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1. Introduction

The aim of this paper is to prove certain multiplier theorems for the Hermite
series. Given a function u defined on the set of positive integers we can define,
at least formally, the operator T, by the prescription

(1.1) T,f() = Z}o pQlal + n) N ()2 (x)

whenever f has the Hermite expansion

(1.2) fx) = Z}Of "(@)®,(x)

We want to find conditions on the function u so that the operator 7, is bound-
ed on L?, for all p, 1 < p < . Clearly the boundedness of the function u is
a necessary condition which is also sufficient when p = 2. But for p different
from 2 some more conditions are needed to ensure the boundedness. The
classical Marcinkiewicz multiplier theorem for the Fourier series asserts the
following. If f has the Fourier series expansion f(8) = > a,e™*® and if () is
a bounded sequence of complex numbers satisfying the condition

(1.3) sup 2. me—ml<C

Jj 2isk=<2i+1
then the following inequality holds for 1 < p < 0.
(1.4) |2 meare™ ], < Cl L ae™|,

Our aim in this paper is to generalize this result to the Hermite expansions.
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A version of the Marcinkiewicz multiplier theorem for the Spherical Har-
monic expansions was proved by Bonami-Clerc [1] and Strichartz [17].
Bonami-Clerc used the arguments of Muckenhoupt-Stein [9] together with the
Cesaro summability results. On the other hand Strichartz used the method
employed by Stein [15] in his proof of Hormander-Mihlin multiplier theorem
for Fourier integrals. To state their results let us introduce the following finite
difference operators. These operators are defined inductively as follows:

Ap(N) = u(N + 1) — p(N)
and for k > 1, they are defined by
AFHIUNY = AFp(N + 1) — A%u(N).

The following is the Marcinkiewicz multiplier theorem for the Spherical Har-
monic expansions.
Let be (u;) a bounded sequence of complex numbers satisfying the condition

(1.5) sup 2/V"D 31 AN < C

j 2i<k=2i+1

where N is the smallest integer greater than n/2. Then we have the inequality
for 1< p< oo,

(1.6) | 2 meHie S|, < CL2Hef

where H, f is the orthogonal projection of f into the k-th eigenspace.

In [8] G. Mauceri studied Marcinkiewicz multiplier theorm for the Hermite
expansions. His conditions on u involve finite difference operators of order
(n + 1). If we use the summability results proved in [19] and [20] we can great-
ly improve Mauceri’s result. The arguments of Bonami and Clerc can be used
together with the summability results to prove the following result.

Assume that the function p satisfies the condition

sup 2D % AN < C

Jj 2/=N=<2j+1

where k = [(3n — 2)/6] + 2. Then the operator 7, is bounded on L”, 1 < p < .

This result is already an improvement over Mauceri’s result when n > 1. As
we noted before, in the case of Spherical Harmonics and Fourier series the
number k of finite differences entering the conditions is the smallest integer
bigger than n/2. We will show that this is true in the case of Hermite series
also. The following is our version of the Marcinkiewicz multiplier theorem for
Hermite series.
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Theorem 1. Assume that the function p satisfies the conditions
|A"W(N)| < CN™" for r=0,1,...,k,

where k > n/2. Then the operator T, is bounded on L”, 1 < p < .

Observe that our conditions on yu are just like the Hormander-Mihlin condi-
tions. The proof depends on some boundedness properties of g and g* func-
tions. We introduce and study these functions in section 2. So much for the
Marcinkiewicz multiplier theorem. Another multiplier theorem we are interested
in is given by the function

(1.7) w(|v]) = Clv| + n)~ @+ mir,
This defines the operator 7,(«) given by

(1.8) nmwuw=§yaw+nrﬂéw“”vwwaa)

This function u does not satisfy the conditions of Theorem 1 unless « > n and
so we cannot apply the Marcinkiewicz multiplier theorm. Fortunately, the
kernel of this operator can be calculated explicitly and studied by other
means. This operator behaves more or less like the operator given by convolu-
tion with the oscillating kernel |x| ~“e™*. Such operators have been studied
by many authors, see e.g. [12], and [13]. For these operators we prove the
following theorem.

Theorem 2. When o = n|l/p-1/2|, 1 <p < o, the operators T,(a) are
bounded on L?, i.e.,

(1.8) [ Te@) fl, < CLf,-

When p = 1 and a = n/2, T(c) is bounded from H* into L', where H" is the
Hardy space.

(1.9 | TS < ClS g

This theorem extends the classical Hardy-Littlewood theorem for the Fourier
transform. Recall that Hardy-Littlewood inequalities state the following.

(1.10) j|fA(x)|P|x|"<P-2>dx<cj|f(x)|1’dx, for 1<p<2
(1.11) j]f"(x)l”dxslef(x)l”lxl"“"z)dx, for p>2
(1.12) [ 1/l =" dx S CLf -
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These inequalities were first proved by Hardy and Littlewood [5] in 1926. For
an easy proof see Sadosky [11]. The first two inequalities follow easily if we
apply Marcinkiewicz interpolation theorem to the operators f going to
S"(x)|x|" in the space L?(|x| ~*" dx). The third inequality can be proved using
the atomic theory of H' spaces.

We can rewrite the above inequalities in the following way. Consider the
fractional powers of the Laplacian defined as follows.

