REVISTA MATEMATICA IBEROAMERICANA
VoL. 2, N.° 4, 1986

Vector Valued
Inequalities for
Strongly Singular
Calderon-Zygmund
Operators

J. Alvarez and M. Milman

1. Introduction

Convolution operators with symbols of the form ei|£|a|£| =P have been exten-
sively studied in the literature. Motivated by earlier work by C. Fefferman and
E. M. Stein (cf. [8], [9]), we introduced in [1] a generalization of the classical Cal-
derén-Zygmund operators. These operators, which include pseudodifferential
operators with symbols in S, 7, where

s<a<l, 620, ( ~a)%<b<%,
were termed strongly singular Calderén-Zygmund operators.

In this article we consider a theory of vector valued strongly singular
operators. Our results include L?, H? and BMO continuity results. Moreover,
as is well known, vector valued estimates are closely related to weighted norm
inequalities. These results are developed in the first four sections of the paper.
In §5 we use our vector valued singular integrals to estimate the corresponding
maximal operators. Finally in §6 we discuss applications to weighted norm
inequalities for pseudo-differential operators with symbols in the classes
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described above. Our results in this direction are related to some recent work
by Chanillo and Torchinsky [3].

We refer to §2 for a review of the necessary definitions and notation to be
followed in the paper.

2. Preliminaries
In [1] we considered the following class of singular integral operators.

(2.1) Definition. Let T:S— S’ be a bounded linear operator. T is called a
strongly singular Calderon-Zygmund operator if the following conditions are
satisfied.

(S,) T extends to a bounded operator on L%

(S,) T is associated with a standard kernel, in the sense that there exists a
function k(x, y) continuous away from the diagonal on R*", such that

ly —2°

@ |k(x, y) — k(x, 2)| + |k(», %) — k(z,%)| < clx—_E]Tm

if 2|y —z|*<|x—z| for some 0<6<1,0<a<l.
(i) (Tf,8) = [ k(x, ) S (&) dy dx,

for f, g € S with disjoint supports.
(S;) For some

-0l <f<s
Wy sPs57

T and its adjoint T* extend to continuous operators from L7 into L?, where

1 1 B
__=__+_.
g 2 n

Let us observe that if 7 is associated with a standard kernel, then given
feC®NL®, T(f) can be defined as a continuous linear functional over the
Cyg functions with vanishing mean.

In [1] we show that S.C.Z. Operators are bounded from L” into BMO and
moreover, if T is a S.C.Z. Operator such that 7#(1) = 0,
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then T defines a bounded operator
T:H (R > H(R"), py<p<l.

In what follows we shall provide some background information in order to
extend our theory to the frame of vector valued spaces. Moreover, we shall
also be concerned with the issue of relaxing the smoothness condition (S,) for
more appropriate and sharper conditions in order to deal with the L” theory
of S.C.Z.0’s.

The classical maximal function of Hardy Littlewood M,,f, and the sharp
maximal operator f#, can be defined for vector valued functions simply
replacing absolute values by norms. In fact, let X be a Banch space,

feLi(R", X),
then we let
1 1/p
M = - P H
S (%) sup < Bl L, (W21 dy)
f*(x) = sup inf [—LJ |f) =<l dy}’
Bax ceX |B| B
where B denotes a ball in R”, | | stands for the norm of X, 1 < p < . In

what follows we shall consider the usual vector valued L?(R", X) = L?(X)
spaces (cf. [14]).

In a similar fashion we can define vector valued (p, g) atoms, and develop
a theory of vector valued H?(X) spaces. Indeed, a (p, g) atom is a vector
valued function supported in a ball, with moments zero up to order [n(é — l)]
and such that

||f||L‘?(X) < IBIl/q—- l/P‘

Let H?9(X) = {f: R" —+X‘f= Z;°=1)\jaj in the S(R", X')' sense, 4;is a (p, q)
atom, j=1,..., 27, NP < 00}. We let

|/ Lap.agy = inf {( 2 IMI”>W:f =,§i x,.a,} '

j=1

As in the scalar valued case H”9(X) = H”'(X), for g #r.
We also observe that if X’ satisfies the Radon-Nikodym property (in par-
ticular if X is reflexive), then

(H'(X)) = BMO(X").

