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Weak Type Endpoint
Bounds for Bochner-
Riesz Multipliers

Michael Christ

The Bochner-Riesz multipliers are defined for testing functions f on R” by
(LON® = (1 - &P} FG).

Questions concerning the convergence or multiple Fourier series have led to
the study of their L? boundedness. It is conjectured that for »n > 1, for all
exponents p € (1,2(n — 1)/n), T, is bounded on L? for all

ASNp)=n(p~'-2"H-2"1>0.

What is known is that the conjecture holds for the full range of exponents in
dimension two [1], and for the smaller range 1 < p < 2(n + 1)/(n + 3) for all
n 2 3. Moreover it is very easy to see that 7, is unbounded for all A < \(p);
it suffices to compute the associated convolution kernel and to examine its
action on the characteristic function of the unit ball. Nevertheless there is
a positive result at the critical value N(p), at least for a certain range of
exponents:

Theorem. Foralln>2and1<p<2n+1)/(n+3), Ty, is of weak type
(p, D).

Temporarily define
(@ =0 - [r e 7).
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Corollary. Foralln>2,1<p<2n+1)/(n+3) and fe LP(R"), T, f—=f
in measure as r — o,

The result for p = 1 was recently proved in [4]. Our proof involves an ap-
plication of the method of [4], a slight refinement of estimates already known
on L™, where p, = 2(n + 1)/(n + 3), and an interpolation between L' and Z7°.

To begin fix pe(1,p,). Write p~ ' =60-1+ (1 — 8)p; !, where 0 < 0 < 1.
Fix \=Np)=n(p~' =271 271, and set m(¢) = (1 — |£»)} . Let felL”
and o > 0 be arbitrary. In order to estimate the measure of the set where
|T\.f| > o, apply the Calderon-Zygmund decomposition to f7 at height a? to
obtain f=g+ b where |g|,<C|f|,, |&gle < Ca, and b=EX,b, where
each bQ is supported on a dyadic cube Q,

[ 18017 < @”l0),
the cubes Q have pairwise disjoint interiors, and
Eol0l < Ca?| f12.
Since T, is bounded on L?,
| (x: | Thg()| > /2)] < Ca™?|gl3 < Ca™?| f]5.
Let E be the union of the doubles of the cubes Q. Then
|E| < Ca™?| f]2,
so it suffices to show that
[{x ¢ E: |T\b(x)| > a/2}| < Ca™?|b|5.
This will follow by Chebychev’s inequality from
a | 7301 22y < G 71615

Fix ¢, € C3(R™), radial and supported in {|x| < 1} and satisfying ¢,(x) = 1
for |x| <1/4 and

) [ @ @0/0E0® - €D dE =0
for k=0,1. Let
00 =027 and Y;=¢;—¢; ;.
For j > 0 let
K; () = ¥,(mh(0),

and let K, = ¢, - 711, so that m = ZK;.
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ForO0<ieZlet B; = Eb the sum being taken over all Q with sidelength
2! when i > 0 and sxdelength less than or equal to one when i = 0. The con-
tribution of B, turns out to be relatively easy to treat, so we shall ignore it
until the end of the argument and concentrate instead on Z;. ,B;. Note that
if O has sidelength 2/, then for all j < i, bQ * K; is supported on the double of
Q, hence on E. Consequently for all x ¢ E,

N\(ZisoB)(X) = Li5 0B * (X5 i K)(X) = Eg5 0 X5 sBj_ s # K;(x).
Hence (1) is a consequence of
®) |25 6B - s * Kl f2rmy < C27“a* 77| b] ]

for all seZ™*, for some ¢ > 0.

Fix linear functions /;,/,: C— C such that Re(/;(z)) = p when Re(z) =1,
=p-py; ! when Re(z) =0, and Re(/,(z)) = n(p~' — 1) when Re(z) = 1 and
=n(p~'-p;') when Re(z) =0. Then /,;(6) =1 and L (6) = 0. Define

B; .(x) = [B; (x)]"@, interpreted as is customary in the standard proof of the
Riesz-Thorin interpolation theorem. Define K; ,(x) = 2/2@K;(x). Then (3)
follows by interpolation between the two endpomt estimates

) IZj5sBj—s,2*K; 2|5 < C27“a?|b]?
when Re(z) =1 and
®) 155 sBj—s,2*Kj, [ < Ca?®P0 ’”llbll"

when Re(z) =
To justify (4) consider any collection {A4;:j> 0} of functions satisfying