((—A)"%F3Nx) = |x| 72 (x).

If we let T(a)f = (—A)™ %f, then the above inequalities take the following
form with o = n|1/p — 1/2|.

(1.13) [{T()f} M, < Clflps for 1<p<2
(1.14) |£1, < CIH{T@f} ], for p>2
(1.15) T /3 < Clf |

Theorem 2 gives inequalities of this type for the operator (—A + |x|*) ™.
Observe that

(1.16) (—A+ |x[) ") = ;0 Qlv| + )~ ()P, (%)

Let F stand for the Fourier transform. Since F commutes with the operator
(=A + |x]» ™% and F(®,(x)} = i"'®,(x) we have the following formula.

(L.17) F(=A + [x|)7%f00) = e™ "™ 3 Q|| + m)~ %@+ P4 3)@, (x)
v=0

Thus we get the Hardy-Littlewood inequalities for the operator (—A + |x|*) ™.
The inequalities of Theorem 2 have another application to the solutions of the
Schrodinger equation —id,u(x, t) = (—A + |x[2)u(x, t). Let u(x, t) denote the
solution of the initial value problem

(1.18) —id,u(x, ) = (=& + [xulx, 1),  ux,0)=f()

The solution of this problem has the following expansion in terms of the Her-
mite functions.
(1.19) ulx, 1) = 3, e®PEDING)® (x)

v=0
We like to know if any inequality of the type |u(x, #)|, < C(#)| f|, holds. But
this is too much to ask for. Indeed, u(x, ) is nothing but a fractional power

of the Fourier transform of fand as we know, Fourier transform, and for that
matter any fractional power of that, cannot map L” into itself unless p = 2.
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Therefore, following Sjostrand [14], we define the Riesz means
G @) = a7~ [ (r = O "ulx, 1) dt

and ask the question, «For what values of « the operators G,(c) will be bounded
on LP?». As we will see, this boils down to the study of the operators T,(c).
Using the Hardy-Littlewood inequalities we can prove the following theorem.

Theorem 3. Ifa > n|1/p — 1/2|, then the operators G () are bounded on L”.

(1.20) 1G@fl,<COD|fl,, 1<p<e.
When p =1 and a = n/2, G () is bounded from H' into L'.

This paper is organised as follows. In the next section we study the Little-
wood-Paley-Stein g functions. To fix the ideas we first consider the one
dimensional case and then indicate how we prove the results in the general
case. In section 3, we prove the Marcinkiewicz multiplier theorem. In section
4, we prove Hardy-Littlewood inqualities and study the Riesz means for the
solutions of the Schrodinger equation in the last section.

This paper forms one part of my Princeton University thesis written under
the guidance of Prof. E. M. Stein. The amount of help I got from him and
the real interest he showed in the progress of this work cannot be exaggerated.
I would like to thank him for everything. I am also grateful to Dr. Chris Sogge
for turning my attention towards Marcinkiewicz multiplier theorem.

2. Littlewood-Paley-Stein Theory of g Functions

The g functions are defined in [16] in the more general context of semigroups
of operators satisfying certain conditions. Here we are interested in the Her-
mite semigroup H'. For ¢ > 0 these operators are defined by

H'f(x) = 2 e” M m)e,(x)
where N = 2n + 1 as usual and they have the kernel
K(x,3) = 2ie™ Mo, (0e,(1).
In view of the Mehler’s formula K, is given by
K,(x,y) = (sinh 2t) ™ /2e*®

where
o(t) = —1/2(x* + y*) coth 2¢ + xy cosech 2z.
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It is easy to see that H' forms a semigroup of operators satisfying all the con-
ditions except the last one listed in [16]. We can now define the g function by
setting

(07 = "0 Hf ()| dt.

Since the Hermite semigroup fails to satisfy the condition H’1 = 1, the general
theory developed in [16] cannot be applied. But in view of the explicit form of
the kernel K,(x, y) we can prove the following theorem without much difficulty.

Theorem 2.1.  With some constants C,; and C, we have the following inequality
Cilfl, < 1eNp, < Gl Sl 1<p<co.
Proor. The L? boundedness of the g function is easy. Since
Hf(x) = — 2l  MNf ), (x)
[g(f, 07 dx = j “tdt [ 10HF G| ax.
But it is immediate that
[18.H @) dx = 3 e MN?| f\(m)?

and hence we get

leNI3= 2 | te™ N drl f(m)l?

which is equal to 1/4 3, | fA(n)|* = 1/4| f|. This proves the L? boundedness.
We will now prove that g(f) is weak type (1, 1). That will prove the inequality
lg(f)|, < Co| f], and the deduction of the inequality in the other direction
is routine.

In proving the weak type (1,1) inequality we closely follow Stein [15]. We
consider g as a Hilbert space valued singular integral operator. To be precise,
g is a singular integral operator whose kernel d,K,(x, ) is taking values in the
Hilbert space L>(R*, tdt). Since g is already known to be bounded on L? we
need to check the following condition on K,.

2.1 19.K,(x,») — 8, K, (x,y*)| dx < C

J.Ix—y Hz2ly -y
where |+ | is the norm of the Hilbert space L*(R*, ¢ df). Once this condition
is checked we can invoke Theorem 5.1 in [15] to get the weak type estimate.
The condition (2.1) is checked using the following estimate on the kernel
9,K,(x, ).
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Lemma 2.1. [0,0,K,(x,»)| < Ct*?|x — y| 7 'A + ¢t |x - y|)~ 2.