Moreover, if X satisfies the UMD property (cf. [14]), then H'(X) can be
characterized using vector valued Riesz transforms (cf. [14]).
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The H?(X) spaces can be interpolated in the expected way, in particular (cf.
C.F. Folland and E. M. Stein [10]).

(2.2) Theorem. Let T be an operator mapping H”(X) into L”(Y), LYX)
into LYY), where X, Y are Banach spaces and 0 < p<1<qg< . Then, T
maps L'(X) into L(1, ©)(Y), i.e., T is of weak type (1, 1).

We now formulate a vector valued version of S.C.Z.0’s. Given X, Y
Banach spaces, let L(X, Y') denote the space of bounded linear operators from
X into Y. Let T be an operator such that

T: S(R", X) = S(R", Y'Y

We shall say that 7 is associated with a kernel if there exists a continuous
function k: R*"/diagonal — L(X, Y), such that

(&, Tf) = [[ s(0k(x, »)S () dy dx,

when f and g have disjoint supports.

Our operators will be associated with kernels satisfying certain conditions
of which (S,)(7) is a limiting case. This will allow us also to refine the main
results of our previous work [1].

(2.3) Definition (cf. [14]). Let 1 <r< o, 0< o <1. We shall say that a
kernel k, k: R*"/diagonal — L(X, Y) satisfies the condition D, X, Y)=D,,
if there exists a sequence {dj} € I' such that vz € R", Vo > 0, Vy € R" such that
|y - ZI <o,

2.4) (ch(z,aa) | k(x, ») — k(x, 2) ||’dx) r<d|Ci@ oY, i=1,...

where C;(z,0%) = (x: o< |x—2z| <2/ 0%}, and | | denotes the norm
in L(X, Y). For a kernel to be in D, , we also require that k(x,y) = k(y, X)
satisfies (2.4). This assumption, although not always necessary, will simplify
the formulation of our results.

It is readily verified that a D, , condition is stronger than a D, , condition
if p> qg. A limiting case of these conditions is the analogue of condition
(S,)(i) obtained replacing absolute values by norms. We shall refer to this con-
dition as D,. Observe that a D, condition implies all the D, , conditions,
r=z1.

We shall now formulate vector valued versions of (S;) and (S;). Again, we
shall refine our assumptions in order to be able to derive very precise results.
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Let l1<p<g< », p/g<a<1, we shall impose if 0 < o< 1

2.5 _ g v 1 p v
@) <|B(z, T Jso 17 ””dx> <c< B, oo ) /15 >

and (if 0 > 1),

@.5y 1 Tf <l flp

for some absolute constant ¢ > 0.

We shall refer to these conditions as C, ,, conditions. The strongly

singular Calderén-Zygmund operators considered in this paper will satisfy
conditions of the form C, , , and D, ,.
(2.6) Remark. In [14]itis shown that if Tis a sublinear operator on L?(R"),
1 < p < o, such that Ve > 0, (Tf)*(x) < C.M, , ef(x), T admits an extension
to L? (R", X) for all Banach spaces X € UMD, with an unconditional basis.
The extension is defined as follows. Let {bj} be an unconditional basis in
X, then let T(ijj(x)bj) = 2, Tf;(x)b;.

In particular, let 7}, be defined by

JeN

ﬁ’(\f) = 09 |E "2 f)),  0<b<],

where 0 is a smooth radial cutoff function, 6(¢) = 1 if |¢| > 1 and 6(¢) = 0 if
|£] < 1/2. Then, using (2.15) of Chanillo [4], we see that T}, can be extended
to a bounded operator

T,: LP(R", X) = LP(R", X)

for all Banach spaces X e UMD with an unconditional basis.

3. H? Theory
We consider first the L%, BMO continuity of S.C.Z.0O’s.

(3.1) Theorem. Let T be an operator associated with a standard kernel satis-
JSying the C, and D, , conditions. Then, for s = max {p,r'}, we have

~

(3.2 (TH*x) S M, f(x),  feLIX).

sq,

Proor., Fix a ball B(z, o) and write f = f; + f,, where

fl = fXB(Z,ZUO‘) .
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Let

¢ = [k () dy,

then

L,(m) | TfG) — cf dx < fB(M) | T, 00| dx

* L nte. o Jonrmie.20m 1506 2) = K@) 1) dy dx.

