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Introduction

The theory of functions plays an important role in harmonic analysis. Because
of this, it turns out that some spaces of analytic functions have been studied
extensively, such as HP-spaces, Bergman spaces, etc. One of the major insights
that has developed in the study of H”-spaces is what we call the real atomic
characterization of these spaces. ' '

The first author in [3] introduced the special atom space B? for p > 1/2 and
it was shown that H? ¢ B” for 1/2<p <1 and B? ¢ H? for 1 < p < .

For example in case p = 1, we have the B'-space which is a Banach space
whose dual is the derivative of the Zygmund space Ax. In [4], it was shown
that this space is the real atomic characterization of the boundary values of
those analytic functions f in the disk D = {ze€ C; |z| < 1} for which

1 o1om .
| fls =10 + E” | f'(re'®)| df dr < oo.

0J—m

This space denoted by S was introduced in [1] and among other things it
was shown there that the dual of S is the space 8 of Bloch functions. We refer
the reader to [4] for a complete discussion of these matters. It was shown in
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[5] that
B'¢H'¢ L.

Subsequently, in [9] we were able to show that for p > 1, the BP-space is
the real atomic characterization of the boundary values of those analytic func-
tions in the disk for which

(L7 1ree®ia - P~ dgdr < .

These analytic function spaces, which we denoted by J?, were studied
extensively in [14], [15] and [16], while for 1/2 < p < 1, B? is the smallest
Banach space that contains H” and also gives real characterization for the
boundary values of those analytic functions in the disk for which

(17 1fee®| - =2 dpdr < co.

These analytic function spaces were introduced in [13].

We would also like to point out that the duals of the B? spaces are Lipschitz
spaces see [5], [6] and [10] and this fact is exploited in the present paper.

It should now be clear why so much attention has been placed in analyzing
these spaces. But lots of our efforts are concerned with using these spaces as
intermediaries in order to interpolate linear operators between L?-spaces. For
example, it is well-known that (see Theorem D in [2])

T: H'>L' and T: L?*—L? boundedly.
Then
1) T: LP—>L? boundedly for 1<p<2.

And there is also an analytic version of this, namely Theorem E of [2]. And
so of course, we wish to replace H' by B! and ask what else is needed in order
to obtain (1). In many cases, T is a concrete operator and so what else is needed
may in fact be easy to check. However, this program still is incomplete.

In this paper, we give several descriptions of B? for p > 1 and obtain
various consequences from them. '

First description. Let fbe a function which may be decomposed into a finite
or countable linear combinations of characteristic functions of intervals in 7,
where T is the unit circle in the plane which we may identify in the usual way
with [0, 27).

flx) = Z)I o, X; ()



SEVERAL CHARACTERIZATIONS FOR THE SPECIAL ATOM SPACES WITH APPLICATIONS 335

For a given f there may be many such decompositions. Let

1f 150 = Inf 33l 1,

where the infimum is taken over all possible decompositions of f, and by |« | »
we mean the L”-norm on T, that is

l&l, = (], lel?)"”

even for p < 1. We get by Minkowski’s inequality for p > 1 that | f| , < | f] 5,
and it follows that [X,|z, = [X,],-
We denote by B” the set of all fe L” for which | f| 5, is finite, for 1 < p < c.
We point out that convergence of

Z anxln

n=1

is taken in the sense of the Lebesgue space L?, actually we could just as well
use the Lorentz space L(p, 1) and observe that | f],, ;, < |flz,-

Note. feL(p,]1) if and only if

1 o )
1A lepn= ;jof*(t)tl/P ldt < o0,

where f* is the decreasing rearrangement of f, 0 < p <.
It is straightforward to show the following result.

Theorem 1. The space B”, endowed with the norm | « | ,, is a Banach space.