[ol4] < calQl

for all cubes Q in R™ of sidelength 2’. Consider further any collection of
kernels

H;(x) = ®(x)h;(x)
where
®(x) = cos 2w|x| — w(n — 1)/4)
and each #; is supported in {2/73 < |x| < ¢,2/} and satisfies
17]w + 27| VA <277
It is proved in [4] that
) |Z)>s4j- s+ Hjl; < C27“a®| 2|4 |4
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for a certain e > 0. This is done by first, for technical reasons, introducing a
finite partition of unity {5,} on R"\ {0} with each 5 homogeneous of degree
zero and supported in some cone {x:{x,vg) > é|x|} for some 6 >0 and
vgeS"” 1. (4") follows from the variant of itself defined by replacing each H;
by J; = H;- ng, for then one may sum over 8. This modified (4') is an easy
consequence of the estimates

|7 J;00] < C27Y(1 + |x])~*
and
[Ji# il <27W274 forall 0<i<j-3,

where .7j(x) = Jj(—x) and p = (n — 1)/2; these are not difficult to verify by
direct computation using the stated properties of { Hj}.

When Re(z) =1, A;= B andH K . have all these properties (H does,
by the known asymptotlcs for Bessel functlons) Therefore we con51der 4) to
be proved and concentrate on (5). For a single term B;_, z *K; ., it turns out
that the desired bound follows at once from the estimates in [7]; the technical
manipulations which follow are designed to enable us to pass from bounds for
these individual terms to a bound for the entire sum.

Let m; = K, = m+ 1y, (for j > 0).

Lemma 1.

(6) [3°m;/35% | < Co271*1277 for all multi-indices o.

7 [myH| +2~ J[ij(é)l < Cy 27 for all M and all £ ¢[1/2,3/2].

®) [m;@)] +277|Vmy(9)] < Cp 27N + 27|11 = |E|)™™ for all || e1/2,
3/2].

(9) There exists 6 > 0 such that

[m;(¢)| + 27/|Vm;(¢)| < C27*max (2/]1 — |£[[,277)
for all |E|e[l —277,1+27].

The conclusions are all totally routine bounds for m; = m * 1Zj except for (9),
which relies on the technical condition (2). To obtain the bound in (9) for
m;(£), observe that since [m;(#)| < C27/* when [£] = 1 + 27/ by (8), and since
|Vm;| ., < €271, it suffices by the fundamental theorem of calculus to prove
(9) for |£] = 1. Both m and J/j are radial, so we may take £ = £ = (1,0,...,0).

(md)(E) = [Fy& — - 11 = [§P) - 1201 = £k 1dk,

where ¢ = (£, £5, - - - ), since the term subtracted is actually zero by (2) (with
k = 0). The function ;(& — +) is essentially supported on a ball of radius 27/
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centered at &,. On this ball
1= [ - 20 = £+ T < 27

the best way to see this is to introduce new coordinates centered at &, and
rescaled by a factor of 2’. In such coordinates the boundary of the unit ball
becomes almost flat as j — o, producing an extra factor of 2 /. Hence (9)
holds for m;; we omit the precise details. Vm; may be estimated in the same
way, using (2) with k = 1.

Lemma 2. There exist positive radial functions {v;: j > 0} such that Enjz.e L»
and the multipliers n; = m;/v; satisfy (7) and (8).

Indeed, define 7;(§) =1 if ¢ =1x27/, =272 if |§ =1, where 6 is
the exponent in (9), and interpolate smoothly for intermediate values of |£|.
Proceed similarly for £ ¢[1 —277,1+27]].

We may now deduce (5). Suppose that Re(z) = 0.

