Optimal Regularity for One-Dimensional Porous Medium Flow

D. G. Aronson and L. A. Caffarelli

Abstract

We give a new proof of the Lipschitz continuity with respect to t of the pressure in a one dimensional porous medium flow. As is shown by the Barenblatt solution, this is the optimal t-regularity for the pressure. Our proof is based on the existence and properties of a certain selfsimilar solution.

In recent years there has been considerable interest in the regularity of non-negative solutions u = u(x, t) to the porous medium equation

$$\frac{\partial u}{\partial t} = \Delta(u^m)$$

in $\mathbb{R}^d \times \mathbb{R}^+$, where m > 1 is a constant. For d > 1 the theory is still in flux and the optimal global regularity results are as yet unknown. Partial results can be found in [CVW] and [A2]. For d = 1 it is known [A1] that

$$v \equiv \frac{m}{m-1} u^{m-1}.$$

is Lipschitz continuous as a function of x, and this is the optimal regularity with respect to x. The Lipschitz continuity of v implies that u is Hölder continuous with exponent $\alpha = \min\{1, 1/(m-1)\}$. Kruzhkov [Kr] proved that for a class of parabolic equations which includes the porous medium equation, Hölder continuity in x with exponent α implies Hölder continuity in t

with exponent $\alpha/(\alpha + 2)$. Gilding [G] refined Kruzhkov's result to obtain the t-exponent $\alpha/2$. On the other hand, by assuming certain monotonicity for v_{xx} , Di Benedetto [DiB] proved that v is Lipschitz in t.

Actually, v is Lipschitz continuous in t without any assumptions on v_{xx} . This result was first proved by Bénilan [B] by means of a clever comparison argument. In this note we give an alternate proof which also uses comparison methods, but which is completely different from Bénilan's. In particular, our proof is based on a selfsimilar solution of the porous medium equation which has some independent interest.

We consider the initial value problem

$$u_t = (u^m)_{xx}$$
 in $\mathbb{R} \times \mathbb{R}^+$,
 $u(\bullet, 0) = u_0$ in \mathbb{R} , (1)

where m > 1 is constant and $u_0 \ge 0$. For simplicity we assume that $u_0 \in L^{\infty}(\mathbb{R}) \cap L^1(\mathbb{R})$. It is known that problem (1) possesses a unique generalized solution u = u(x, t) in $\mathbb{R} \times \mathbb{R}^+$ with

$$0 \leqslant u \leqslant \|u_0\|_{L^{\infty}(\mathbb{R})}.$$

For isentropic flow of a perfect gas in a homegeneous porus medium u represents an appropriately scaled density. The corresponding pressure, given by

$$v\equiv\frac{m}{m-1}u^{m-1},$$

satisfies the equation

$$v_t = (m-1)vv_{xx} + v_x^2 (2)$$

on the set where u is positive. For v we have the estimates

$$0 \leqslant v(x,t) \leqslant \|v_0\|_{L^{\infty}(\mathbb{R})} \quad \text{in} \quad \mathbb{R} \times \mathbb{R}^+, \tag{3}$$

$$|v(x,t)|^2 \leqslant \frac{2}{(m+1)t} \|v_0\|_{L^{\infty}(\mathbb{R})} \quad \text{a.e. in } \mathbb{R} \times \mathbb{R}^+, \tag{4}$$

and

$$v_t(x,t) \geqslant -\frac{m-1}{m+1} \frac{\|v_0\|_{L^{\infty}(\mathbb{R})}}{t} \quad \text{in} \quad \mathfrak{D}'(\mathbb{R} \times \mathbb{R}^+).$$
 (5)

Here $v_0 = mu_0^{m-1}/(m-1)$. For definitions, proofs and references the reader can consult [A2].

Our main result is the following

Theorem. Let v be the pressure corresponding to the solution u of problem (1). For every $\delta > 0$ there exists a constant $C = C(\delta, m, \|v_0\|_{L^{\infty}(\mathbb{R})}) \in \mathbb{R}^+$ such that

$$|v(x,t') - v(x,t)| \leqslant C|t' - t|$$

for all (x, t') and (x, t) in $\mathbb{R} \times [\delta, \infty)$.