Dividing by |B(z, 0)| we can estimate the two terms on the right hand side as
follows. The first term is majorized using Hélder’s inequality and the C, , ,,
condition. The second term is estimated by breaking up R"/B(z,2¢%) into
disjoint annuli and estimating

sup 3 [ k(ey) = k@) - [ S0)| dy
B(z,0) j=1vC;j&@0%)
using Hoélder’s inequality and the D, , condition.

A very important special case of the above result obtains when 7 satisfies
a D, , condition, in such case we have

(3.3) Corollary. Let T satisfy, C, , , and D, ,, then T can be defined as a
continuous operator, T: L*(X)— BMO(Y).

ProOF. Observe that » = 1 implies that s = co. Therefore, the estimate (3.2)
can be written as

TN W <l flo

This gives the desired estimate when fe LY (X ). Moreover, it follows from the
proof of (3.1) that Tf has a meaning for any fe L*(X).

Our next result considers S.C.Z.0’s as operators from H?(X) into LP(Y)
spaces. The proof is the same as the one given in [1].

(3.4) Theorem. Let T be an operator associated with a kernel k that satisfies
a D, condition and moreover suppose that T extends to a bounded operator,
T: L*(X) - LX(Y), and from LYX)— L¥Y),

1 1 B

— =4 —
qg 2 n
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for some

(l—a)§<6<

(T

Let

and let 1 = p > p,, then T maps H?(X) into L”(Y).

In order to state the main result of this section we shall consider reflexive Ba-
nach spaces, X, Y. Then if Tis associated with a kernel k, T* can be defined as
a linear continuous operator from S(R", Y’) into S(R", X)’ and T* is associated
with k(y, x)*: R*"/diagonal — L(Y", X’). Observe that if this kernel satisfies a
D, , condition, then given fe L*(Y')NC™(Y’), T*(f) has a meaning as a
continuous linear functional over Dy(X) = {¢> e Cy(X): j 0= 0] (cf. [1D).

(3.5) Theorem. Let X, Y be reflexive Banach spaces, let T, T* satisfy the
conditions of (3.4). Moreover, suppose that T*(€) = 0,Vee Y',ande: R" — Y’
given by é(x) = e. Let

2 2[5 _ \
Po n<—— —5+ B>
o
then for p, < p < 1, T is a continuous operator, T: H(R", X) - H?(R", Y).

Proor. As in the scalar valued situation treated in detail in [1], one shows
that Ta, the image of a (p, 2) atom a, is a suitable molecule. The only new
technical problem is to check that j" Ta(x) dx = 0. This can be done as follows.
Let a be a (p, 2) atom supported on a ball B, then |B| ~**?a is a (1,2) atom
and given ee Y’,

1B| —1+1/p<e, J Ta(x) dx> - j(é(x), T(B|~ '+ *a)x)) dx
= [<T*@),|B|"*"Pay dx =0

where in the last line we have used the fact that H'(X) = BMO(X") (cf. [14])
and that T* maps L*(Y") into BMO(X").
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(3.6) Remark. If in the assumptions of (3.5) we have o = 1, then we can let
B — 0 and we recover the well known fact that Calderén Zygmund operators
are continuous from H?(X) into H?(Y)when 1 > p > n/(n + 6) and T*(€) = 0,
ee Y’ (cf. [1]). Moreover, the cancellation condition can be dropped in the case
of convolution operators, but in general is necessary. In fact, given a function
¢ slowly increasing with all derivatives, the operator T,(f) = ¢ f is a linear
continuous operator from S(R”, C) — S(IR", C)', associated to the standard kernel
identically zero. Moreover, T#(1) = T;(1) = . But T,(f) will not have
vanishing integral for any fe H”(C), unless ¢ is a constant, i.e., T%(1) = 0 in
the BMO sense.

