Weak Type Endpoint Bounds for Bochner-Riesz Multipliers

Michael Christ

The Bochner-Riesz multipliers are defined for testing functions f on \mathbb{R}^n by

$$(T_{\lambda}f)^{\wedge}(\xi) = (1 - |\xi|^2)^{\lambda}_+ \hat{f}(\xi).$$

Questions concerning the convergence or multiple Fourier series have led to the study of their L^p boundedness. It is conjectured that for n > 1, for all exponents $p \in (1, 2(n-1)/n)$, T_{λ} is bounded on L^p for all

$$\lambda > \lambda(p) = n(p^{-1} - 2^{-1}) - 2^{-1} > 0.$$

What is known is that the conjecture holds for the full range of exponents in dimension two [1], and for the smaller range $1 for all <math>n \ge 3$. Moreover it is very easy to see that T_{λ} is unbounded for all $\lambda \le \lambda(p)$; it suffices to compute the associated convolution kernel and to examine its action on the characteristic function of the unit ball. Nevertheless there is a positive result at the critical value $\lambda(p)$, at least for a certain range of exponents:

Theorem. For all $n \ge 2$ and $1 , <math>T_{\lambda(p)}$ is of weak type (p,p).

Temporarily define

$$(T'_{\lambda}f)^{\wedge}(\xi) = (1 - |r^{-1}\xi|^2)^{\lambda}_+ \hat{f}(\xi).$$

Corollary. For all $n \ge 2$, $1 and <math>f \in L^p(\mathbb{R}^n)$, $T_{\lambda}^r f \to f$ in measure as $r \to \infty$.

The result for p = 1 was recently proved in [4]. Our proof involves an application of the method of [4], a slight refinement of estimates already known on L^{p_0} , where $p_0 = 2(n+1)/(n+3)$, and an interpolation between L^1 and L^{p_0} .

To begin fix $p \in (1, p_0)$. Write $p^{-1} = \theta \cdot 1 + (1 - \theta)p_0^{-1}$, where $0 < \theta < 1$. Fix $\lambda = \lambda(p) = n(p^{-1} - 2^{-1}) - 2^{-1}$, and set $m(\xi) = (1 - |\xi|^2)^{\lambda}_+$. Let $f \in L^p$ and $\alpha > 0$ be arbitrary. In order to estimate the measure of the set where $|T_{\lambda}f| > \alpha$, apply the Calderón-Zygmund decomposition to f^p at height α^p to obtain f = g + b where $\|g\|_p \leqslant C\|f\|_p$, $\|g\|_{\infty} \leqslant C\alpha$, and $b = \Sigma_Q b_Q$ where each b_Q is supported on a dyadic cube Q,

$$\int |b_Q|^p \leqslant \alpha^p |Q|,$$

the cubes Q have pairwise disjoint interiors, and

$$\Sigma_Q|Q|\leqslant C\alpha^{-p}\|f\|_p^p.$$

Since T_{λ} is bounded on L^2 ,

$$|\{x: |T_{\lambda}g(x)| > \alpha/2\}| \le C\alpha^{-2} \|g\|_{2}^{2} \le C\alpha^{-p} \|f\|_{p}^{p}.$$

Let E be the union of the doubles of the cubes Q. Then

$$|E| \leqslant C\alpha^{-p} ||f||_p^p,$$

so it suffices to show that

$$|\{x \notin E: |T_{\lambda}b(x)| > \alpha/2\}| \leq C\alpha^{-p} ||b||_{p}^{p}$$

This will follow by Chebychev's inequality from

(1)
$$||T_{\lambda}b||_{L^{2}(\mathbb{R}^{n}\setminus E)}^{2} \leqslant C\alpha^{2-p}||b||_{p}^{p}.$$

Fix $\varphi_0 \in C_0^{\infty}(\mathbb{R}^n)$, radial and supported in $\{|x| \le 1\}$ and satisfying $\varphi_0(x) \equiv 1$ for $|x| \le 1/4$ and

(2)
$$\int (\partial^k \hat{\varphi}_0 / \partial \xi_1^k) (\xi) \cdot (\xi_1)^{\lambda}_+ d\xi = 0$$

for k = 0, 1. Let

$$\varphi_j(x) = \varphi_0(2^{-j}x)$$
 and $\psi_j = \varphi_j - \varphi_{j-1}$.