The proof of this theorem is based on two propositions. The first describes a selfsimilar solution of the pressure equation (2) which is then used in the second proposition to estimate the growth of v.

Proposition 1. The initial value problem

$$v_t = (m-1)vv_{xx} + v_x^2 \quad in \quad \mathbb{R} \times \mathbb{R}^+$$

$$v(x,0) = |x| \qquad in \quad \mathbb{R}$$
(6)

possess a unique solution v = p(x, t), where p has the form

$$p(x,t) = rf(\theta) \tag{7}$$

with $r = \{x^2 + t^2\}^{1/2}$ and $\theta = \arctan(x/t)$. Here $f \in C^1\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with f'(0) = 0, $f(\pm \frac{\pi}{2}) = 1, f'(\pm \frac{\pi}{2}) = \mp 1, and$

$$f(\theta) > \cos \theta + |\sin \theta|$$
.

Remark. According to the results of [AV], as $m \downarrow 1$ the solution of (6) tends to the solution v = q(x, t) of the initial value problem

$$v_t = v_x^2$$
 in $\mathbb{R} \times \mathbb{R}^+$
 $v(x, 0) = |x|$ in \mathbb{R} .

In particular,

$$q(x, t) = r(\cos \theta + |\sin \theta|).$$

Thus $f(\theta) \to \cos \theta + |\sin \theta|$ as $m \downarrow 1$. The (computed) graphs of $f(\theta)$ are shown in the next page in figure 1 for various values of m.

PROOF. The global existence and uniqueness of the solution v = p(x, t) of (6) follows from the results of Kalashnikov [K]. Moreover, p > 0 in $\mathbb{R} \times \mathbb{R}^+$ so that $p \in C^{\infty}(\mathbb{R} \times \mathbb{R}^+)$. For any $\lambda \in \mathbb{R}^+$ define

$$p_{\lambda}(x,t) \equiv \frac{1}{\lambda} p(\lambda x, \lambda t).$$

It is easy to verify that p_{λ} is a solution to the pressure equation (2) in $\mathbb{R} \times \mathbb{R}^+$ regardless of the value of $\lambda \in \mathbb{R}^+$. Moreover

$$p_{\lambda}(x,0) = \frac{1}{\lambda} |\lambda x| = |x|.$$

Therefore, for every $\lambda \in \mathbb{R}^+$, $p_{\lambda}(x, t)$ is a solution to problem (6). By uniqueness [K]

$$p(x,t) \equiv p_{\lambda}(x,t) = \frac{1}{\lambda} p(\lambda x, \lambda t)$$
 (8)

in $\mathbb{R} \times \mathbb{R}^+$ for every $\lambda \in \mathbb{R}^+$. In particular, for $\lambda = 1/r$ we have

$$p(x, t) = rp(\sin \theta, \cos \theta)$$

so that (7) holds with $f(\theta) = p(\sin \theta, \cos \theta)$.

Since p is an even function of x which is smooth for t > 0, it follows that f is even and f'(0) = 0. For $x \neq 0$

$$|x|=p(x,0)=|x|f\left(\pm\frac{\pi}{2}\right)$$

implies that $f(\pm \frac{\pi}{2}) = 1$. Moreover, p > 0 for t > 0 implies that f > 0 on $\left[-\frac{\pi}{2},\frac{\pi}{2}\right].$

