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Optimal Regularity for
One-Dimensional
Porous Medium Flow

D. G. Aronson and L. A. Caffarelli

Abstract

We give a new proof of the Lipschitz continuity with respect to ¢ of the
pressure in a one dimensional porous medium flow. As is shown by the
Barenblatt solution, this is the optimal ¢-regularity for the pressure. Our proof
is based on the existence and properties of a certain selfsimilar solution.

In recent years there has been considerable interest in the regularity of non-
negative solutions # = u(x, t) to the porous medium equation

ou

— = A(u™

o7 ™)
in R x R*, where m > 1 is a constant. For d > 1 the theory is still in flux
and the optimal global regularity results are as yet unknown. Partial results
can be found in [CVW] and [A2]. For d = 1 it is known [A1] that

m-1

u

is Lipschitz continuous as a function of x, and this is the optimal regularity
with respect to x. The Lipschitz continuity of v implies that u is H6lder con-
tinuous with exponent o = min {1, 1/(m — 1)}. Kruzhkov [Kr] proved that
for a class of parabolic equations which includes the porous medium equa-
tion, Hélder continuity in x with exponent « implies Hélder continuity in #
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with exponent a/(« + 2). Gilding [G] refined Kruzhkov’s result to obtain the
t-exponent /2. On the other hand, by assuming certain monotonicity for v,,,
Di Benedetto [DiB] proved that v is Lipschitz in ¢.

Actually, v is Lipschitz continuous in ¢ without any assumptions on v,,.
This result was first proved by Bénilan [B] by means of a clever comparison
argument. In this note we give an alternate proof which also uses comparison
methods, but which is completely different from Bénilan’s. In particular, our
proof is based on a selfsimilar solution of the porous medium equation which
has some independent interest.

We consider the initial value problem

u,=w"),, in RxR*,
u(+,0) =y, in R,

O

where m > 1 is constant and u, > 0. For simplicity we assume that u, € L*(R) N
N L'(R). It is known that problem (1) possesses a unique generalized solution
u=u(xt)in Rx R* with

0 < u < Uy oy

For isentropic flow of a perfect gas in a homegeneous porus medium # represents
an appropriately scaled density. The corresponding pressure, given by

satisfies the equation
v, = (m — Dov,, + v2 ?))

on the set where u is positive. For v we have the estimates

0 < vx, 1) < [y, L=y B RX R*, ?3)
lv(x, 1)|? <—~2—~— v, ae. in RxR*, (€))
’ (m+ D | 0l=®
and
bty > -1 1%l o 4 D(R x R*). O)

m+1 t

Here v, = muj' ~'/(m — 1). For definitions, proofs and references the reader
can consult [A2].
Our main result is the following
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Theorem. Let v be the pressure corresponding to the solution u of problem
(1). For every 6 > 0 there exists a constant C = C(8, m, |Vy| ;) € RT such
that

lv(x, ) — v(x, t)| < C|t' — t]

Sor all (x,t) and (x,t) in R X [, ).

The proof of this theorem is based on two propositions. The first describes
a selfsimilar solution of the pressure equation (2) which is then used in the
second proposition to estimate the growth of v.

Proposition 1. The initial value problem
v,=(m— Dov, +v: in RxR?T
(6)
v(x, 0) = |x]| in R
possess a unique solution v = p(x, t), where p has the form

plx, t) = rf(6) )

with r = {x* + 1*}"/* and § = arctan (x/t). Here fe C'[ -3,5] with f'(0) = 0,
A=3) =1, r(=3)= F1, and

S(6) > cosf + |sin6)|.

Remark. According to the results of [AV], as m | 1 the solution of (6) tends
to the solution v = g(x, t) of the initial value problem

v, = vl in RxR™*
v(x,0)=|x| in R.

In particular,
q(x,t) = r(cosd + |sin 6]).

Thus f(6) = cos 8 + |sing| as m 1. The (computed) graphs of f(f) are shown
in the next page in figure 1 for various values of m.

Proor. The global existence and uniqueness of the solution v = p(x, t) of (6)
follows from the results of Kalashnikov [K]. Moreover, p>0in R x R* so
that pe C°(R x R*). For any Ae R* define

1
D, 1) = ?p()\X, \E).
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0.5

NE )

It is easy to verify that p, is a solution to the pressure equation (2) in R x R*
regardless of the value of Ae R*. Moreover

1
PG, 0) = - Phx| = .

Therefore, for every A e R*, p,(x, t) is a solution to problem (6). By uniqueness
K]

1
px, 1) = p\(x, 1) = Yp(kx, AT) ®
in Rx R* for every Ae R*. In particular, for A = 1/r we have

p(x,t) = rp(sinf, cos §)

so that (7) holds with f(6) = p(sin 8, cos ).
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Since p is an even function of x which is smooth for # > 0, it follows that
fis even and f'(0) = 0. For x # 0

1= 0 = ol +7 )

implies that f(:tg) = 1. Moreover, p >0 for > 0 implies that f>0 on
[-53]

To derive further properties of f it is convenient to look at another form
of the solution of (6). If we take A\ = 1/¢ in (8) we find

plx,t) = tp<3:—, l> = rp(tanf, 1) cos .