Finally we consider continuity at the critical index p,. The appropriate
smoothness conditions on the kernel are given by

G.7 | k(x, y) — k(x, 2)| dx < 2™

J.Cj(z,a)

ifo>1,|y—z|/<o.

3.8) | k(x, ) — k(x, 2)] dx < 2~/ eig?0 =7/

J-Cj (z,07)
ifo<l,v<ao, |y—2|<o.

Let us observe that if 7 is associated with a kernel satisfying the D, condi-
tion then k satisfies (3.7) and (3.8).

(3.9) Theorem. Let T be an operator associated with a kernel satisfying
(3.7) and (3.8). Moreover, suppose that T extends to a bounded operator,
T: LX(X) - LX(Y), and from LYX) into L*(Y),

1 1
1_1.8,
q 2 n

for some

n n
— — <L —_
(1 01)2\6<2

Then, T: H?(X) = LP(Y), po < p < 1, where

6 n
11 B<E+_>

— ==+
Po 2 n<i—6+6>
o



VECTOR VALUED INEQUALITIES FOR STRONGLY SINGULAR CALDERON-ZYGMUND OPERATORS 413

Proor. Fix p, < p <1 and let a be a (p, «) atom supported on B(z, ¢). Sup-
pose first that ¢ > 1, then

p
j " Ta(x) ” dx D ‘[B(z, 20)

| Ta(x)| ? dx

+ 3 j% N ( [ 1KC62) = k@, - Ja(D)] dy)de

=Il+12'

Using Hoélder’s inequality with exponent 2/p and the L? continuity property,
we can estimate I, by a constant. To take care of I, we use Holder’s inequality
with exponent 1/p and (3.7), obtaining

12 < CZZI('I—(H+5)P) <c
J

since

S n
n+é )
n+—
o

12p2=p,>

Next we consider the case where ¢ < 1. Then,

p p
[1TatolPdx< |, 1Ta@)|”dx

* j] JC,-(z,ﬂ) (JB(z,a) [ kCx, ) — k(x,2)| - |a()] d)’)"dx

J
=II+IZ

with v to be determined precisely later.
The first term can be majorized using Holder’s inequality with exponent
2/p and the L?, L? continuity property,

11 < Can[v(l -p/2)+p/q— 1]_

Thus, since 0 <1 and

(3.10) >
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On the other hand, using Holder’s inequality with exponent 1/p and condi-
tion (3.8), we get

]
12 S co_—y[p(n+6/a)—n]+p(n+5)-n Z 2j[n—p(n+6/a)]
Jj=1

Thus I, will be bounded whenever v satisfies
ygZatdn
p<n + —> -n
o

For the extreme value p = p, the right hand sides of (3.10) and (3.11) have the
common value

(3.11)

n
3"4‘6"6

70 = 6 n < o,
a2

where the last inequality follows from our assumption (1 — «)n/2 < 8. Observe
that the right hand side of (3.10) decreases as p — 1 and equals 1 — 23/n when
p = 1. Moreover, the right hand side of (3.11) increases as p — 1 and equals
o when p = 1. Consequently the choice v = 7, will satisfy (3.10) and (3.11),

ViZ=p2=p,.

(3.12) Remark. It would be interesting to obtain (3.9) imposing only a D, |,
condition on the kernel. Observe that when 8 = (1 — a)n/2 then p, = 1 and
the (H', L") continuity can be obtained assuming a D, , condition (cf. [1],
Theorem 1.2 ¢)).

4. Weak Type L' and L? Inequalities

Let us observe that if T is an operator satisfying the conditions of (3.9) we
can use intepolation (cf. (2.2) above) to obtain 7: L1(X) = L(1, ©)(Y). In [14]
the weak type (1,1) of Calderén-Zygmund operators (i.e., « = 1, 8 = 0) was
obtained for kernels satisfying only a D, ; condition. We now show how C.
Fefferman’s approach for convolution operators (cf. [8]) can be adapted to
obtain the weak type (1, 1) estimates under sharp assumptions.

(4.1) Theorem. Let T be an operator associated with a kernel satisfying
the D, , condition. We also assume, moreover, that T extends to bounded
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operators, T: LX(X)— LXY), and T: LX) - L*(Y),

1 1 B8 n n
_— = — —_ —S —
q 2 + n (1-a 2 b< 2
Then, T: L'(X)— L(1, ©)(Y).