For j > 0 let

$$K_j(x)=\psi_j(x)\check{m}(x),$$

and let $K_0 = \varphi_0 \cdot \check{m}$, so that $\check{m} = \Sigma K_i$.

For $0 \le i \in \mathbb{Z}$ let $B_i = \Sigma b_Q$, the sum being taken over all Q with sidelength 2^i when i > 0 and sidelength less than or equal to one when i = 0. The contribution of B_0 turns out to be relatively easy to treat, so we shall ignore it until the end of the argument and concentrate instead on $\sum_{i>0} B_i$. Note that if Q has sidelength 2^i , then for all $j \le i$, $b_0 * K_j$ is supported on the double of Q, hence on E. Consequently for all $x \notin E$,

$$T_{\lambda}(\Sigma_{i>0}B_i)(x) = \Sigma_{i>0}B_i * (\Sigma_{i>i}K_i)(x) = \Sigma_{s>0}\Sigma_{i>s}B_{i-s} * K_i(x).$$

Hence (1) is a consequence of

(3)
$$\|\Sigma_{j>s}B_{j-s}*K_j\|_{L^2(\mathbb{R}^n)}^2 \leqslant C2^{-\epsilon s}\alpha^{2-p}\|b\|_p^p$$

for all $s \in \mathbb{Z}^+$, for some $\epsilon > 0$.

Fix linear functions $l_1, l_2: \mathbb{C} \to \mathbb{C}$ such that $Re(l_1(z)) \equiv p$ when Re(z) = 1, $\equiv p \cdot p_0^{-1}$ when Re(z) = 0, and $Re(l_2(z)) \equiv n(p^{-1} - 1)$ when Re(z) = 1 and $\equiv n(p^{-1} - p_1^{-1})$ when Re(z) = 0. Then $l_1(\theta) = 1$ and $l_2(\theta) = 0$. Define $B_{i,z}(x) = [B_i(x)]^{l_1(z)}$, interpreted as is customary in the standard proof of the Riesz-Thörin interpolation theorem. Define $K_{j,z}(x) = 2^{jl_2(z)}K_j(x)$. Then (3) follows by interpolation between the two endpoint estimates

(4)
$$\| \Sigma_{i>s} B_{i-s,z} * K_{i,z} \|_2^2 \leqslant C 2^{-\epsilon s} \alpha^p \| b \|_p^p$$

when Re(z) = 1 and

(5)
$$\|\Sigma_{i>s}B_{i-s,z}*K_{i,z}\|_{2}^{2} \leq C\alpha^{p(2p_{0}^{-1}-1)}\|b\|_{p}^{p}$$

when Re(z) = 0.

To justify (4) consider any collection $\{A_i: j > 0\}$ of functions satisfying

$$\int_{Q} |A_{j}| \leqslant C\alpha^{p} |Q|$$

for all cubes Q in \mathbb{R}^n of sidelength 2^j . Consider further any collection of kernels

$$H_i(x) = \Phi(x)h_i(x)$$

where

$$\Phi(x) = \cos{(2\pi|x| - \pi(n-1)/4)}$$

and each h_i is supported in $\{2^{j-3} \le |x| \le c_2 2^j\}$ and satisfies

$$||h_i||_{\infty} + 2^j ||\nabla h_i||_{\infty} \leq 2^{-nj}.$$

It is proved in [4] that

(4')
$$\|\Sigma_{i>s}A_{i-s}*H_i\|_2^2 \leqslant C2^{-\epsilon s}\alpha^p \|\Sigma|A_i|\|_1$$

for a certain $\epsilon > 0$. This is done by first, for technical reasons, introducing a finite partition of unity $\{\eta_{\beta}\}$ on $\mathbb{R}^n \setminus \{0\}$ with each η_{β} homogeneous of degree zero and supported in some cone $\{x: \langle x, v_{\beta} \rangle > \delta |x| \}$ for some $\delta > 0$ and $v_{\beta} \in S^{n-1}$. (4') follows from the variant of itself defined by replacing each H_j by $J_j = H_j \cdot \eta_{\beta}$, for then one may sum over β . This modified (4') is an easy consequence of the estimates

$$|J_i * \tilde{J}_i(x)| \leq C2^{-nj}(1+|x|)^{-\mu}$$

and

$$||J_i * \tilde{J}_i||_{\infty} \le 2^{-nj} 2^{-\mu i}$$
 for all $0 < i < j - 3$,

where $\tilde{J}_j(x) \equiv J_j(-x)$ and $\mu = (n-1)/2$; these are not difficult to verify by direct computation using the stated properties of $\{H_j\}$.

