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Introduction

This paper deals with the total curvature of curves v in euclidean space. It is
defined as the supremum of the expressions 2, «; where o; = angle formed by
succesive chords C;, C; . ; determined by a partition of the parameter interval,
and we denote it by 7(v). Notice that when v has a curvature £ then T(y)
= j' k ds, where ds is the element of arc-length (see comments at the end of sec-
tion 2).

Our aim is to study curves for which 7T(v) < + e without a priori conditions
regarding smoothness of v: in this sense, the paper is more «real variables»
than «differential geometry». This approach has been used by Borsuk [2],
Fary [3] and Milnor [7] among others in their study of knots, and some results
below are extensions or improvements of their findings. In particular, Pro-
position 4.5 below (whose proof was communicated to us by A. P. Calderén)
generalizes a statement by Fary (third paragraph on p. 130 of [3]; see also [1]).

Furthermore, the hypothesis 7' < + o in conjunction with an interior cone
condition was used by McGowan and Porta (see [6]) as a substitute for con-
vexity to extend Paul Levy’s integral representation to distances in the plane
which are not norms. This notion also appears in Finsler spaces (see Rund
[81), at least in the general form given in section 6 below, and in isoperimetric
problems (see Bandle [0]); however differentiability or rectifiability is usually
required. Finally we mention the following result of Gleason (see [4]): if v,
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is the longest polygon with n vertices all on a curve v, then the correspondir
lengths L, and L satisfy

limn*L - L,) = (1/24)( [ 72 ds)3.
Since
lim T(y,) = j kds

we may ask for other relations involving 7 and length and also for tl
geometric significance of other moments of the curvature (for the second, s
Weiner [12]).

The main results obtained are the following: under the hypothesis 7(y) < +
we pove that v has one-sided tangents everywhere (Theorem 2.3) which coi:
cide at all but countable many points (Corollary 3.8). Furthermore, v can |
decomposed into finitely many graphs of Lipschitz functions (Propositic
3.9) and, if 7 denotes the Gauss map of v defined by 7(¢) = right unit tange:
vector at v(?), then 7(y) = length of 7 considered as a curve in the unit sphe
S under the geodesic distance (the distance is relevant because 7 is disco:
tinuous in general).

The last two sections are devoted to the non-Hilbert case and to the rel
tions among total curvature, rectifiability, bounded variation and the like

We want to thank A. P. Calderdon and O. N. Capri for many valuable cor
ments.

1. Preliminary Remarks

1.1. In the sequel we often consider angles formed by elements of a Hilbe
space H. If U, V are non-zero elements of H we define ang (U, V') by

cosang (U, V) = (U, V)/|U| | V],

where we require that 0 < ang (U, V) < «. It is clear that ang is a continuor
function from (H — {0}) X (H — {0}) into [0, 7], and that it verifies

(1.1a) ang (U, V) + ang (V, W) = ang (U, W)

whenever U, V, W are non-zero. This angle triangle inequality has the usu
consequences (like its iterated form X ang(U;, U;.,) = ang(U,, U,), fi
example).

When restricted to the unit sphere S of H, ang is a distance. Furthermor

(1.1b) ang(U, V) > |U~- V| > (1 - d*/6)ang (U, V),
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when |U| =|V| =1 and d= |U~ V|. Occasionally UV is used as an
abbreviation of ang (U, V).

1.2. Let G(u, v) be an interval function, i.e., a real valued function defined
for a < u < v<b. We denote by G'(c) = lim G(u, v) taken when u<c<vwv
and u, v — c. Admitedly, this limit may not exist; if G is monotonic, G’ exists
almost everywhere (see [5], page 94).

1.3. Suppose now that X is a metric space, with distance d and let o be a
(not necessarily continuous) function o¢:[a, b] > X. The total variation
Sup Xd(o(?), o(t; . ,)) is called the length of 6. When the length is finite, we
say that o is rectifiable. This notion appears below in two different settings:
when X is a Hilbert space H with the norm distance (in which case the length
of ¢is denoted by /(¢)) and when X is the unit sphere S of H and d = ang (and
then we use /(o) for the length of o).

We remark without proof that /(o) < /(o) for all o [a, b] = S with equality
when o is continuous (the proof uses 1.1b).

By a «curve» in H we mean a continuous simple curve defined by a
parametrization v: [a, b] = H; therefore v is a homeomorphism from [a, b}
onto its image, and /(v) is the length of the curve.

The following notation will be used throughout: if U, V are distinct vectors,
CUWV=WV-U)/|V-U|.Ifv@t),a<t<bisacurve,anda<u <v < b,
then C(u, v) = C(v(u), ¥(v)), so that C(u, v) is the normalized chord from v(u)
to v(v). Also, the curve ¥ is a shortcut of the curve v if y(¢) = v(f) fora<t<u
and v < f < a while ¥(7), u < ¢ < v, coincides with the straight line segment
joining y(u#) and y(v).

2. Total Curvature of Curves in Hilbert Space

Suppose that v(¢), a <t < b is a curve in H, Hilbert space.

Let IT = {cyp,C1,Cpy .. -5 Criq) SatiISTya< <y <<+ <, 18D (a
«partition» in [a,b]). We set T(I) = T{cy,Cy5...,Chs1} = Za; where
o; = ang (C(c;_ 4, ¢;), C(c;, €; 4 1)). If the particular curve under consideration
has to be identified, we write 7(v;II), etc.