Proor. Let fe L'(X), X > 0. Consider a Calderén-Zygmund decomposition
of f at level A. Thus,

0= (M) >N = U0,

where the Qj’s are cubes and such that if fQ‘ denotes the mean value of f over
J

Q;, f=f"+f", where

' . +
f fX a jgl fQj XQJ'

o)

f” =j§1(f_fgj)xgj = Z.f_-,'

Moreover,

(4.2) |f ] <en ae., |f]i< ISl
where | |, denotes the norm in L'(X).

@4.3) ij [, @l dx<cQ  [fxdx=0
(4.4) 2l << 11

From (4.2), f'€ LA(X) and | f'|2 < e\|f]:. So,
N (/| T ()| > N2} < el Tf |5 < A f -

On the other hand, if ¢Q denotes the union of the cubes cQj with the same
center as QJ. and c times the side length, we have, according to (4.4)

c
| (xecQ/|TF" 0] > M2} < |e@ < [ £
So, it remains to prove that

|(xe RN/ | T7(9 ] >M23 <5 111



416 J. ALVAREZ AND M. MILMAN

Let us denote o; the diameter of the cube Q;. Let

=1

If z; is the center of the cube Q;, for a suitable ¢ we will have |x - z| > 4o;
if xe R"™\c¢Q. According to (4.3), we can write -

N{xeR\e®/ITGW| >NM4)I < [, 1TGE)| dx
SB[l 20p Jo, 1K D) = kG )] - 1 £, dy .

Using condition D, ,, this can be majorized by
e[, 1Ml <el sl
7YY

Now, let ¢ € Cy(R") a scalar function such that
suppe C {|x| <1/e},  [edx=1, ¢>0.

Let

1
Sﬂj(x) = —/a SO(X/U_,I-/Q)-
9

We will write
F=2f*e;+ 2(f;=f*e)=F' +F".
If x e R™\cQ,
T(f; = fy* )0 = [ ke, 2)f;0) dy = [ ke, W) [ 0,0 = 9).£,0) dy dw.

Since k(x,w) is a L(X, Y)-valued continuous function away from the
diagonal, we can change the order of integration in the second term above.
Moreover, j¢j(w —y)dw =1 for any y. So, we can write

[ [] e, ) = ke, W, v =y aw | £, .
Then,

N{xeR\cQ/|TF"®] > M8} <c [ ITF" ()] dx

R7\¢

<2 e, | [ 1htx, ) = ke, w0 = ) aw] 1 )] dy .
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If xe R"™\cQ;, |y — w| < ¢}/%, we have
lx—w| = lx—z| - |z; = y| = |y — w| > 40, — 0, — 0}/ > 20,

since a < 1, 0;<1.
So, we can majorize the above sum as

2o, Ty wi<oe S g 1KG ) = i, W] dx 0 = ) dw | S0 0.

Using again condition D, , and the fact that j' <pj(w —y)dw=1foranyy,j,
we obtain

2o 15O ay <cl fls.

Now, it remains to prove that
4.5) M{xeRN\cQ|TF'(x)| > N8} <c|f];-

Let J? denote the Bessel potential of order 8. Observe that these operators
are positive and therefore admit a vector valued extension. Thus, our program
now will be to obtain the estimate

(4.6) |JBF"|3 < AN| f] -

In fact, from this estimate it follows according to the dontinuity assumptions
on T that

|TF'|3 = | TJ"FI°F' |5 < |JPF' |3 S AN S|

Thus, (4.5) follows using Chebyshev’s inequality.
Now, let us recall that

F'= 2, fXg*p;— 24 foXg *9;
ajgl Qj J gjz<:1 Qj Qj J

For x fixed, we will write x ~ Qj if x belongs to the closure of any cube Q,
which is adjacent or coincides with Q;.
Now,

J* gleQj*ﬁpj(x) = ~ZQ JBfXQj*qoj(X) + EQ JBfXQj*on(x) =F,(x) + F,(%).

