similar. First, each leaf is fully contained in $\{p=0\}$ or disjoint from $\{p=0\}$. Denote by Σ the set of points in $M_1\cap \{p\leqslant 0\}$ orthogonal to N_0 . Then if M_1 is small each leaf intersects F in exactly one point. Consider A extended smoothly to Σ and find parallel extensions along the leaves using the initial values of A at the point in $F\cap \Sigma$, in each case. As above we get A/f satisfying (17) and (18), and $d(f\omega)=0$ follows again.

The following results indicate how some properties of ω translate into properties of A, ∇ or $\tilde{\nabla}$. We omit the proofs.

(19) Under hypothesis (1.a) of Theorem 1, there exist local coordinates $y = (y_1, y_2, \dots, y_n)$ and a trivialization $\theta = M \times \mathbb{R}^d$ near x such that

$$\omega = h(y) \, dy_1 \wedge dy_2$$

$$\Gamma = B_1(y_1, y_2) \, dy_1 + B_2(y_1, y_2) \, dy_2$$

$$hA = [B_1, B_2] - (\partial B_1 / \partial y_2) + (\partial B_2 / \partial y_1)$$

where B_1 , B_2 are $d \times d$ matrices depending on y_1 , y_2 only.

(20) Under hypothesis (1.b) of Theorem 1, parallel trasport operators for $\tilde{\nabla}$ are obtained locally by conjugation with the parallel transport operators for ∇ . In particular, if $U: \theta_u \to \theta_v$ (u, v near x) is parallel transport along any curve joining u, v, then $A_v = UA_uU^{-1}$.

References

- [BCG] Bryant, R. L., Chern, S. S. and Griffiths, P. A. Exterior Differential systems, Proc. 1980 Beijing Symp. on Diff. Geom. and Diff. Eq., Gordon and Breach, 1982.
- [K] Konstant, B. Quantization and unitary representations, Lect. Modern Anal. Appl. III, Lect. Notes in Math., 170 (1970), 87-207, Springer-Verlag.
- [PR] Porta, H. and Recht, L. Classification of linear connections, J. Math. Anal. and Appl., 118 (1986), 547-560.
- [S] Sandovici, P. Sectiuni recurrente ale anui fibrat vectorial in raport cui lege de derivate, I, II. Stud. Univ. Babes-Bolyai Mat., 20 (1975), 21-25 and 21 (1976), 19-22.
- [T] Tischler, D. Closed 2-forms and an embedding theorem for symptectic manifolds, J. Diff. Geom., 12 (1977), 229-235.

Horacio Porta University of Illinois Urbana Lázaro Recht Universidad Simón Bolivar Caracas