When Re(z) = 1, $A_j = B_{j,z}$ and $H_j = K_{j,z}$ have all these properties (H_j does, by the known asymptotics for Bessel functions). Therefore we consider (4) to be proved and concentrate on (5). For a single term $B_{j-s,z} * K_{j,z}$, it turns out that the desired bound follows at once from the estimates in [7]; the technical manipulations which follow are designed to enable us to pass from bounds for these individual terms to a bound for the entire sum.

Let
$$m_j = \hat{K}_j = m * \hat{\psi}_j$$
 (for $j > 0$).

Lemma 1.

- (6) $\|\partial^{\alpha} m_i/\partial \xi^{\alpha}\|_{\infty} \leq C_{\alpha} 2^{j|\alpha|} 2^{-j\lambda}$ for all multi-indices α .
- (7) $|m_i(\xi)| + 2^{-j} |\nabla m_i(\xi)| \le C_M 2^{-jM}$ for all M and all $\xi \notin [1/2, 3/2]$.
- (8) $|m_j(\xi)| + 2^{-j} |\nabla m_j(\xi)| \le C_M 2^{-j\lambda} (1 + 2^j |1 |\xi||)^{-M}$ for all $|\xi| \in [1/2, 3/2]$.
 - (9) There exists $\delta > 0$ such that

$$|m_j(\xi)| + 2^{-j} |\nabla m_j(\xi)| \le C 2^{-j\lambda} \max (2^j |1 - |\xi||, 2^{-j\delta})$$

for all
$$|\xi| \in [1 - 2^{-j}, 1 + 2^{-j}].$$

The conclusions are all totally routine bounds for $m_j = m * \hat{\psi}_j$ except for (9), which relies on the technical condition (2). To obtain the bound in (9) for $m_j(\xi)$, observe that since $|m_j(\xi)| \le C2^{-j\lambda}$ when $|\xi| = 1 \pm 2^{-j}$ by (8), and since $\|\nabla m_j\|_{\infty} \le C2^{j(1-\lambda)}$, it suffices by the fundamental theorem of calculus to prove (9) for $|\xi| = 1$. Both m and $\hat{\psi}_j$ are radial, so we may take $\xi = \xi_0 = (1, 0, \dots, 0)$.

$$(m*\hat{\psi}_j)(\xi_0) = \int \hat{\psi}_j(\xi_0 - \zeta) \cdot \left[(1 - |\zeta|^2)_+^{\lambda} - |2(1 - \zeta_1)_+^{\lambda}| \right] d\zeta,$$

where $\zeta = (\zeta_1, \zeta_2, ...)$, since the term subtracted is actually zero by (2) (with k = 0). The function $\hat{\psi}_i(\xi_0 - \bullet)$ is essentially supported on a ball of radius 2^{-j}

centered at ξ_0 . On this ball

$$|[1-|\zeta|^2]_+^{\lambda}-[2(1-\zeta_1)_+]^{\lambda}| \leq C2^{-2j\lambda};$$

the best way to see this is to introduce new coordinates centered at ξ_0 and rescaled by a factor of 2^{j} . In such coordinates the boundary of the unit ball becomes almost flat as $j \to \infty$, producing an extra factor of $2^{-j\lambda}$. Hence (9) holds for m_i ; we omit the precise details. ∇m_i may be estimated in the same way, using (2) with k = 1.

Lemma 2. There exist positive radial functions $\{\eta_j: j>0\}$ such that $\Sigma \eta_j^2 \in L^{\infty}$ and the multipliers $n_i = m_i/\eta_i$ satisfy (7) and (8).

Indeed, define $\eta_i(\xi) = 1$ if $|\xi| = 1 \pm 2^{-j}$, $=2^{-j\delta/2}$ if $|\xi| = 1$, where δ is the exponent in (9), and interpolate smoothly for intermediate values of $|\xi|$. Proceed similarly for $|\xi| \notin [1-2^{-j}, 1+2^{-j}]$.