Proor. The function ¢ can be written as
o(t) = —(x — »)*/(2sinh 2¢) — tanh t (x2 + »?)/2.

Since d,3,K,(x, ») is going to have many terms we indicate how to estimate one
typical term viz.

J = (sinh 2¢) = "/% cosh 2t (x — y)’e*®.

First let us assume that 0 < # < 1 so that sinh 2¢ = O(¢) and cosh 2¢ = O(1).
Then it is clear that we have the estimates

V| <Ct™*?|x —y|™' and |J|<Ct V3x—y| 73
hence
[J| < Ct™ 32 |x —y| 7 'A + 73 x -y~ 2

The other terms are estimated similarly. Getting the estimates when ¢ is greater
than 1 is similar. In fact, we can get better estimates since sinh 2¢ = O(e’) and
cosh 2t = O(e") when ¢ > 1. The details are omitted. This completes the proof
of the Lemma.

Now it is easy to see how the condition follows from the Lemma. First we
see that

18,8, K,0x, )1 < Clx =y 7> [T172(1 + 17 2x =y~ at

which is less than or equal to |x — y| ~*. Now an application of the mean value
theorem shows that

@2 | oy 10K ) = 8K (x, y¥)] dx

lx—y*=2ly -
< — p*
= lex—y*l z2|y -y 13,0.K: %, yo) |y = y*| dx

<C o =0l 21y = y*|dx
x—y*=z2ly-y*

where y, lies between y and y*. Since |x — yo| = 1/2|x — y*| the condition
(2.1) is verified.

To prove the Marcinkiewicz multiplier theorem, we have to introduce some
more auxiliary functions. For any integer k£ > 1, we can define the functions

g (f, %) = J:tz" “HorH f(x)|? dt.

Then it is an easy matter to prove that g(f, x) < Cgx . ;(f, X). Indeed, by set-
ting u(x, ) = H'f(x) we see that all ¢ derivatives of u(x, 7) tend to zero as ¢ goes
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to infinity. Therefore, writing
u(x, t) = JT 3%+ tu(x, s)s*s ¥ ds
we get the estimate
|0%u(x, 1> < Uja’; *lu(x, s)|%s%* ds} {JT.S‘_ 2k ds}

Thus g, (f, x) < Aggr . 1(f, ) and the claim is proved by induction. Another
function we need is the g* function which is defined by

g* (007 = [T "2 + 72 x = YD) 3 HS ) dy dt.

The basic result about g* which we are going to use is the following theorem.
The proof is easy and for the sake of completeness we sketch it here.

Theorem 2.2. |g*(f)|, < C|f],, for2<p < .
Proor. Let ¥ be a nonnegative function. We claim
[&* (2P dx < C [ g(f, 0*A¥ () dx

where A is the Hardy-Littlewood maximal function. This is an easy conse-
quence of the fact that

supjt- V21 4 17125 — y) " ¥ (y) dy < CAY ().

t>0

Since A is bounded on L?, 1 < p < o0, an application of Holder’s inequality
proves the theorem.

3. Marcinkiewicz Multiplier Theorem

We will prove that g(F, x) < Cg*(f, x) where F(x) = T, f(x). Then in view of
theorems 2.1 and 2.2 it will follow that |F|, < C| f|,. Again, we need only
to prove the inequality g,(F, x) < Cg*(f, x). To prove this we introduce the
function M.

3.1 M(t,x,y) = 2 e Mum)e,(x)e, ()

If we let u(x, t) = H'f(x) and U(x, t) = H'F(x), then we can write

(3.2) Ux,t + s) = j u(y, H)M(s, x, y) dy.
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Differentiating the above expression with respect to s and ¢ and then setting
t=s we get

3.3) 8RUCx, 20) = [ d,u(y, 1)3,M(t, x, y) dy

Now we need to translate the hypothesis on the function u into properties of
M. This is done in the next lemma. For technical reasons we assume that
w(0) = 0 without losing any generality.

Lemma 3.1. Assume that p satisfies the condition k|Au(k)| < C. Then we
have

(34) |9, M1, x, )| < €t~
(3.5) [ 1x = y?1a,M(t, x, y)|? dy < Ct= 2,

Assuming the lemma for a moment we will first prove the inequality g, (F, x)
< Cg*(f, %).

(3-6) GUE20 = [, 0u(y,08,M(t,x,)dy

t172

[y g0 B, DM, x, ) dy

= A;(x) + B,(x).

Applying Schwarz inequality and using (3.4) we see that

2 2 2
BN AP e oPdy [ 10ME x| dy
<O [+ 17 2x = y) ~*9u(y, 1) dy.

Another application of Schwarz inequality to B,(x) gives

|x — ¥ 2|9,u(y, 1)|*dy
|x — y|?9,M(t, x, p)|* dy

(3.8) B> < |

|x-y|>t172
Lx—y! >t1/72

In view of the estimate (3.5) the above becomes
(3.9) B> < €= [(1+ 72 = y) 2 ,u(y, I dy
Thus we have

87U, 20> < 2 [(1+ 172 x = y) " 23,u(r, ) dy
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and hence
(310 eFEX?<C[ [0+ 17 x = y) T d,uy, 0l dydt
< Cg*(f, 9%

Let us now prove the Lemma 3.1. (3.4) is a simple consequence of the
boundedness of pu.