Second description. By a special atom we mean a function b supported on
an interval 7 C T which is of the form

b(x) = ax (x) — axy(x)

where L is the left half of I, R is the right half and « is scalar.
For a function f defined on T and which is a finite or countable sum of
special atoms plus a constant

f&)=a+ 3 b,

(again there may be many ways of so decomposing f) we let

/13, = Inf 35 18,1,



336 GERALDO SOARES DE SouzA, RICHARD O’NEL AND G. SAMPSON

We denote by B” the set of all fe L” for which | f| %, is finite, for 1 < p < o,

Observe that this description of B? holds whenever 1/2 < p < oo, but that
when 1/2 < p < 1, f may exist not as a function but only as a distribution.
Indeed if

f0) = i b,(x) e B®
n=1

then given a test function ¢, that is, an infinitely differentiable function on
T, we define

59 = T bnd) = I |, 0609 dx,

where I, is the support of b, as in the definition of special atoms. We wish
to show that the series converges absolutely. Let a, denote the height of b,(x)
and A, the length of 7,.

Observe that

hl! hn
(b #) = [, Ba((x) dx = a,,[cb<. + 7) + <1><- - 7) - 2@(-)]

where ® is the indefinite integral of ¢, that is, ®(x) = j’é ¢(t)dt. Thus

|(bns D) < 4an| | 2] o5
where

[ @] = ess sup |(?)].
teT

Then using the mean value theorem twice on the second difference above we
also see that
By D) < |@nlH7 [ 2] -
But " = ¢’ and |®|. < | 9]« - (Supp 9), so if 4, <1 then
B B < 12719 | < 1] 1 8 |0 = [ 64l 5 19
since 1/2 < p < 1, while if A, > 1 then
|(Bns @) < 4lay] |6]0 < 416 | w(suDP B)lanlh1” = 4] 6] (5uPP 8)| Byl -

Therefore

2 b )| < [416](supp @) + [¢']] 2 [nl,-
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Third description. A triangular function is a function supported on an inter-
val 1 C T whose graph restricted to I is the two equal sides of an isosceles
triangule.

Observe that #(x) is a triangular function if and only if it is the indefinite
integral of a special atom (see second description).

For a sum of triangular functions

S = ;1 1, (%),

we set
1f15-= Inf,§1 I,

where the infimum is taken over all possible representations of f. We denote
by B” the set of all fe L” for which | f|Z, is finite, for 1 < p < co.

Fourth description. Given a non-negative integer » partition 7' = [0,27) into
2" subintervals of equal length and let I,, be the k™ of these for k=1 to
k =2". (I is called a dyadic interval). The Haar function ¢,, is a special
atom supported on I,; and such that |¢,.|, = 1. That is,

s n\1/2
2 k-1 k-1/2
<—27r > on [ > 2, o 27r>

b (X) = 3 2" \12 k—1/2 k
< e on o 2, o 27

L 0 elsewhere.

It is well known that if we supplement the Haar functions by the constant
function whose value is everywhere the reciprocal of the square root of 2, i.e.
¢0§ = 1/\/5' , we obtain a complete orthonormal system. Given an integrable
function f, we may form its Haar series

© 2"

fO=a+ 2 2 cudu)
) n=0k=1

where
Cic = [2 f )b () dix.
Let
H © 2"
"f"Bp = Z chk¢nk"p’

n=0 k=1
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it is easily seen that the set of all those f for which | f]| g,, is finite form a
Banach space which is continuously embedded in L? or even in L(p, 1).

We denote this set by B? for 1 < p < .

Fifth description. Similar to the first one, except that f must be written as

f(X) = ZI anxln(x)’
where the I, are dyadic intervals.

Sixth description. Similar to the third one except that

fe) = ; 1, (%)

with the supports of the triangular functions #,’s being dyadic intervals.
Note that with these norms B? for p > 1 is a Banach space.

2. Equivalence of descriptions

We shall now argue that the various descriptions are equivalent.

Let I=(a,b) and h= |I| =b — a. We wish to express X, as a sum of
triangular functions. In fact, let v(x) be the triangular function whose height
is 1 and whose support is I and for each positive integer # let s,(x) and #,(x)
be triangular functions of height 1/2 whose supports are

h h
(a,a+,?) and (_b— o ’b> _

respectively. It is easily seen that

@.1) X (x) = v(x) + gl [5,() + £, ()],

in fact, let x € I, then

vela a+b U a+b b . a+b
’ 2 | 2 ’ Yy Xe€| a 2 ’

then there is an integer N

h h
0+ng<a+?,
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therefore the right hand side of (2.1) becorhes

N
v(x) + ,Z;l 5,(%)

and so, we need to prove this sum is 1. In fact, if we explicitly write down
v(x) and s,(x) we see that

N 2 2 22
v(x) + glsn(x)=7(x—a)+7(x— a)+7(x—a)+

2N—1 2N h
+ 7 (x—a)——(x—a——)

Therefore we have

v(x) + gls,,(x) =‘T(x —-a) — T<x — a?) =1.