Thus
f(6) = g(tan 0) cos 6

where g(s) = p(s, 1). By a calculation which is elementary but tedious, one can
verify that g satisfies the ordinary differential equation '

(m—1)gg" + g% =g —sg, )

where ' = d/ds and s = tan 6. Note that

f'(6) = —g(tanf)sin 0 + %ﬁ—)
so that f'(0) = 0 implies that
g'(0) = 0.
On the other hand,
1= im0 = i sing £ - tim £

Thus
g(s)~s as s—> oo,
Moreover, it follows from I’Hopital’s rule that if g’ has a limit as s = o then
g'(s)~1 as s—oc0.
Next, we observe that

g’>0 on [0,o). (10)
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Since g(0) = f(0) # 0 and g’(0) = 0 it follows from (9) that

g"(0) =1/(m - 1).

Suppose that for some 5e R* we have g”(35) = 0. Then, in view of (9), g(5)
and g'(5) satisfy

g”() +3¢'(5) — g(5) =0
so that

g6) = b= (~5+ (5 + 45)) 7).

The function
G(s) = b* + bs

is a solution to (9) with G(5) = g(5) and G'(5) = g'(5). By standard uniqueness
theory we conclude that g(s) = G(s) and this contradicts g’’(0) > 0.
Set a = g(0). We claim that

g's)<Va and g(s)<a+Vas

on R*. Suppose there exists an §€ R* for which g'(§) > Va. Since g'(0) = 0
and g’ is increasing, there exists an 5 € (0, §] such that g'(s) = Va, g’ < Va on
[0,5), and g(5) < a@ + Va5. Then

VaWa+3) . gE)NE'G)+5) _

0=1--—"—"""">1

2+ vas 25) (m — 1)g"(5)

which contradicts (10).
Since g'(s) < Vg(0) and g’ is increasing, it follows that g'(s)T1 as s > 0.
Moreover, g'(s) 2 0 as s = . Thus it follows from (9) that

g@8)~1+s as s— .
In view of (10), we also have
gls)>1+s on R*.
Finally,

sin 0 1
"(0) ~ —si —— = —sinf + 6
F'(6) s1n0<1 + cosB) + p—; sin § + cos

implies that f'(@)—>1 as 60— =/2. O
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By the usual approximation procedures (cf. [B]) we can assume that # and
v are positive in R X R*. Then, in particular, v, exists and is continuous in
R x R*. It therefore suffices to derive a bound for |v,| which is independent
of the lower bound for v.

Proposition 2. Fix an arbitrary 6 > 0. For each (xy, ty) e R* X [25, ©) set
a = v(xy, ty). There exists constants A and B depending only on 6, m, and

N = |0y fogry SUCh that

Fo([(*)7< v(x, t) < 2o

Sor all (x,t) which satisfy
|x — xo| <Ay and 0<t,—t< By,

where ¥ = min (¢, 6).

Proor. In view of (4)
[v(xo, 20) — v(x, to)] < L|x — X,
where L depends on 8, m and N. Thus
lx — xo| < 8/2L

implies that

2 <on ) <2
2 2
According to (5), for £ > 6 we have

v(x, ty) — v(x, 1) = — K(th — 1),
where K depends only on 8, m and N. Therefore

vix, 1) S v(x, 1) + Kty — 1) < 2o

if

1
|x — x| <7v/2L and 0< it — t<'ymin<2K,1>-
We assert that

U(XO, t) > fOl‘ tG [to - ’YE, to], (11)

_x
210
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where E = min (1/8L*f(0), 1). Suppose that (11) is false. Then there is a
0 € (0, E) such that

a

2/(0)

U(xO, to - 07) <

Without loss of generality, we can assume that x, = f, = 0. By Taylor’s
theorem and (4) we have

(¢4

2£(0)

v(x, —80) < + Lix|.

Set
p*(x, 1) =V2Lp(x, V2 L(t + v1))

for t > —vn, where p is the solution of problem (6) and 5 is to be chosen. Note
that p* is a solution of the pressure equation (2). Since {a®+ b%}? >
(la| + |b])/V2 and f(0) > 1 we have

p*e, t) = L{|x| + V2L(t + vn)}.
Thus

(63

2£(0)

v(x, —v8) < + L|x| = L{|x| + V2L(n — 6)v) < p*(x, =)
provided that

(12)

- “ +0< « +E
1= vz TS 2aveiro)
By the comparison principle,
a = v(0,0) < p*(0, 0) = 2L*¥1 £(0).

It follows from (12) and the definition of E that

2 o . 1 RS l)
OISZLf(O){T\/——-Z—ij—.(O—)'F 'Ym1n<—5L2f(0),l>} SO{(\/E + 1 < .

Thus we have a contradition and conclude that (11) holds.
For any t € [t, — YE, t,] it follows from (4) and (11) that

o (04
v(x, 1) = v(xg, t) — L|x — xq 2%)_ — Llx — Xxo| = m
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provided that |x — x| < v/4Lf(0). Thus the assertion of the proposition holds
if we take

A = 1/4Lf(0)
and

B = min (1/6L*£(0), 1/2K, 1).

PROOF OF THEOREM. Define
1
w(x, 1) = —v(xy + vx, ty + V).
Y

Then w is a solution of the pressure equation (2) which satisfies

Y w2

in the rectangle |x| < A, —B< ¢t <0. If @ <6 then ¥ = @ and we have

1
—— < wx, 1) <2 for |x|<A4,-B<t<0.
41(0) g

If « > 6 then v =6 and «/v > 1. Then since o < N we have
2N
—— < wx, )< — for |x] <A, -B<r<0.

In both cases we conclude from the standard theory of parabolic equations
[LSU] that there is a positive constant C depending only on 6, m and NN such that

|w,(0,0)| < C.

The theorem now follows since w,(0, 0) = v,(x,, o) and (xy, #,) is arbitrary. []
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