(3.11) |8, M(t, x,9)|* = | 2 e~ VNu(m)e, (), (0|

< (2 e VN, (0} {2 e VN, (»)*}.
Since

e MNp, () = =9,{> e Mp,(x)*} = —9,{(sinh 2¢) " *exp (—x*tanh 1)},

(3.4) follows immediately. To prove (3.5) we use the following recursion for-
mula (see [18]).

(.12) 2x0,(X) = (201 + 1D}, 1(0) + @1) 20, _ 1 (0).

Let us introduce the operators A and B defined by A = —d/dx + x and
B = —d/dy + y. These operators have the following effect on the Hermite
functions:

Apy(0) = (n + 1)"?p,1(x) and B, (y) = 20 + 1) ¢, 1(9).

We use the recursion formula to calculate 2(x — y)a,M(¢, x,y). An easy
calculation using the recursion formula and the action of 4 and B show that

(3.13) 20x — )3, M(t, x, ) = (B = A)( 2 A¥(M)e,(M)en(¥))

where ¥ () = e~ MNu(n). Applying the Leibnitz rule for the finite differences, a
typical term will be of the form (B — A){X e~ VDN + 2) Au(n)e, (X0, ()}
Since (B — A) brings down a factor of (27 + 2)*/? the square of the L? norm
of this series is bounded by

21e 2NN + 20| Ap(n)|P(N + 1), (x)’.

By the hypothesis on u the term (N + 2)*|Au(n)|? is bounded independent of
n and hence the above sum is dominated by a constant times >, e~ ~Ng, (x)*
which is bounded by Cz~3/2. Similar estimates hold for all other terms and
this completes the proof of the Lemma.

Let us now consider the » dimensional case. The n dimensional Hermite
semigroup H' is defined by means of the kernel K,(x, y) which is given by

K(x,y) = 2 e Gl ()8, (»)
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where &, are the n dimensional Hermite functions. In view of the Mehler’s
formula we have

K,(x,y) = (sinh 2¢) " "*exp {®(7)}
where
®(t) = —1/2(]x|* + |y|® coth 2¢ + x - y cosech 2¢.

Denoting the differentiation with respect to y; by d; the following estimates
can be obtained just like the one dimensional case.

G.14)  [8,8K,0 0] SC VA x =y T L+ 1 V2 x -y

forj=1,2,...,n. If we define the g and g, functions as in the one dimen-
sional case, then in view of the above estimate it is easily seen that Theorem
2.1 holds true in the » dimensional case also. We also have the relation

g(f,X) SAkgk+l(fsx)

between g and g, . We need one more auxiliary function which is the » dimen-
sional version of the g* function. For k£ > 0 we define gf by

(2,00 = [ [Tt "2 + 172 |x — y) "9, H' S ) dy at.

For k > n/2 the function (1 + |x — y|) ~2* belongs to L' and hence it is easy
to prove Theorem 2.2 for the g# function i.e. we have the inequality

|gENNp < CISfp»

provided k > n/2. As in the one dimensional case we set F(x) = T, f(x) and
will prove that

&+1(F, x) < Cgi(f, %)

where k > n/2 is an integer. This will then prove the multiplier theorem. We
start by defining

(3.15) M(t,x,y) = Y e~ @l +m0a) + 1)@, (0)2,(y).

The following Lemma translates the hypothesis on  into properties of M(¢, x, y).

Lemma 3.2. Assume the function p satisfies the hypothesis of Theorem 1.
Then we have

(3.16) |0*M(t, x, y)| < Ct~"**

(3.17) j lx — y|**|9"M(t, x, y)|> dy < Ct =2,
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Proor. The estimate (3.16) follows from the boundedness of u as in the
one dimensional case. The other estimate is a consequence of the following
estimates:

(3.18) j|(x—y)ﬁan(t,x,y)|2dy<Ct-"/z-", forall B with |B] = k.

To prove these estimates we have to introduce some more notation. Consider
the following operators 4; and B; defined by

A;= —d/dx;+x; and B;= —d/dy;+ y;.

These operators have the following effect on $,:

A2 () = (2005 + 1)@ 4 0s(%)
and

B3, () = (2e; + 1))@, 0s(¥)
where e/ is the j-th co-ordinate vector. Given a series

M(t, x,y) = 2, ¥(|a))P, (), ()
we denote by A"M(¢, x, y) the series defined by

AM(t,x,5) = 2, A¥(|a))2,(0)2.(7)

where A"V is the finite difference of order r of ¥. For technical convenience
we assume that ¥(|a]) =0 for all o with |a| < k. Let us first calculate
2(x; — y)M(t, x, y). Proceeding as in the one dimensional case we obtain

2(x; — yIM(t, x, ) = (B, — A) AM(t, x, y).

Now it is clear how to proceed further. Iteration of the above procedure pro-
duces

(*) 2m(xj - yj)mM(tv X, .y) = Z Crs(Bj - Aj)rAsM(t, X, y)

where the sum is extended over all r and s satisfying the conditions 2s — r
=m, s m.