Similar situations occur when x is in the other half of 7, that is,

a+b
[e5)

so that the assertion is proved.
Observe now that

1/p hl/p
" U"p = (T—I——p—)l—/p and

I$alp = 12l = 2P & )P
so that
|| X[" ;p < ” v"p + nz_ll "Sn "p + nZI H t,(x) ||p = Aphl/p = Apllll/p = Ap “ XIHBp

where

21/p

A, = )
2T R - +p)7”

consequently for any
2.2) f@= T ¥y @)

we have | f| %, <A, fl g
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Next suppose #(x) is a triangular function of height 1 whose support is some
subinterval I C [0, 27) and A = |I|. Let us expand #(x) in'a Haar series; that is

h © 2"
W=t % 3 bl
™ n=0 k=1

where ¢, are the Haar functions (see description four).
Choose an integer N such that

27 27
(2.3) SNFT < h< Dol

For n < N there are at most two dyadic intervals 7, which intersect 1.
We now estimate |c,;| by the elementary way

h2n/2

@49 |Caxl =

[, 1000 dx| <II| |9nel=
nk
Again we estimate |c,;| by using a different approach, in fact
Cue = [, 10)6m()dx = [ (1) — 100 (¥) dx.
nk nk

where X, is any point of /,,. Therefore we have

2.5) |cnk| < " ¢nk" 1, max ”t(x) - t(xo)l; XEInk]
S (27!')1/22 - (n/2)47rh - 12 -n _ Cc2- 3n/2h -1
where C = (27)"%4x.
We now estimate |¢|5,, in fact, by definition we have
© 2"

" t “ ;Ip = h(zw)(l/p) T+ HZO kzl |an| " Dnk “p'

If we set
N

+ > =8+T.
=0 n=N+1

o
> =
n=0

n

Recall that for n < N there are at most two dyadic intervals I,,which
intersect 7, therefore using (2.4) we get

N 2" N 2 1/p
5= 3 5 loul louel, < 3, 2027002 m (21 )
n=0Kk=1 n=0 2
N
= 2h(27l')1/p— 1 Z 2n(l -1/p) S Bph(27l')l/p_ 12(N+ H1-1/p)
n=0

S Bphl/p
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The inequality on the last step follows from (2.3) where B, is a constant
which depends upon p and observe that it tends to infinity as p approaches 1.

The estimate for T follows by the observation that for n > N, there are at
most 2"~V + 2 < 2"~ N*+! which intersects I and by (2.5). In fact,

T= 3 3 leul Iouls

< Z on- N+lcz—3n/2h—12n/2(2 )—1/2<27r>

n=N+1 2"

=Cp2_Nh_1 i 2—n/pscp2-Nh—12—(N+l)/p

n=N+1
< C,h'7.

The constants C, are not the same at every occurence.
Thus there is a constant G, which blows up as p approaches 1 such that

15, < GA'.

Therefore if
f) = 2 t,(x)
n=0

where #,(x) is a triangular function we have

(2.6) 1 /13> < Gyl f1 50-

It is obvious from the definition that a function in the fourth description
is also in the second description and that

o) 1 /13, < 1£155

Likewise a function in the second description is also in the first description
and that

2.8) | flgs <2 Y| f13,-

Now putting together (2.2), (2.6), (2.7) and (2.8) and the fact that the inter-
vals of the two other descriptions are dyadic it makes the equivalence of the
definitions of the B? obvious.

We would like to point out that for p =1, B1 is not the same as B!-dyadic,
as was shown in [11].
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3. Some Consequences

In this section we present some theorems whose proof was made possible due
to the several descriptions of the special atom spaces.