1%)5:B; 52K, 3 = [IEB,_, (9 - 22@n (e, (9) d&
< [En,@NEIB;_, - 2°Pn ) ag
<C[z|B_, - 2"@n )| dt

. . . -1__-1 < 12
=T|B,_, #22@f |2 = £|B,_, #2" '=r0 Oy |2,

Therefore it suffices to show that for all Fe LP°(R") satisfying

10 F|P g

(10) J,IFI™ < sl0]

for all cubes Q of sidelength 2/, we have

an |Fa2 @™ r 2 < OB F R,

for B .. satisfies (10) uniformly for all seZ~, z€iR, with 8 = a”. Set

1 1

L; =27~ i o and for all i > j set L;=2/"®" =70 iy, We will
prove that there exists e > 0 such that for all Fe L*° and all i > j,
(12) |Fx L]} < €27 eCDmmems =D p|2 |
Since L; is supported on {|x| < 2}, it follows at once that
|[FsL,|2< Cam<G-Dgws =1 |2

for all F e LP° satisfying (10). Summing over i gives (] :).
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Finally (12) is a straightforward consequence of the L? restriction theorem
of Tomas and Stein, as in [7]. For if I=[1/2,3/2] and B = {|¢| ¢}, then

[F=Lil} = [ IFOPIL, @) dt + L(Lm |F(r9)|2do) L)t ar

where we have written L, (r) for L,(¥) when || = r, recalling that L, is radial.
For £€B,

IZ,®] =277 =D a8 (or §; when i = j)
< Cp27 /M1 + |g)~M

for all M < o, by the bounds (7) and (8) for n ; and its gradient, and routine
estimation. Hence the Hausdorff-Young inequality gives

[, JF@PIL®P dE < €272 2" M| F |2

— 9~ eli=i)p ~niCps '~ Dj(~M+@py !

DIFP2

where € =2 — n(2py ' — 1) = 2/(n + 1) > 0. Thus the desired bound follows
as soon as M > 2p; ! — 1. On the other hand for r € I we have

(o, IFCO)d6 < CIF]2,
by the restriction theorem. Hence

[ g FOPIL®dE < CIF|2, [ L, ar.

It follows from (7), (8) and routine computation that for re/,
L,(r)] < Cp27"® ™" =P8 D21 4 27|1 — |g|[)~ M- 27~

for all M < . Hence

1

»[I |£i(r)|2dr < 22.1'71(17_ -po 1)2--2j)\ L2=i.9=26-0)

— 2~ in@pi ' =1y ~eli-))

where again € = 2/(n + 1). This concludes the proof of (5).

Only the contribution of B, remains to be treated. Again form the analytic
functions B, , and K; , as above. When Re(z) =0 it follows from the L?
restriction theorem that

_l_
|Bo,.*K; 13 < Ca”@ ~D|By| ]

as above; now it is not necessary to introduce the n; and n;, so the proof is
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straightforward. On the other hand it is shown in [4] that when Re(z) = 1,
|B,, . *K; |5 < C277/ V2P| By |,.

Since the right-hand side is equal to C27/®~Y2a”| B| 2, interpolation gives
|By, *K; |5 < C27/°"= D22 P|B | 7. So

| Bo*EK;|, < Z|Bo* K|,

<E
< Ca 2-p/2 ” BO ” 2/222 —-Jjo(m—-1)/4
<C

[ "7 | Bo| 712

Remark. In dimension n =2 T, is known [1] to be bounded on L” for all
A > N(p), for all p < 4/3, but our proof applies only in the smaller range
p < 6/5. It remains an open question whether weak type endpoint results hold
in the full range of exponents, even in dimension two. In [2] this has been
shown to be the case for radial functions.

References

[1] Carleson, L. and Sjolin, P. Oscillatory integrals and a multiplier problem for the
disc, Studia Math. 44(1972), 287-299.

[2] Chanillo, S. and Muckenhoupt, B. Weak type estimates for Bochner-Riesz
spherical summation multipliers, to appear in Trans. Amer. Math. Soc.

[3] Christ, M. On almost everywhere convergence of Bochner-Riesz means in higher
dimensions, Trans. Amer. Math. Soc. 95(1985), 16-20.

[4] —, Weak type (1,1) bounds for rough operators, to appear in Annals of Math.

[S] Cérdoba, A. A note on Bochner-Riesz operators, Duke Math. J. 46(1979),
505-511.

[6] Fefferman, C. Inequalities for strongly singular convolution operators, Acta
Math. 124(1970), 9-36.

[71 —, A note on spherical summation multipliers, Israel J. Math. 15(1973), 44-52.

Michael Christ

Department of Mathematics
University of California, Los Angeles
Los Angeles, California 90024

USA

Research supported in part by a grant from the National Science Foundation. I am grateful to
Katherine Davis for stimulating my interest in this question, and to Bill Beckner for providing
a comfortable chair in which to ponder it.