To derive further properties of f it is convenient to look at another form of the solution of (6). If we take $\lambda = 1/t$ in (8) we find

$$p(x, t) = tp\left(\frac{x}{t}, 1\right) = rp(\tan \theta, 1)\cos \theta.$$

Thus

$$f(\theta) = g(\tan \theta) \cos \theta$$

where g(s) = p(s, 1). By a calculation which is elementary but tedious, one can verify that g satisfies the ordinary differential equation

$$(m-1)gg'' + g'^2 = g - sg', (9)$$

where ' = d/ds and $s = \tan \theta$. Note that

$$f'(\theta) = -g(\tan \theta) \sin \theta + \frac{g'(\tan \theta)}{\cos \theta}$$

so that f'(0) = 0 implies that

$$g'(0) = 0.$$

On the other hand,

$$1 = \lim_{\theta \to \pi/2} f(\theta) = \lim_{\theta \to \pi/2} \sin \theta \frac{g(\tan \theta)}{\tan \theta} = \lim_{s \to \infty} \frac{g(s)}{s}.$$

Thus

$$g(s) \sim s$$
 as $s \to \infty$.

Moreover, it follows from l'Hôpital's rule that if g' has a limit as $s \to \infty$ then

$$g'(s) \sim 1$$
 as $s \to \infty$.

Next, we observe that

$$g'' > 0 \quad \text{on} \quad [0, \infty). \tag{10}$$

362 D. G. Aronson and L. A. Caffarelli

Since $g(0) = f(0) \neq 0$ and g'(0) = 0 it follows from (9) that

$$g''(0) = 1/(m-1).$$

Suppose that for some $\bar{s} \in \mathbb{R}^+$ we have $g''(\bar{s}) = 0$. Then, in view of (9), $g(\bar{s})$ and $g'(\bar{s})$ satisfy

$$g'^2(\bar{s}) + \bar{s}g'(\bar{s}) - g(\bar{s}) = 0$$

so that

$$g'(\bar{s}) = b \equiv \frac{1}{2} (-\bar{s} \pm \{\bar{s}^2 + 4g(\bar{s})\}^{1/2}).$$

The function

$$G(s) \equiv b^2 + bs$$

is a solution to (9) with $G(\bar{s}) = g(\bar{s})$ and $G'(\bar{s}) = g'(\bar{s})$. By standard uniqueness theory we conclude that $g(s) \equiv G(s)$ and this contradicts g''(0) > 0.

Set a = g(0). We claim that

$$g'(s) < \sqrt{a}$$
 and $g(s) < a + \sqrt{a}s$

on \mathbb{R}^+ . Suppose there exists an $\tilde{s} \in \mathbb{R}^+$ for which $g'(\tilde{s}) \geqslant \sqrt{a}$. Since g'(0) = 0 and g' is increasing, there exists an $\bar{s} \in (0, \tilde{s}]$ such that $g'(\bar{s}) = \sqrt{a}$, $g' < \sqrt{a}$ on $[0, \bar{s}]$, and $g(\bar{s}) < a + \sqrt{a}\bar{s}$. Then

$$0 = 1 - \frac{\sqrt{a}(\sqrt{a} + \bar{s})}{a + \sqrt{a}\bar{s}} > 1 - \frac{g'(\bar{s})(g'(\bar{s}) + \bar{s})}{g(\bar{s})} = (m - 1)g''(\bar{s})$$

which contradicts (10).

Since $g'(s) < \sqrt{g(0)}$ and g' is increasing, it follows that $g'(s) \uparrow 1$ as $s \to \infty$. Moreover, $g''(s) \to 0$ as $s \to \infty$. Thus it follows from (9) that

$$g(\bar{s}) \sim 1 + s$$
 as $s \to \infty$.

In view of (10), we also have

$$g(s) > 1 + s$$
 on \mathbb{R}^+ .

Finally,

$$F'(\theta) \sim -\sin\theta \left(1 + \frac{\sin\theta}{\cos\theta}\right) + \frac{1}{\cos\theta} = -\sin\theta + \cos\theta$$

implies that $f'(\theta) \to 1$ as $\theta \to \pi/2$. \square

By the usual approximation procedures (cf. [B]) we can assume that u and v are positive in $\mathbb{R} \times \mathbb{R}^+$. Then, in particular, v_t exists and is continuous in $\mathbb{R} imes \mathbb{R}^+$. It therefore suffices to derive a bound for $|v_t|$ which is independent of the lower bound for v.