Theorem 3.1. Ifl1/2<p<l<g<wandl/q=1/p— 1then feB? if and
only if Fe B4, where F is the indefinite integral of f, that is, F(x) = jg f()adt.

‘Proor. Given a special atom b, (x) let
t,(x) = j: b,(t) dt

where Xx,, is the left hand endpoint of the interval supporting b,,(x). Then ¢,(x)
is a triangular function and there exists a constant C, = 1/2(1 + q)"/? such
that |¢,|, = C,| b,|, for 1/q = 1/p — 1. If we define F(x) to be that function
in L? which is the sum of the #,(x), that is,

Fx) = g]l t,(x),

where #,(x) is as above, then it is clear that

|Fl3. < Col fl35-

Conversely if Fe B? and we write
F@) = 3 100

and let b,(t) = (d/dx)t,(x) (except at the corners) and let f(x) = F'(x) be the
distribution which is the sum of the b,(x), that is,

Jx) = gl b (x),
then clearly

1
1 fl5. <= 1f13
BP Cq Baq

so that
|Fl5e=Col f13s-

Observe that if f has two representations

oo

f(x) = Z=:1 bn(x) = Z C,,(X)

n=1
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where b,(x) and c,(x) were special atoms and s,(x) and 7,(x) their respective
indefinite integrals then for every test function ¢,

ngl (bn: ¢) = ;1 (cm ¢)

where both sums converge absolutely (recall that (b,, ¢) = _[ 1 ba(¥)o(x) dx,
where I, is the support of b,, likewise for (c,, ¢)), then by integr’étion by parts
we get

- ngl (Sm ¢I) = - ngl (tm d”)'

The dash means derivative.
Thus if

o

F(x)= 2] s,(x) and G(x)= i 1, (),
n=1 !

n=1
then F and G are in L? and for every test function ¢.
F-G,¢)=0

so that F and G are functions in L? which at most differ by a constant. Therefore
Theorem 3.1 is proved.

Theorem 3.2 If feB?, 1/2 < p < « and f,(x) = f(x + h) then

lim | f; — f|3, = 0.
h—0

Proor. Suppose I is an interval of length m and consider
v(x) = X, (x + h) = X, (x).

v(x) is supported on an interval of length m + A and on this interval we expand
v(x) in a Haar series relative to that interval. For each n > 1 there are at most
two ¢, whose coefficients c,; do not vanish and for these, we have

2 \V2 m+h
() (7).

(A denotes the operation of taking the smaller of two numbers.)
Estimating the B? norm of v(¥) we get
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© 2"

"v"gp= Z Z "cnkd’nkup
n=0k=1

© 2n 1/2 m+h 2n 172 m+h 1/p
< .
\,.§02<m+h> (hA 2" <m+h> 2"

2 S ona-um m+h
<m22 hA 5 )

This last series converges and individual terms tend monotonically to zero
with A so that the sum tends to zero with A. Therefore

lim |v =
lim o],
Now since a special atom is a multiple of the difference of two characteristic
functions it is clear that if b(x) is a special atom and if b,(x) = b(x + k) then
lim |b, — b =
50 " h “ BP
Given € > 0, any f € B? can be written f(x) = g(x) + K(x) 'where g(x) is a finite

sum of special atoms and |K |}, < ¢, therefore as | g, — g|}, < e for 4 small,
we know that B” is invariant under translation so that,

| /o =13, < l&n— 815, + | Knl 3o + 1K[5, < 3¢
for A small enough. So Theorem 3.2 is proved.

By the modulus of continuity of fe€ B we mean for 6 > 0

w() = sup (| fo — fl}ns —0 <h<38}.

(depending on the context we may replace | [3,by | [z,or| | B etc.)
It is an immediate consequence of the definition of B” and Theorem 3.2,
that for fe B?, w(6) <2|f|%, and w()—0 as 6 0.

Theorem 3.3. If 1/2<p <1 then L' of the boundary of the unit disc is
continuously embedded in B”.