The proof of (x) is by induction. As we have seen the result is true for
m = 1. Assuming the result for m, we will now consider

(3.19) 2"*(g — y)" T IM(t, x, y) = 21 C,2(x; — y)(B; — A) A°M(t, x, y)
Let us write

(x; — y)(B; — Aj)r =[(x; — ¥, (B; — Aj)’] + (B - Aj)r(xj =)
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and calculate the commutator [(x; — ), (B; — A)']. It is easily seen that
[(x; — ), (A; — B)] = 21,
where I is the identity operator. Now we claim that
[ — ), (B, — A)'1 = —2r(B;— A) ™.

We prove the claim by induction. Suppose we have [T, S] = 27 and [T, S"]
=2rS"" 1.

(3.20) [T,S8"* =(TS"— S'T+ S'T)S — SS'T — TS” + TS")
= 4rS" + S(TS — ST + ST) — (ST — TS + TS)S’
=4(r + 1)S" — [T, S

so that [T, S"*!] = 2(r + 1)S” and this proves the claim. Thus we have the
equations

(3.21) 2(x; - y)(B;— A) = —2r(B;— A) "' + (B, — A)2(x; - )
(3.22) 2m + l(xj _ ,yj)m + IM(t, X, y)
=2,C{ —2r(B; — A) "' + (B; — A)"2(x; — y)} A’M(t, X, y)

which equals to > A,(B; — A,)"A°M(t, x, y) with the conditions 2s — r = m + 1,
s <m + 1. This proves the equation (x).

Since the operator (x; — y;) commutes with (4; — B,) for i different from j,
repeated application of (x) produces the following result

(3.23) (x = »)’M(t, x,y) = 2,C,s(B — A"APIM(2, x, )

where 26; — v; = B8, 6; < 8, and (B — A)" stands for the product I1(B; — A4)".
Now we can complete the proof. Since

M1, x,y) = (=1 Ze” C 2o + n)u2|al + M2, (02,(9),
the above result (3.23) applied to %Mz, x, y) gives
(3.24) (x — »)POrMIt, x, ) = X C5(B — A) APIM,(t, x, y)
where
My (t,x, ) = 2, ¥(|a))®, ()P, ()
with

Y(|a)) = (- 1)ke” @+ a| + n)fu2'x| + n).
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If we expand (B — A)” and apply Leibnitz rule for finite differences, we see
that a typical term in the sum (3.24) is of the form

(3.25) Se” @el=mia) | + nykAllu2|a| + n)A°®,, (X)B™®, (1)

where 2|6| — |7| — |o| = k. Recalling the definition of the operators A and B
we see that the square of the L? norm of the above sum is dominated by

(3.26) 2ie 2@l Qla| 4+ pyk el AR 0| + n)? @, ().
Since
|ARIu2la] + n)|> < CQRla| + n)~2°! and 2|6| - |7| — |o] = &,
the above sum is dominated by a constant times
2ie” G| + ny¥|@, (0|

which is bounded by Ct~"2~%. All other terms are similarly estimated. This
completes the proof of Lemma 3.2.

Having proved the Lemma, Theorem 1 is proved just like the one dimen-
sional version. We write

H'*F(x) = [ M(s, x, DH'f(9) dy.

Taking k derivatives with respect to s and one derivative with respect to ¢ and
then putting ¢ = 5, we get the expression

(3.27) 3t HYF(x) = [ 9tM(t, x, )3, H'f(9) dy.

In view of the Lemma we get g, .. ;(F, x) < Cg#(f, x) and this completes the
proof.

4. Hardy-Littlewood Inequalities for (—A + |x|?)

We prove Theorem 2 when n = 1. There is absolutely no change in the proof
for the general case. We first prove the inequality (1.9). The operators 7;(c)
are all bounded on L2. The other inequality (1.8) is then proved by inter-
polating between the L2 result and the inequality (1.9). Then following inter-
polation theorem due Fefferman-Stein [3] is the one we are going to apply.

Theorem 4.1 (Fefferman-Stein). Suppose S, is an analytic family of operators
satisfying

@@ ISy Sl < Ao S| g

(i) 1S1+5fl2 <A1 f]2
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Sforally, —o <y < . Assume that A ;) satisfies the condition log A ;)
<cjexp {d;|y|}, ¢;>0 and 0<d;<w. If 1/p=1—-1/2, 0<t<1, then
1SS, <Al f,-

The inequality (1.9) is proved using the atomic theory of H” spaces. We say
that a function ¢ is a p-atom if there is a ball B in R"” such that ¢ has the
following properties.

(4.1) supp(¢) C B, |¢le<|B|™"”

(4.2) j o(X)P(x)dx = 0

for all polynomials of degree less than or equal to £ = n(1/p — 1). If f belong
to H”(R") it can be shown that there exists a sequence of p-atoms (¢)) and a
sequence of complex numbers (\)) such that f = 2)\;¢; in the sense of distribu-
tions and (3|\?)"” < C, | f| - Conversely, if f has the form f= X \;¢;,

then f belongs to H”(R") and | £, < C,(Z |N\17)"7.
With these preliminaries consider the operator 7,(«) which is defined by

4.3) T(e) = 2 2n + 1)~ % VifNn)p,(x)
The operator 7,(c) has the following kernel

(4.4) K, (x, ) = 23 2n + 1)7 %" Vg, ()¢, (%)
We can write this kernel as

K,(x,y) =1/T'(e) L>o)\°‘_ LK¥*(x, », \) d\

where we have set
(4.5) K#(x,y,N) = 2@ D00, ()0, (X).