So that,

UPF)0) = Fi@) + B 00 = 55 f /(g ).
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With the same proof as in Fefferman’s proof, we can show that if x # QJ.,

175 x0,% 0,0 < ¢I°] fllg X, * #;)-

So, according to (4.3), we have

| 7200 - 2, 7o X0, 2/ |<o Z, 7%, 2,

* Q.
78R4

<ch

since the supports of xQ * ¢, have finite intersection.
On the other hand,

B
Z ']fQXQ *qoj

a<l

oj;l I Jﬁ‘Pj* (W fQJ)XQj I

<eX [, If1dy<elfls.

Thus, we get from the L' and L™ inequalities
| = 2 ST xg

0;< 1
It only remains to show that |F; |5 < c\| f|,. This can be also done in the
same way as in Fefferman’s proof.
For x fixed, let

<C>\”f|i1~

Fi) = iﬂfxgwj(x) if x~Q,

if not.
Thus,

Fi(®) = 2] Fix).

oj<l

Moreover, for a fixed x, F¥(x) # 0 for at most N values of j. So,

N

N 2
|F(0]% < ( 21 | F{P )| Y) = ,,Zl |FP0 |y IF1P@ |y
J= J,n=

N
<2< > [FPWI5 + IF ?“’(X)II?)

Jh=1

<4N X |F{)l}.

aj<1
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So that,

|F113 < 4N 23| Fi)5 < 4N§] 17%0,12 1 fx |11

281~ s 1/ c
17,13 = [ 1+ (€)™ lo(0) "Dl de < 5
J
since |Q)] < 1.
Finally,
1
IFil2 < e 257 1% 1T < Al fls-
J IQJI /

This completes the proof of the theorem.

Let us note in passing that we actually needed less than condition D, , on
the kernel. In-fact, what we really used is

|k(x,y) — k(x,2)| dx < c, 0<o<1

jlx—z|>coa

[ | kCx, ») — k(x,2)| dx < c, o> 1
lx-z|>co

for |y —z| <o.

Interpolating the results of §3 and (4.1), we can derive L” continuity
theorems and we shall leave details to the interested reader. Also, in the stan-
dard way, (3.2) gives weighted L? inequalities. S. Chanillo proved in [4] sharp
estimates for 7.

Supposing the condition in Theorem 3.1 with p = r' < o, (3.2) reads

(T ) < ¢, My (f)0).

It is well known that this inequality holds for any p>1 when T is a
Calder6on-Zygmund operator. It is an open problem to know whether this is
true or not for a general S.C.Z. Operator.

5. Maximal Inequalities

Let 7 be an operator associated with a standard kernel k. We assume that T’
satisfies (2.5) and (2.5) and moreover that the kernel k satisfies a D,, condi-
tion. Moreover, suppose that k satisfies the estimate

c

(5.1 1kCx, )| <W'
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Let T4 denote the maximal operator defined by
Tafx) = sup | TS0y
where

TS =[, .. ke)fR)dy.

3

Then, the following extension of Cotlar’s estimates holds (cf. [5]).

(5.2) Theorem. Let T be an operator satisfying the conditions described
above, then Vfe Cy(X),

(5.3) T f(x) < c(M(TSf)(x) + M, f(x))
where 1 < p < « is given by condition (2.5)'.
For the proof we require the following Lemma (cf. [5]).

(5.4) Lemma. Let feL'(R", X), 0<6<1, 0<a< 1. Then, there exists a
constant ¢ > 0 such that

s j /)]
|

X—y| >3 |X _ y|n+§/a

@) sup e dy < cM(f)(x)

0<e<1

(i) sup j s | k(x, ¥) — kz, »)| | S| dy < cM(f)(x).
X—y|>3e>

[x—z]l<e<1

Proor. (i) can be readily derived using polar coordinates as in [5], Lemma 4.
Alternatively,

o O - 50 [ IO,

n+é/ R .
x—y|>3ex |x—y| ¢ Jj=0 ea2i+1> |x—y|>3ex2J IX—)’

66

<cY) rere d
ngo (zjea)n +6/c j‘B(X, 3eazi+ 1y ” f(y) " 'y

< c< i 2‘j("’°‘)>Mf(x).
Jj=0

(ii) Observe that if |x — z| <e<1 and |x — y| > 3¢%, then

ly—z| > |x—y| — |x—z| >3e% — e>2e%>2|x — 2|
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and moreover,
« 2
Y=z = x =y - ">l -l

Consequently, using the D, condition we get

_ 8
Lx-yl>3ea | kCe, y) — k@] | fD] dy < cj'jx—y|>3e°t T)?lic—yﬁz:lm | fD)]| dy
g ol
S « J‘|X—yl>3ea Ix_y|n+5/a dy

and the assertion follows from the first part of the lemma.