We may now deduce (5). Suppose that Re(z) = 0.

$$\begin{split} \| \Sigma_{j>s} B_{j-s,z} * K_{j,z} \|_2^2 &= \int |\Sigma \hat{B}_{j-s,z}(\xi) \cdot 2^{jl_2(z)} n_j(\xi) \eta_j(\xi)|^2 \, d\xi \\ &\leq \int (\Sigma \eta_j(\xi)^2) (\Sigma |\hat{B}_{j-s,z}(\xi) \cdot 2^{l_2(z)} n_j(\xi)|^2) \, d\xi \\ &\leq C \int \Sigma |\hat{B}_{j-s,z} \cdot 2^{jl_2(z)} n_j(\xi)|^2 \, d\xi \\ &= \Sigma \| B_{j-s,z} * 2^{jl_2(z)} \check{n}_j \|_2^2 = \Sigma \| B_{j-s,z} * 2^{jn(p^{-1}-p_0^{-1})} \check{n}_j \|_2^2. \end{split}$$

Therefore it suffices to show that for all $F \in L^{p_0}(\mathbb{R}^n)$ satisfying

$$(10) \qquad \qquad \int_{Q} |F|^{p_0} \leqslant \beta |Q|$$

for all cubes Q of sidelength 2^{j} , we have

(11)
$$||F*2^{jn(p^{-1}-p_0^{-1})}n_j||_2^2 \leqslant C\beta^{2p_0^{-1}-1}||F||_{p_0}^{p_0},$$

for $B_{j-s,z}$ satisfies (10) uniformly for all $s\in\mathbb{Z}^-$, $z\in i\mathbb{R}$, with $\beta=\alpha^p$. Set $L_j=2^{jn(p^{-1}-po^{-1})}\check{n}_j\varphi_j$, and for all i>j set $L_i=2^{jn(p^{-1}-po^{-1})}\check{n}_j\psi_i$. We will prove that there exists $\epsilon>0$ such that for all $F\in L^{p_0}$ and all $i\geqslant j$,

(12)
$$||F*L_i||_2^2 \leqslant C2^{-\epsilon(i-j)} 2^{-ni(2p_0^{-1}-1)} ||F||_{p_0}^2.$$

Since L_i is supported on $\{|x| \leq 2^i\}$, it follows at once that

$$||F*L_i||_2^2 \leqslant C2^{-\epsilon(i-j)}\beta^{2p_0^{-1}-1}||F||_{p_0}^{p_0}$$

for all $F \in L^{p_0}$ satisfying (10). Summing over i gives (11).

Finally (12) is a straightforward consequence of the L^2 restriction theorem of Tomas and Stein, as in [7]. For if I = [1/2, 3/2] and $B = \{|\xi| \notin I\}$, then

$$||F*L_i||_2^2 = \int_B |\hat{F}(\xi)|^2 |\hat{L}_i(\xi)|^2 d\xi + \int_I \left(\int_{S^{n-1}} |\hat{F}(r\theta)|^2 d\theta \right) \cdot |\hat{L}_i(r)|^2 r^{n-1} dr$$

where we have written $\hat{L}_i(r)$ for $\hat{L}_i(\xi)$ when $|\xi| = r$, recalling that \hat{L}_i is radial. For $\xi \in B$,

$$\begin{split} |\hat{L}_i(\xi)| &= 2^{jn(p^{-1} - p_0^{-1})} \cdot |n_j * \hat{\psi}_i(\xi)| \quad \text{(or } \hat{\varphi}_j \text{ when } i = j) \\ &\leqslant C_M 2^{-(i-j)} 2^{-Mj} (1 + |\xi|)^{-M} \end{split}$$

for all $M < \infty$, by the bounds (7) and (8) for n_j and its gradient, and routine estimation. Hence the Hausdorff-Young inequality gives

$$\begin{split} \int_{B} |\widehat{F}(\xi)|^{2} |\widehat{L}_{i}(\xi)|^{2} d\xi &\leq C_{M} 2^{-2(i-j)} 2^{-Mj} \|F\|_{p_{0}}^{2} \\ &= 2^{-\epsilon(i-j)} 2^{-ni(2p_{0}^{-1}-1)} 2^{j(-M+(2p_{0}^{-1}-1))} \|F\|_{p_{0}}^{2} \end{split}$$