Proposition 2. Fix an arbitrary $\delta > 0$. For each $(x_0, t_0) \in \mathbb{R}^+ \times [2\delta, \infty)$ set $\alpha \equiv v(x_0, t_0)$. There exists constants A and B depending only on δ , m, and $N \equiv \|v_0\|_{L^{\infty}(\mathbb{R})}$ such that

$$\frac{\alpha}{4f(0)} \leqslant v(x,t) \leqslant 2\alpha$$

for all (x, t) which satisfy

$$|x - x_0| \leq A\gamma$$
 and $0 \leq t_0 - t \leq B\gamma$,

where $\gamma \equiv \min{(\alpha, \delta)}$.

Proof. In view of (4)

$$|v(x_0, t_0) - v(x, t_0)| \le L|x - x_0|$$

where L depends on δ , m and N. Thus

$$|x - x_0| \le \delta/2L$$

implies that

$$\frac{\alpha}{2} \leqslant v(x, t_0) \leqslant \frac{3\alpha}{2}$$
.

According to (5), for $t \ge \delta$ we have

$$v(x, t_0) - v(x, t) \ge -K(t_0 - t),$$

where K depends only on δ , m and N. Therefore

$$v(x, t) \leq v(x, t_0) + K(t_0 - t) \leq 2\alpha$$

if

$$|x - x_0| \leqslant \gamma/2L$$
 and $0 \leqslant t_0 - t \leqslant \gamma \min\left(\frac{1}{2K}, 1\right)$.

We assert that

$$v(x_0, t) \geqslant \frac{\alpha}{2f(0)} \quad \text{for} \quad t \in [t_0 - \gamma E, t_0], \tag{11}$$

where $E = \min(1/8L^2f(0), 1)$. Suppose that (11) is false. Then there is a $\theta \in (0, E)$ such that

$$v(x_0, t_0 - \theta \gamma) < \frac{\alpha}{2f(0)}.$$

Without loss of generality, we can assume that $x_0 = t_0 = 0$. By Taylor's theorem and (4) we have

$$v(x, -\delta\theta) < \frac{\alpha}{2f(0)} + L|x|.$$

Set

$$p*(x, t) \equiv \sqrt{2} Lp(x, \sqrt{2} L(t + \gamma \eta))$$

for $t > -\gamma \eta$, where p is the solution of problem (6) and η is to be chosen. Note that p^* is a solution of the pressure equation (2). Since $\{a^2 + b^2\}^{1/2} \ge (|a| + |b|)/\sqrt{2}$ and f(0) > 1 we have

$$p^*(x,t) \geqslant L\{|x| + \sqrt{2}L(t+\gamma\eta)\}.$$

Thus

$$v(x, -\gamma \theta) < \frac{\alpha}{2f(0)} + L|x| = L\{|x| + \sqrt{2}L(\eta - \theta)\gamma\} \leqslant p^*(x, -\gamma \theta)$$

provided that

$$\eta = \frac{\alpha}{2\sqrt{2}\gamma L^2 f(0)} + \theta \leqslant \frac{\alpha}{2\sqrt{2}\gamma L^2 f(0)} + E.$$
 (12)

By the comparison principle,

$$\alpha = v(0,0) \le p^*(0,0) = 2L^2 \gamma \eta f(0).$$

It follows from (12) and the definition of E that

$$\alpha \leq 2L^2 f(0) \left\{ \frac{\alpha}{2\sqrt{2}L^2 f(0)} + \gamma \min\left(\frac{1}{\delta L^2 f(0)}, 1\right) \right\} \leq \alpha \left(\frac{1}{\sqrt{2}} + \frac{1}{4}\right) < \alpha.$$