~2X the following expression

In view of Mehler’s formula we have with r = e
(4.6) K#0e,y,\) = ce” @701 — r?e™*") "2 exp { B,(t, X, %))
where

B(t,x,) = (1 — rPe™ ) "1 —1/2(x? + y»)(1 + r’e™*") + 2xyre™*"}.

To prove that T,(c) is bounded on L” it is enough to show that
[ 1K xp)ldx<C,

with a C independent of y.
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It is easy to calculate the L' norm of K,(x, ). Let
Ct,x,y) = (1 — rPe™*") "2 exp (B,(t, x, )}
Then an easy calculation shows that

@7 |G x )
= a'?exp (~1/2a°(1 = rY)x* + ¥*) + 2rxya*(1 — r*) cos 2t}

where
a* = {(1 — r?? + 4r*sin®2¢} .
Letting b* = a*(1 — r*) and ¢ = 2rcos2¢(1 + >~ ! we have
(4.8) |C,(t,x,y)| = a*exp { —1/2b*(x — cy)*} exp { —1/2b%*(1 — cH)y?}.
It is easily seen that b*(1 — ¢?) = (1 — r?)/(1 + r?). Thus we have

@9 [1C, x| dx
=a%exp { —1/2(1 — r/(1 + rHy?} j exp { —1/2b%(x — cy)*} dx
which is equal to
Aa="*(1 = rY)y~2exp (—1/2(1 — )/ + rP)?}.
Therefore, we have

(4.10) j IK,(X, y)| dx
<A L\>o)\a—le~>\(1 — )" 12((1 — P2 + 4r?sin?2t) V4 d\.

From this we see that when sin 27 = 0, the kernel K,(x, y) is integrable for all
o > 0 but when sin 2¢ is not 0 the kernel is integrable only if o > 1/2. Since
we are interested in the case oo = 1/2 and ¢ = w/4, we have to study the
operators by other means. That is why we need the atomic theory of the Hardy
spaces.

Suppressing «, let us considet the operator T,(1/2) = T,. The kernel K, (x, y)
of this operator is given by

(4.11) K,(x,3) = 2,@2n + 1) 2@ D, (), (x)

Since

K¥(x,y,N) = 2e@" DDy, (3)g,(x)
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we can write the kernel K,(x, y) as
K,(x,y)=c j:x- V2K %(x, y, \) d\.
A simple calculation shows that
(4.12) K¥(x, y,N) = c{sinh2(\ — ir)} ~ 12~ 4»: NeiBr(x.y. )
where A,(x, y,\) and B,(x,y,\) are given by the following equat.ions.

(4.13)  2A,(x,y,)\) = (sinh®2\ + sin?2¢) ~(sinh 2\) {cos 2¢(x — »)*
+ (cosh 2\ — cos 28)(x? + y?)}

(4.14) 2B,(x,y,\) = —(sinh? 2\ + sin®2¢) ™ !(sin 2¢) {cosh 2\(x — y)?
— (cosh 2\ — cos 28)(x? + y%)}.

First consider the integral taken from 1 to infinity. Since sinh 2\ behaves like
e*» for A > 1, it can be easily checked that the integral

[P (sinh 20\ — ir)) =12 Pur Ve = AN g

defines a nice L' kernel and hence the operator corresponding to this kernel
is bounded on L?, for all p, 1 < p < . So we can very well assume that the
kernel of the operator 7, is given by

K,(x,9) = [IN7172(sinh 2(\ — i)} =12~ 40 VeiBecer:D gy

In view of the atomic decomposition, 7, will be bounded from H' into L' once
we prove the following proposition.

Proposition 4.1. j' | T, f(x)| dx < C whenever f is an 1-atom.

In proving this proposition we closely follow Phong and Stein. In [10], they
studied the boundedness of the operator 7 whose kernel is of the form
K(x — y)e'B*» where K is a Calderén-Zygmund kernel and B is a non-
degenerate bilinear form. To prove the proposition we need certain estimates
for the kernel K,(x, y). These estimates are proved in the next lemma. Let us
write K,(x,y,\) = {sinh2(\ — it)} ~le~A®»N,

Lemma 4.1. We have the following inequalities.
| ]2 1778, K, 7. e > D dx | < Clx = y| 2
| o2 *Ki6, 7,03, (€% V) )| < C(sin20) =2
| ]2 720, DAK, (x, 3, N dN | < Clx = 1 2.
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Proor. The proof of this lemma is elementary. We prove it when 0 < ¢ < /8.
The proof of the lemma for other intervals of ¢ is similar. First we calculate
that

(4.15) |sinh 2(\ — it)|* = c(sinh®2\ + sin?2¢)

Observe that for 0 < \ < 1, (sinh? 2\ + sin?2¢) behaves like (\? + sin?27). Let
us prove the first inequality of the lemma. d, K, (x, y, ) has two terms. We will
estimate only the contribution of

(4.16) J = {sinh2(\ — if)} ~"*(sinh® 2\ + sin®27) !
(sinh 2)\)(cos 21)(x — y)e ~ 4N

Since 0 < ¢ < 7/8, cos2t > 2~ Y2, We consider two cases. First assume that
t <\. In this case (sinh®2\ + sin?2¢) behaves like 2. Therefore,

4.17) |71 < Cle = YN~ exp (=A™ !(x = »)*).
Integrating this agains A\~ '2 we have
x-y ﬁ)\‘ze“"_ D\ = (x — ) j:oe'“(x'y)z d\
<kx-y) JQ:)\VZe"')‘("‘y)z d.