where $\epsilon = 2 - n(2p_0^{-1} - 1) = 2/(n+1) > 0$. Thus the desired bound follows as soon as $M \ge 2p_0^{-1} - 1$. On the other hand for $r \in I$ we have

$$\int_{S^{n-1}} |\hat{F}(r\theta)|^2 d\theta \leqslant C \|F\|_{p_0}^2$$

by the restriction theorem. Hence

$$\int_{\mathbb{R}^n \setminus B} |\hat{F}(\xi)|^2 |\hat{L}_i(\xi)|^2 d\xi \leqslant C \|F\|_{p_0}^2 \int_I |\hat{L}_i(r)|^2 dr.$$

It follows from (7), (8) and routine computation that for $r \in I$,

$$|\hat{L}_i(r)| \le C_M 2^{jn(p^{-1}-p_0^{-1})} 2^{-j\lambda} (1+2^j|1-|\xi||)^{-M} \cdot 2^{j-i}$$

for all $M < \infty$. Hence

$$\int_{I} |\hat{L}_{i}(r)|^{2} dr \leq 2^{2jn(p^{-1} - p_{0}^{-1})} 2^{-2j\lambda} \cdot 2^{-j} \cdot 2^{-2(i-j)}$$

$$= 2^{-in(2p_{0}^{-1} - 1)} 2^{-\epsilon(i-j)}$$

where again $\epsilon = 2/(n+1)$. This concludes the proof of (5).

Only the contribution of B_0 remains to be treated. Again form the analytic functions $B_{0,z}$ and $K_{j,z}$ as above. When Re(z)=0 it follows from the L^2 restriction theorem that

$$||B_{0,z} * K_{i,z}||_2^2 \le C\alpha^{p(2p_0^{-1}-1)} ||B_0||_p^p$$

as above; now it is not necessary to introduce the η_i and n_i , so the proof is

straightforward. On the other hand it is shown in [4] that when Re(z) = 1,

$$\|B_{0,z} * K_{i,z}\|_2^2 \le C 2^{-j(n-1)/2} \alpha^p \|B_{0,z}\|_1$$

Since the right-hand side is equal to $C2^{-j(n-1)/2}\alpha^p \|B_0\|_p^p$, interpolation gives $\|B_{0,z}*K_{j,z}\|_2^2 \le C2^{-j\theta(n-1)/2}\alpha^{2-p} \|B_0\|_p^p$. So

$$\begin{split} \|B_0 * \Sigma K_j\|_2 & \leq \Sigma \|B_0 * K_j\|_2 \\ & \leq C \alpha^{(2-p)/2} \|B_0\|_p^{p/2} \Sigma 2^{-j\theta(n-1)/4} \\ & \leq C [\alpha^{2-p} \|B_0\|_p^p]^{1/2}. \end{split}$$

Remark. In dimension n = 2 T_{λ} is known [1] to be bounded on L^{p} for all $\lambda > \lambda(p)$, for all $p \le 4/3$, but our proof applies only in the smaller range p < 6/5. It remains an open question whether weak type endpoint results hold in the full range of exponents, even in dimension two. In [2] this has been shown to be the case for radial functions.

References

- [1] Carleson, L. and Sjölin, P. Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44(1972), 287-299.
- [2] Chanillo, S. and Muckenhoupt, B. Weak type estimates for Bochner-Riesz spherical summation multipliers, to appear in Trans. Amer. Math. Soc.
- [3] Christ, M. On almost everywhere convergence of Bochner-Riesz means in higher dimensions, Trans. Amer. Math. Soc. 95(1985), 16-20.
- [4] —, Weak type (1,1) bounds for rough operators, to appear in Annals of Math.
- [5] Córdoba, A. A note on Bochner-Riesz operators, Duke Math. J. 46(1979), 505-511.
- [6] Fefferman, C. Inequalities for strongly singular convolution operators, Acta Math. 124(1970), 9-36.
- [7] —, A note on spherical summation multipliers, Israel J. Math. 15(1973), 44-52.

Michael Christ Department of Mathematics University of California, Los Angeles Los Angeles, California 90024

Research supported in part by a grant from the National Science Foundation. I am grateful to Katherine Davis for stimulating my interest in this question, and to Bill Beckner for providing a comfortable chair in which to ponder it.