Thus we have a contradition and conclude that (11) holds. For any $t \in [t_0 - \gamma E, t_0]$ it follows from (4) and (11) that

$$v(x, t) \ge v(x_0, t) - L|x - x_0| \ge \frac{\alpha}{2f(0)} - L|x - x_0| \ge \frac{\alpha}{4f(0)}$$

provided that $|x - x_0| \le \gamma/4Lf(0)$. Thus the assertion of the proposition holds if we take

$$A = 1/4Lf(0)$$

and

$$B = \min(1/\delta L^2 f(0), 1/2K, 1).$$

PROOF OF THEOREM. Define

$$w(x, t) \equiv \frac{1}{\gamma} v(x_0 + \gamma x, t_0 + \gamma t).$$

Then w is a solution of the pressure equation (2) which satisfies

$$\frac{\alpha}{4f(0)\gamma} \leqslant w(x,t) \leqslant \frac{2\alpha}{\gamma}$$

in the rectangle $|x| \le A$, $-B \le t \le 0$. If $\alpha \le \delta$ then $\gamma = \alpha$ and we have

$$\frac{1}{4f(0)} \leqslant w(x,t) \leqslant 2 \quad \text{for} \quad |x| \leqslant A, -B \leqslant t \leqslant 0.$$

If $\alpha > \delta$ then $\gamma = \delta$ and $\alpha/\gamma > 1$. Then since $\alpha \leq N$ we have

$$\frac{1}{4f(0)} \leqslant w(x,t) \leqslant \frac{2N}{\delta} \quad \text{for} \quad |x| \leqslant A, -B \leqslant t \leqslant 0.$$

In both cases we conclude from the standard theory of parabolic equations [LSU] that there is a positive constant C depending only on δ , m and N such that

$$|w_t(0,0)| \leq C.$$

The theorem now follows since $w_t(0,0) = v_t(x_0,t_0)$ and (x_0,t_0) is arbitrary. \square

References

- [A1] Aronson, D. G. Regularity properties of flows through porous media, SIAM J. Appl. Math., 17 (1969), 461-467.
- [A2] Aronson, D. G. The porous medium equation, in *Nonlinear Diffusion Problems*. (A. Fasano and M. Primicerio editors), Lecture Notes in Math., 1224. (CIME Foundation Series), Springer-Verlag, Berlin, 1986, 1-46.
- [AV] Aronson, D. G. and J. L. Vázquez The porous medium equation as a finite speed approximation to a Hamilton-Jacobi equation, *Analyse Non Lineaire*, to appear.

- [B] Bénilan, Ph. A strong regularity L^p for solutions of the porous media equation, in *Contributions to Nonlinear Partial Differential Equations* (C. Bardos et al. editors), *Research Notes in Math*, 89, Pitman, London, 1983, 39-58.
- [CVW] Caffarelli, L. A., Vázquez, J. L. and Wolanski, N. I. Lipschitz continuity of solutions and interfaces of the *N*-dimensional porous medium equation, to appear.
- [DiB] Di Benedetto, E. Regularity results for the porous medium equation, Ann. Mat. Pura Appl., 121 (1979), 249-262.
- [G] Gilding, B. H. Hölder continuity of solutions of parabolic equations, J. London Math. Soc, 13 (1976), 103-106.
- [K] Kalashnikov, A. S. The Cauchy problem in a class of growing functions for equations of unsteady filtration type, *Vest. Mosk. Univ. Ser. Mat. Mech.*, 6 (1963), 17-27.
- [Kr] Kruzhkov, S. N. Results on the character of the regularity of solutions of parabolic equations and some of their applications, *Math. Notes*, 6 (1969), 517-523.
- [LSU] Ladyzhenskaya, O. A., Solonnikov, V. A., and Ural'ceva, N. N. Linear and Quasilinear Equations of Parabolic Type. Transl. Math. Monographs 23, Amer. Math. Soc., Providence, 1968.

D. G. Aronson¹
School of Mathematics
University of Minnesota
Minneapolis, MN 55455/USA

L. A. Caffarelli^{2,3}
Department of Mathematics
University of Chicago
Chicago, Il 60603/USA

¹ Partially supported by National Science Foundation Grant No. DMS 83-01247.

² Partially supported by National Science Foundation Grant No. DMS 83-01439.

³ Visiting Member, Institute for Mathematics and its Applications, University of Minnesota.