ProoF. Let I be a dyadic interval of length 4 = 27/2™. Let us expand X,

© 2"

3.4 X;(X) = CooPoo + go kgl Crk P (X)

where ¢, are the Haar functions and ¢g(x) = 7)™ /2.
Notice that for n < m there is precisely one & such that c,; does not vanish,
therefore



SEVERAL CHARACTERIZATIONS FOR THE SPECIAL ATOM SPACES WITH APPLICATIONS 345

2n 172 h
|| = Ul¢nk(x)dxl = h(ﬂ) and ¢y = e’z
For n > m all the Haar coefficients c,; vanish, so that (3.4) becomes
h m-1
X](x) = —2_ + Z cnk¢nk(x)s
™ n=0 '
consequently using the definition of B” norm

m-1 2r 1/p)-1
" le|}'§p < ’IZJO h <_27> < Cph = Cp “ X1|'1 .
Thus if fis a step function whose steps are dyadic intervals we have

1 f13- < Cpl Sl

Since for any f e L! there is a sequence of such step fuction £, which approach
fin L! and since B? is a Banach space we get our result.

Corollary 3.5. For 1/2<p <1, L? of the boundary of the unit disc is
continuously embedded in BP. For 1 < p < o, (L?), = the set of indefinite
integrals of L? functions whose constant terms vanish, is continuously embedded
in B?, in particular every C* function on the boundary of the unit disc is in
every B”. ‘

Proor. The first part of the statement will follow from the fact that L? is
continuously embedded in L' and Theorem 3.3. The last part follows from
Theorem 3.1 and the first part of this corollary.

The use of lemmas of the following type in functional analysis is due to
G. G. Lorentz.

Lemma 3.6. Let H be a Hilbert space of measurable functions on T with
inner product given by ‘ '

(f,8) = [, S0 dx

and let F and G be real Banach spaces of measurable functions such that H
is embedded continuously in F. Assume that

(91 < 1715 el
and that
lelg=sup {|(f;@)l;feH, |fl<1].
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Then for every fe H,
|f1z=sup {|{(/; @) |gls <1}

Proor. Given a subset C of H, let C' = {ge H:|(f,g)| <1 for all feC}.
It is a geometrical fact about Hilbert spaces that if C satisfies the three proper-
ties, 1. closed, 2. convex, 3. fe Cimplies —f € C, then C’ satisfies these three
properties as well and moreover C” = C.

Let us take C = { fe H: | f| < 1} then C satisfies the three properties, so
it follows that C’' = {ge H: |g|; < 1}. Therefore C” = C which implies the
final statement of the lemma. So the lemma is proved.

Following Zygmund [17] for 0 < a < 2 we denote by A, the set of all func-
tions g on T, for which there is a constant 4 such that |g(x + ) + g(x — k) —
—2g(x)| < Ah®, and |g|, is meant to be the infimum of all such A, that is,

glx + h) + g(x — h) — 2g(x)
lgl =sup| e L.
@ h>0

X

ForO<a<1,A,=Lipa= {g;gx+ h) — gx)=0Ah%)} and forl < a < 2,
feA, if and only if its derivative f’ € Lip (o — 1).

Lemma 3.7. IffeBPandgelipafora=1/p, 1/2 < p < 1 then for fe L*
we have

1715, = sup {| [, s@e0oax|:| [ela ., < 1].

Proor. By Corollary 3.5 and Lemma 3.6 with
H=1?>  F=B? and G=Lip(a-1)
we get the first part since for any special atom b we have

15,9 < I8l pipea-1 " 121505

with the norm of g e Lip (o — 1) given by H ¥3 “ AL where | g is the periodic
indefinite integral of g. ,

For the second part, let 1/r = 1/p + 1, then | f'|}, = C| f| g,,'by Theorem
3.1, where the dash means the derivative of f. But integration by parts yields

ITf(x)g(x) dx= [ f')g(x)dx where &)= j:g(t) dt.

We now use the first part of this lemma to calculate | f|*,,.
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Lemma 3.8. Suppose that given a family G of measurable functions on T or
R", we define a norm on a space X for which this supremum is finite by

|f1x = sup ” Jf(x)g(x) dx,;g € G].