This gives the estimate C|x — y|~%. Next assume that #> \. In this case
(sinh® 2\ + sin®2¢) behaves like #>. Therefore,

|J| < Clx — p)At ™32 exp { —cht ™ 2(x — y)*).
This gives the integral
(x — y)t=52 ﬁ N2 =M "2 =)? < (c— p)t= 52 j:)\a/z— 1e—cxt‘2(x—y)2 dn

which is bounded by Ct'/?|x — y| ~2. This proves the first inequality when
0 <t < w/8. If ¢t is in the neighbourhood of 7/4 we can use

(sinh?® 2\ + sin®2¢) ~ (sinh 2\)(cosh 2\ — cos 27)(x? + y?)
in place of
(sinh? 2\ + sin?2¢) ~ !(sinh 2)\) cos 2#(x — y)?

since (cosh 2\ — cos2¢) > 1 — cos 27 > 2sin®¢ > ¢. This completes the proof
of the first inequality.

The proof of the second inequality is similar. Unfortunately the estimate we
get is not uniform in #. We believe that a uniform estimate is possible though
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we are not able to prove it now. Again we will be having two terms. Consider
the term

G = K,(x, y, N)(sin 2£)(sinh?® 2\ + sin?2¢) ~(cosh 2\)(x — ).
Since ¢ < (sinh?2\ + sin®2¢) ~! < (sin?2¢) " !, G in modulus is bounded by
4.18) |G| < C(x — y)(sin2¢) " ¥?exp { —c\(x — ¥)*}.

Integrating this against A\ ~ 2% proves the desired inequality. The other term is
estimated similarly. The proof of the third inequality follows along similar
lines. Differentiation with respect to A brings down a factor of A and hence
we get |x — y| ~3. Hence the lemma.

Having proved the required estimates, we can now prove Proposition 4.1.
Assume that f is an l-atom supported in |x — y*| < 6 i.e., f satisfies the
following two conditions.

@) | flo<o™?
(ii) j Fo) dx = 0.

Let Q; denote the ball of radius 6 centered at y* and let CQ, stand for the
complement of Q;. We write F(x) = T,f(x) as a sum of three functions,
F=F, + F, + F; where F;(x) = F(x) on Q,;, 0 elsewhere; F,(x) = F(x) on
CQ,;NQ;s-1, 0 elsewhere and F;(x) = F(x) on CQ,;NCQ;-1, 0 elsewhere.
We note that F, =0 when 6 > 2-12

To study F,, we apply the L? theory of T,. From the definition, it is clear
that T, is bounded on L?. Therefore

J |F1 ()] dx < lezsil/ZU |F1(x)]2dx} 172
< 61/2” |th(x)|2 dx}l/Z
< C61/2U |f(x)|2dx}l/2.

Since
U |f(x)|2 dx}l/z <Cs™ 172

we get [|F,(x)|dx < C.
To study F, we write the kernel K,(x, y) in the following way.

K, (x,y) = E\(x, ) + Gi(x,)) + H/(x, )
where
E6,9) = [N V2K, 063, )) = Koo, 7%, )P0
G,(x,y) — J';)\—I/ZKI(x’y*,)\){eiBr(x,y,)\) _ eiB;(x,y*,)\)} dn
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Since f has mean value 0, the kernel H,(x, y) does not contribute anything.
Observe that when x is in CQ,; and y is in Q; we have |x — y*| > 2|y — y*|.
In view of Lemma 4.1 we have the estimates

(4.19) |E,(x, )| < Cly — y*| |x — y*| 2
(4.20) |G, (x, »)] < Cly — y*|.
Therefore,

IFy(0)| < C8{1 + |x — y*| 2},
Since F,(x) is supported in 28 < |x — y*| < 67!, we get
_y*|—2
[lIR@lax<es(f _ dax+| lx-y7tdx]<C.

Finally, we consider F;. We write the kernel as the sum of the following
three terms.

E,(%,9) = [N V2(K 06,2, 0) = K6, 7%, )PV d)
G5, ) = [IN" 12K, (x, y*, NP6V — ¢80y g\
Hi2) = [Nty el D

Using Lemma 4.1 we get the following estimates.

(4.21) |E,(x, )] < C|y — y*||x — y*| =2
(4.22) |G,(x, )| < Clx — y*| 2.

These estimates will imply that
|E.fO)] < Colx — y*|~% and |G ()| < Clx—y*| >

Therefore,

Q

|E,f(x)| dx < 5U‘x_y*|aa-1 I — y¥| -zdx]

U|X-y"|aza [X—y*l“de}

J‘|x—y*|25‘1

N
)

N
P!