Proor oF (5.2). Except for minor details, the proof is a modification of the
classical proof of Cotlar (cf. [5], p. 97). We provide the details for the reader’s
convenience. Consequently, we shall consider only the case where 0 < e < 1.
Given feC5(R", X),0<e< 1, xeR", let f=f, + f>, where f; = fXpe, 2¢2)>
fH=0- Xp(, 2¢)) f. Then, (T. f)(x) = Tf,(x). Next, we estimate the values of
Tf, at other points in B(x, €¢), In fact, if z € B(x, €), then
lz =yl = |x—y| = |x—z| > 2
So,

T5H® - TH@ = | [k(x, ) = k(z, IS dy.

|x—y|>3ex

Thus, by (5.4) (ii) this term can be majorized by cMf(x).
Consequently, if ze€ B(x,€) = B,

IT.f)] = |TH@| < | THE - THE)| + | TH@)]
SeMf(x) + |TH@)| + | T @)

since Tf,(2) = Tf(z) — Tf;(2).
In order to prove (5.3) we may assume that |7f,(x)| >0. Let 0 <X <
| Tf,(x)| be fixed. Define the sets

E; = [zeB/lfo(Z)” >%l’
A
E,= {zeB/linl(Z)ll >§}’

E,=¢ if cMf(x) <% or E; =B otherwise.
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Let du be the probability measure |B| ~'x,dx, then
1 < u(B) < WEY) + wE,) + wEy).
In order to evaluate u(E;) we use Chebychev’s inequality. Trivially we get
WME) S cMTf)(x),  wEs) < cMf(x).
The second term can be estimated using (2.5) as follows
E
B T

3(1 o\
<Y<§ j IT@] dz)

3C' ey 1/p
<T|B{ H | f@)]?dz
B(x,3¢®)

3
< Tce—n/q+ not/pMpf(x)

WE,) =

T |, |1 Th@1 de

3
< Tchf(x)

since p/q < .. Consequently,
N < c[M(TSf)(x) + M, f(X)]

and taking the sup over all 0 < A < | Tf,(x)| in the above inequality, we obtain
(5.3).

(5.6) Remark. We would like to point out that 7% can be also viewed as a
vector valued strongly singular operator. In fact if we let

TS0 = ko) fec=y)dy,
where
k:R"XR"~ {0} > L(X,Y)
is continuous and satisfies:

@) k(x,w) =0 for |x| =2 1,

i) 1k W < I—j|—
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and
(iii) flx|>20a lkCx + z,x — y) — k(x + z,x)| dx < ¢
for some 0 < a< 1, zeR", |y| < o, then

To /() < c[MFG) + | [ k06, )06 = Y) AP | gy ]-

Here, k, is a smooth cutoff of the kernel k given by

k.(x,y) = k(x,y)sa(%) ,

where ¢ € C™ and ¢ = 0 near the origin and ¢ = 1 for |x| > 2, say. Moreover,
it can be shown using the methods of [14] that k.(x,y) satisfies a D,
condition.

(5.7) Remark. Using (5.2), we can readily obtain weighted norm inequalities
of the following type. If T is an operator satisfying the conditions of (5.2),
then Ty:L'(Ww(x)dx,X)— L' (w(x)dx,Y), Vyp<r<o, YweA,,. In the
special case of Calderon-Zygmund operators, the result remains valid for
l<r<oo,

6. Applications

The H? inequalities obtained in §3 are new also for vector valued Calderdén-
Zygmund operators, extending the results of [14]. Using the ideas of [14], we
can also derive results of the following type («self improving»).