Then a formula which recalls Minkowski’s inequality for integrals holds,
namely if

F0) = [fex, »)dy
then
171y < [ 17C, 0] g dy.

If in addition G is translation invariant then for the convolution f* g where
geL' we have

|fglx < | flx-lel,
Proor. From the definition of norm in X we have that

IFlx=Sup (| fetodx [ 5) dy

;g€ .G} .

But for each such g in G, the integral inside the brackets is bounded by
Jar|[e@ ooy ax|,

so that

IF1x < [ LG D).

Now suppose G is translation invariant:

|£+815 = sup { |[ ko dx [ f0x = g dy

she G}
For each 4, the integral is bounded by
[leldy | [h S0~y dy| = 1Ol dy | [ W +)f () du
Therefore
|7+l <sup | [+ NIy |sheG)- g

that is
|f=gle< gl 1flx-
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Observe now that if we take X = B” and G = {geLip(a - 1); ._[g”A < 1]

fora=1/p, 1/2<p<1on T, and for 1 <p<  we set G= {gelipa;
I“g“ a,,,SC } then we have the following.

|fgl3s<lgli- 113, for ;<p<1
| f+glzs < lgli- [fl5, for 1<p<eo.

Theorem 3.9. If.f € B? on the boundary of the unit disc, 1 <p < «, and if f, is
its Poisson integral then | f,| %, is a non-decreasing function of r which tends to
\flE,asr 71, thatis, | f|5,~ | f|%,asr 7 1. Moreover f, tends to f in B.

Conversely, if u(r, 0) is a harmonic function in the unit disc such that for
eachr,0<r<1

lu(rs ) go < M < .

then u is the Poisson integral of f€ B®. (A similar theorem is true for the real
line.)

Proor. We start with the converse. Notice that

I ) p < [urs )5 < M,

so that HP-theory tells us that there is an fe HP = L” such that p is the
Poisson integral of f. We wish to prove that fe BP”.
Expanding f into a Haar series we get

© 2

f(o) =a+ Z Z an¢nk(0)-
n=0 k=1

Let r; be a sequence of r; 7 1. For each i expand u(r;, 6) in a Haar series, namely

w 27

”'(ris 0) =c+ z_;o kZI c;kd’nk(a)'
Notice that

Cok = IT S(6)9 db = ,ll.n:, JTu(r,-, 0)ui(6) d8 = Him cky.

| End-

By Fatou’s lemma (for sums rather than integrals) we get

w 27 o 27

||f||§p= Z Z “cnkd’nkupslil.ninf Z Z "cﬁtk(bnk"p
n=0k=1 i»0 n=0k=1

= liminf |u(r;, )| 5, < AM
i—co
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where A is a constant. Therefore fe B?.

Next let fe B?. If we properly normalize the Poisson Kernel then f, = f* P,
where |P,|, = 1. Leta = 1/p, p > 1, since f, € C*, we obtain from lemma 3.7
that

1715, = sup (| [£@z6) ab]s|[e]a ., <1},
but

|[ 0z @] = |[ @@ | < IS,

J-gr”Aad-l S "f";p

Indeed if r, < r < 1 and if p = r,/r, then it is well known that S, =f*P,,
so that by Theorem 3.9 we get

FAFS VR EATE VA TS

Thus | £, |}, is a non-decreasing function of . Combining this with what was
shown in the first part of the theorem we obtain as r 7 1

im | £,|2, < |f1%,

and
liminf | £,|5, > | f] -
Thus there exists a constant C > 0 such that as r 7 1
lim | £,13, > Clf1%,.

(We shall see later that C = 1.) Therefore given any ¢ > O there is 7 < 1 such
that C| f,| X, > C| f|%, — e. Now as f,€ C* there is a function g,

[Tl <

such that
CIf 15, - 26 <| [ 06 db| = | [ 1@, @ ab)|.
But
ﬂjg, tipa S 1

so that if we set

7153 =sup {| [, 7@z@)a0 ;| [g]. ., <1}
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Then
Clf Iz < 1155 < 1130
It is now easily seen that if fis a distribution not in B” then | f;| %, / o and
17155 =sup {| [, f@s@d8|;geC™|[e]s ,, <1] = .