When 6 <1 we get

JoyrmsmsIGSN ax <[] = y#|dx} < c’<C

x—y*=8-1

and when 6 > 1 we have

|G,f(x)1dx<c{j |x-—y*|'3dx}<C5‘2<C.

le—y*lzzﬁ x -y * =28



MULTIPLIERS FOR HERMITE EXPANSIONS 21
This takes care of the terms E, f(x) and G,f(x). Finally H,f(x) is given by

Hf®) = Ff{ | NK 6, 7%, M dM] = Ff 00z )
where
F.f(x) = [ 0f(y) dy.

By Plancherel’s theorem |F,f ||, = | f|, and we also have |g,(x)| < Clx — y*| ..
Hence by Schwarz inequality we obtain

|H, ()] dx < C{J ]F,f(x)|2dx}1/2[I
<C

-2 172
f .l =y %dx
lx-y*=8-1 x—y*=8-1

since | f], <&~ "2 This completes the proof of the Proposition 4.1 and
hence proves that the operator T, maps H' boundedly into L!.

We can now prove Theorem 2. Consider the analytic family S, of operators
defined by S, = T,{(1 — 2)/2}. Then clearly S, , ;, = T,(—iy/2) is bounded on
L2. Also Sy = T, {(1 — iy)/2) and for this operator we can prove that it maps
H' boundedly into L! by repeating the proof of Proposition 4.1. By applying
the interpolation theorem of Fefferman and Stein we get the theorem for
1 < p<2. For p > 2, the theorem follows from duality.

5. An Application to the Solutions of the Schrodinger Equation

Consider the solution u(x, ¢) of the initial value problem for the Schrodinger
equation

(5.1 —id,ulx, 1) = (=A + |x|Julx, 1), ux,0) = f(x)

where fis a nice function, say f belongs to the Schwartz class S(R"). The solu-
tion u(x, t) has the Hermite expansion

u(x, 1) = 2, e@le+mitrN )@ (x)

where f"(c) are the Hermite coefficients of the function f. f— u defines an
operator F(¢) which, in view of the above expansion, is given by a kernel as
follows:

(52) F(@) ) = 7~ [ (sin20)~"2e™*“*f () dy

where

o(t,x,y) = —x - ycosec2t + 1/2(|x|* + |y|*) cot 2¢.
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Clearly, F(¢) defines a unitary operator on L%(R"). It also has the group prop-
erty F(¢) F(s) = F(t + s), F(0) = identity. Furthermore, when ¢ takes values in
the set {w/k:k=1,2,3,...} F(¢) is a fractional power of F, the Fourier
transform. For example, F(x/4) = F and F(x/8) = F'/2. Because of this and
the group property the operators F(¢) cannot be bounded on L”. For otherwise
the Fourier transform has to be bounded on L? which, of course, is not true.

A similar situation occurs when we consider the Schrodinger equation
without the potential. Let H(f) be the solution operator for the equation
—id,u(x, t) = —Au(x, t), u(x, 0) = f(x). Formally this operator can be defined
by (H(@®) ) (&) = exp {it|£]*} f2(%). This operator is unitary on L*(R"). But
as shown in Hormander [6] and Littman et al. [7], it fails to be bounded on
L? when p is different from 2. In this connection Sjostrand [14] considered
the Riesz means of the operator H(¢) defined by

G f(x) = ar™* [T (r = 0" T'H(O) Sy at

and proved that the Riesz means G, (o) are bounded on L? if and only if
a > n|l/p — 1/2|. So it is natural to ask the same question with regard to the
Riesz means G.(a) of the operators F(¢). It turns out that Theorem 3 is true.
For the sake of simplicity we treat the one dimensional case.

We write down the Hermite expansion of F(¢) f(x) for a smooth function f.

(5.3 F(0)f(x) = 2e®"* DifN(m)p, (%)

When f is in the Schwartz class the series converges uniformly. Let g be the
inverse Fourier transform of the function A(¢) defined to be (1 — #)*~! for
0<t<1 and 0 elsewhere. Multiplying the above series by (o/7)h(¢/7) and
integrating with respect to ¢ we obtain

G4 G, (@) fe) =D el@n + )7} A (), (%).
The function g(¢) can be calculated explicitly. We can write
&) = jl_ (1 -5 le™ds— Io_ (1 = 5)*~lei® gs.

We have the following formula for the first integral as proved in Gelfand-
Shilov [4], p. 171.

(5.5) g,(t) =c,t~ %",  c¢,=T(a)e” "2,

An integration by parts will show that the second integral is equal to
d,t~! + g,(t) where the function g,(¢) = O(t %) at infinity.
Thus G,(«) is a sum of three operators, G (@) f = TAx) f + To(1)f + Tf where

(5.6) Tf(¥) = 208 (2n + D7} fA(M)en ().
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Since |g;(2n+ 1| < C2n+1)"% and [¢,]w|eal: < CRR + 1)VS, we see
that 7 is given by an L' kernel and so T is bounded on L?, for all p,
1 < p < . The operator T,(1) is clearly bounded on L?, 1 < p < o for the
same reason as we have noticed in the previous section. Finally we can apply
Theorem 2 to the operators T,(«). For a > |1/p — 1/2|, these operators are
bounded on L?, for 1 < p < and when p =1 and « = 1/2 it is bounded
from H' into L'. This proves Theorem 3.
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