(6.1) Theorem. (i) Let T be an operator associated with a standard kernel
satisfying (3.7) Yo > 1. Suppose that T is continuous from L™(R", X) into
L°(R", Y) for some 1 < ry < . Then,

© 1/r

forn/(n+8)<p<l<r<ry< .
(ii) Assume, moreover, that T satisfies the cancellation conditions of (3.6).
Then

6.2) < | 3} gown, irxyy

(6.3) | [Tf;} I Hp(Rn, I7(Y)) <cf {f,} I HP(Rn,I7(Y))

forn/(n+d)<p<Ll<r<ry< o
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Proor. We prove only (i), the proof of (ii) being similar. To do this observe that
the operator T £} = {Tfj};’."= » U5 e L7 (R", I'(X)) is a Calderén-Zygmund
operator associated with a kernel satisfying a D, , condition with d, = 277
Moreover, it is continuous from L'(R", I'(X)} into L'(R", I'(Y)). Thus, by (3.9)
conveniently adapted for the case o = 1, we obtain (6.2).

Suppose T is an operator associated to a standard kernel satisfying a D, ,
condition. Moreover, suppose that 7" maps continuously L2(X) into L%(Y)
and L*X) into LY(Y), 1/q' = 1/2 — 3/n. Then, if T(€) = 0, Theorem 3.5
shows that T* maps continuously H'(Y”’) into H*(X").

That is to say, 7 maps continuously BMO(X) into BMO(Y). When o = 1,
B =0, we get in particular the BMO-continuity of Calderén-Zygmund
operators under the suitable cancellation condition. Once again, this cancella-
tion condition can be dropped in the convolution case.

We shall consider some applications to pseudo-differential operators. Firstly,
observe that pseudo-differential operators defined by amplitudes a(x, y, &) in
the class S$ 4, 0 < 0 < 1, are Calderén-Zygmund operator satisfying condi-
tions (S,) of §2 with o = 6 = 1 (i.e., a D, condition) (cf. [2]). Thus, our results
apply for these operators. We obtain in particular the results of [13].
Moreover, pseudo-differential operators with amplitudes in S, 8,

n n
- —< _° S <1’
a 01)2 B<2 0<é<a

are strongly singular Calderén-Zygmund operators satisfying a somewhat
weaker D, , condition (cf. [1]).

Lemma 1.2 in [14] essentially proves that these operators also satisfy a D,
condition. Thus, using (3.2) with p = r = 2, gives

6.4 (TN* (0) < M (),

an estimate derived by S. Chanillo and A. Torchinsky (cf. [3]). In [3] it is also
asked whether the index 2 is the smallest possible one in the estimate (6.4). For
example, the authors show that for a special class of symbols in Sg 3¢ ~*"2,
M, can be replaced in (6.4) by M,,, for any 1 <p < .

Since one knows that operators 7" with symbols in S, 5, (1 — )n/2 < <
n/2 are continuous in L? for any 1 < p < o0, we can improve (6.4) each time
we can assure that 7 maps continuously L? into L?, for some p < 2, p/q < a.

For example, L. Hormander has proved in [11] that an operator with sym-

bol in S}’ ;, is continuous from L” into LY, if

1 1
(6.5) m< -n{———1» l1<p<2<g<»®
p q
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1 1 1 1
(6.5) m<—n[—~—+ 1- (———)}’ I<p<g<2
4 (I-p) 7 2 psq

In our case is m = —B. Let us fix any 1 <p <2, g = p/a and suppose
0 < @ < p/2. Thus, (6.5) reads

B>_'f(1“°‘).

So, (6.4) holds with 2 replaced by p, 1 < p < 2, if T'is an operator with sym-
bolin S_ 3¢ ~¥P~<, ¢ > 0, provided 0 < a < p/2. In particular, in S]"1 =%,
(6.4) holds with 2 replaced by any p > 1, provided 0 < o < 1/2. '

When 1> a > p/2, (6.5) yields to the condition

3>n(1—a)<1+°‘—i>-
p 2

This time, (6.4) will hold for any 1 < p < 2, if T has symbol in S, ;¢ ~2¢/2+)
when 1/2<a< 1.
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