For fe B?, f,(6) = j S0 — $)P.(¢$) dp where jTP,(O) db = 1 so that f,(6) —
—f00) = fr( f(O — o) — f(6))P.(¢) dp. Therefore by a Minkowski type inequality
(lemma 3.8) implies

I = FI35 < [ PA®N SO ~ ¢) - FO | 55 do
< [, PAew(8)do <2 [TP )W) db,

where w is the modulus of continuity defined right after Theorem 3.2.
But P.(¢) is monotone decreasing for 0 < ¢ < = and w is monotone non-
decreasing so tQat for any £, 0 < £ < =, the last integral is bounded by

2w() [T P,(#)dé + 2P,()) [Tw(@) dp < 2w(®) + 47 S 1], P.®).

Choose £ so as to make the first term arbitrarily small then for this £, choose
r so as to make the second arbitrarily small. This shows that f, — fin B? which
in turn implies | £,|%,~ | f|%, as r 7 1.

Indeed in addition to proving our theorem we have also the following.

Theorem 3.10. If 1 <p < o and o = 1/p then for any function fe B?
1715, =sup {| [, 7@e@ab 5| [g], . <1],

and for any distribution f not in B?

Arx+1

sup {| [, 7@e@ b ;g€ C | [

<II=co.

The interested reader is referred to [9], where Theorem 3.10 is related with
the main result there. .

For 1/2 < p < 1 we have a result similar to Theorem 3.10, indeed we obtain
the following.

Theorem 3.11. If f, is the Poisson integral of a distribution f € B? of bound-
ary of the unit disc, 1/2 <p < 1, then

| fl3s 7 1 f13, and | f,—fl3,—20 as r1.
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Conversely if u(r,0) is a harmonic function in the unit disc such that for
eachr,0<r<1,

lp@rs )}, <M< o
then there exists a distribution f € BP whose Poisson integral is p.

ProoF. Assume p vanishes at the origin, so that it may be written in the form

-]

u(r,0) = >, r"(a,cosnf + b, sin nf)

n=1
and let
Uer, ) = i r*(a,sinnf — b, cos nb)
n=1 n
so that
ou(r,0)
% - w(r, 6).

Let 1/g=1/p—1, so 1 < g < « then for each r Theorem 3.1 tells us that
|UGr, )| %, = C|u(r, *)|%, for some constant C. But there is a constant A
such that

| UG, ) 3a < AU, )] 5o = AC|p(r, )3, < ACM.

Thus there is a F € B? such that U is its Poisson integral by Theorem 3.10. Let
f be a distribution which is a derivative of F, that is,

dt,(x)

F(x) = nZ=]1 L), f)= n; ba(9) where b,(9)=—""

(recall ¢, is a triangular function).
The Poisson Kernel and its derivatives are all C* and so are test functions,
therefore we have

_ou(r,0) oP, 2 _ \9P(9)
”'(r’ 0) - 60 - F* ao - ngl ITtn(o ¢) a¢ dd’

And so, integration by parts term by term yields
pu(r, 0) = 21 j‘Tbn(O - ¢)P($)do = Zl (b, (60 — ), P)=(f(6 — »),P)
n= n=

and this last is precisely the definition of the Poisson integral of a distribution.
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The rest of the proof is the same as the proof of the previous theorem
mutatis mutandis and is left to the reader.

The proof of the next theorem which is the equivalent to Theorem 3.10 and
Theorem 3.11 for p = 1, seems to be more delicate and requires the use of
fractional integration.

Following Herman Weyl we say that if f(6) is a distribution whose Fourier
series is I'c,e™’ (X' denotes summation for n e Z, n # 0) then f,(f) is the
distribution defined by

in
) Cnem .
(in)*

f.0) =%

Let I, be the linear operator which maps finto f,. It is a well known theorem
of Hardy and Littlewood that f € Lip 8 if and only if f,, € Lip (o + 8) provided
a + B < 1. This result was extended by Zygmund [17] who showed that fe Ag
if and only if f, €A, , g provided o + 8 < 2.

[, is called fractional integration of f. Observe that the kernel for fractional
integration is in L? if and only if a > 1/2.

Theorem 3.12. If f, is the Poisson integral of a function f € B(B = B*) on the
boundary of the unit disc then

|z 7 1f15 and |fi=fl5—-0 as r1.
Conversely if u(r, 0) is harmonic and for 0 <r<1,
ler, )| g S M < .
Then p. is the Poisson integral of f in B.
Proor. We start with the converse. The main problem is to lay our hands

on a special atomic decomposition of the boundary function. Assume pu
vanishes at the origin. Then

oo

WnO= 3 e

where c_, = ¢, (complex conjugate). Let

) _ eo, cn(r)ein0 .
I"a(r’ 0) = Iaﬂ(r’ b = n=Z—°°Tn)a—

Let ge LipB where a + 3 =1, then

jrﬂa(r, 0)g(0) dob = jT,L(r, 0)h(—6)d6 where h,=I,h and h(0) = g(—b);
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by Zygmund’s Theorem A, € A, the Zygmund class A,, so that the last in-
tegral above is dominated by

< lutr, ‘)Ilz;“hoz!A1 < CM“hnLip(ﬁn) = CMngLip(BH)'

This combined with Theorem 3.10 shows that if g = 1/8 then

lalr, )| pe < CM

so that p, (7, ) is the Poisson integral of G € B?. Let g be the «derivative» of
G. (Recall we express G as a sum of triangular functions and define g as the
term by term derivative.) Theorem 3.1 shows that ge B where 1/p =1/q + 1
and in the proof of Theorem 3.12 we have that the Poisson integral of g is
precisely du,(r, 8)/30. Observe that g has been defined as a sum of special
atoms, also observe that if we differentiate a special atom we obtain a measure
supported on three points which is fractionally integrated of order 3, that is,
convolved with the kernel 3'°_ __e™®/(inf) is in L? provided 8 > 1/2. This
in turn implies that Izb where b(x) is a special atom is in H = j L? = the
periodic indefinite integral of L?-functions.

Now fix « < 1/2, 8 =1 — a, if f(0) = 22 _, b,(6). For an individual b,(x)

we have that I3, € H so that for any g with ” ¥4 [}Al =
j 1sbn(0)20) d0 = j L ba(O)hg(—0) d
where hg = Igh and h(6) = g(—6) but kg € Lip 8, so that Iyb, € B and given any

€ > 0 we may write Izb,(0) = Z;.Z 1Cnj(0) where c,;(6) are special atoms and

i €
2 lenjls S Clbalp + 55
Jj=1 2

Let

f6) = Z ZC,.,(O),

n=1j=1

clearly fis a function in B. Let us compute its Poisson integral

f0) = f 6 — PP, (¢)do = Z Z Cj(0 — O)P,(¢) dd
2 T

n=1j=1

o

1 d 1 2
5 Z 2, €0 — Q)PH@) b = -— 3, j Igb, (6 — $)PF(9) do
2 =1JT j=1 2T n=1Jr
-1
27

Py f a0 — OIPH@) g = Lf(f) - $)sP} () do,
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where P}is the Poisson integral minus its constant term. Notice that [zP}e C*
and so is a test function, therefore

(f(¢ — *), IgPy) = p(r, 0).

This last inequality is proved by expanding for each r both sides in a Fourier
series. Since both sides are C* functions pointwise equality follows.

The other part of the theorem follows by repeating the argument with the
obvious modifications of Theorem 3.11 and Theorem 3.12 and is left to the
reader.

Theorem 3.13. If fe B?, 1/2 < p < « and g, is the (C, 1) means of the par-
tial sums s, of the Fourier expansion of f then g, tends to f in B”.

Proor. To fix ideas, let 1/2 < p < 1, g, = f* K, where K|, is the normalized
Fejer kernel, then

0u®) — S ©) = [ 116 - ¢) — fO)IK,($) do

which by the Minkowski type inequality (see Lemma 3.8) gives
low = f 13, <2 [ Ku(@)w(0]) do

which must tend to zero as n — o, since the w(|$|) the modulus of continuity
(see comments right after Theorem 3.2) of an fin B” tends to zero as ¢ tends
to zero.
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