Suppose now that 7 is a interval (of any kind) contained in [a, b], with end-
points u < v. We set T(I) = T(u, v) = Sup T(II), where IT ranges over all par-
titions satisfying u < ¢y < ¢; < --- < ¢,, 1 < v. We repeat that this definition
does not distinguish between I = [u, v], I = [u, v), etc. Just as above we write
T(v; u, v) when necessary.

2.1. Definition. The curve v has finite total curvature when T(a, b) < +oo.
In thic race Tla b\ ic eallod the tntal curnature nf v
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This terminology is justified at the end of this section.
We list below a few properties of the interval function 7 and indicate
of the proofs.

2.2a. Positivity: T > 0.

2.2b. Monotonicity with respect to shortcuts: if 5 is a shortcut of 7
T(®) € T(). (cf. [7], Cor. 1.2).

Proor. Consider the family of partitions I, having # and v as adjace:
tition points, where u,v have the same meaning as in (1.3).
Sup T(7v;IIy) < Sup T(v;II) = T(v). But for ¥ the partitions I, are j
good as all partitions since adding new points between u and v do
change the value of T(¥;II,). Hence Sup T(;I1;) = T(¥) and 2.2b fo

Observe that this implies the following «bang-bang» principle. If the
7 is a polygonal line with vertices Py, Py, ..., P, ., then the total cur
of v is the smallest among the curves passing throught Py, P;,..., P
that order. In other words: «least twisted = shortest».

2.2¢.  Superadditivity with respect to intervals: if (u;, v;) are disjoint sul
vals of (u, v), then ZT(y;, v)) < T(u, v). In particular, T is monotonic

2.2d. Invariance under parameter changes: if v and 7, are parametriz
of the same curve, then T(y) = T(v1)-

The following theorem is the key result of this section.

2.3. Theorem. Let Y¥(t), a<t< b, be a curve with finite total curt
Then for each a < c < b the limit.

N

2.3a. T*(c) = lim, < p, pore C(t, V)

exists in the following sense: for each € >0 there exists 6 >0 suc
|C(u,v) — T*(c)| < e whenever c < u < v < c + 8. A similar statemeni

for
2.3b. T (o) =1lim, . ,cc,y-ec CH, V)

when a < ¢ < b. In particular, T* (c) and T~ (c) are the right and le
tangent vector to v at y(c), respectively.

Proor. First step: consider a sequence ¢, > u; > t, > u, > - - - > ¢ with
and form the series

s=Xang(Cluy, 1), Clup o 1, te L 1))
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If we abbreviate IT, = {u,, t,, 4, _1,%,_1, - .., Uy, t;) then the partial sums s,
of s satisfy s, < T(IL,), since the k™ term of s is majorated by
Wi =T{Ug 1, tc41, Ut} and T(IIL,) = Z Wi .
l<sk=sn-1

Thus s, < T(a, b) and s is a convergent series.
On the other hand, for k > j:

ang (C(ug, ), C(u;, 1)) < S, — S5
and therefore we have

klim ang (C(uy, ty), C(u;, 1)) = 0.
sJ
This means that { C(u,, ¢,)} is a Cauchy sequence for the ang distance whence,
by (1.1b), it is also a Cauchy sequence in the norm. Therefore there exists the
limit V = lim C(u,, t,).

This limit is independent of the particular sequence (u,, ¢,): if (u,, %)) is a
second such sequence with ¥’ = lim C(u,, ¢;) we can thin out both of them to
obtain subsequences (denoted by the same symbols) satisfying

Ho>u>H>ui>hL>u>t>uy> -
But this combined sequence is again convergent, which can only happen if
V=V
Second step: Suppose only that ¢ < u, < ¢, with ¢, = c. Any subsequence of
C(u,, t,) has itself a subsequence with limit V for, discarding enough terms,

we can obtain the alternation ¢, > u; > ¢, > u, > - - - and the argument of the
first step applies. But then the whole sequence C(u,, t,) converges to V.

Third step: Let now ¢ < u,, < ¢, with ¢, = c. Choose u,, < u}, < t, such that
|Cu,,t,) — C(u,,t,)| <1/n. Then, C(u,,t,) being convergent to V by the
second step, we also have lim C(u,, t,) = V as claimed.

We complete the definition of 7% and 7~ setting

T*(b) =T (b),
T (@) = T (a).

Then:

2.4. Corollary. The functions T* : [a,b] = S, T™ : [a, b] = S have the follow-
ing properties:

2.4a. T7 is right continuous and T~ is left continuous.
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2.4b. T* ()~ T (c,) when c—c,, c<cy.
T ()~ Tt (c) when c— ¢, c> ¢

2.4c. T* and T~ are rectificable for the ang distance on S, and
I(T%) < T(v),
I(T7) < TM).

Note. The inequalities in 2.4c are equalities (see 4.5b).

Proor. Let ¢, ¢y, ¢, 2 ¢y. For e > 0 we have
|Clenscn + 1/7) = T (€| <6
for n,j large enough. Taking limits as j — oo we get from 2.3
IT" (o) = TH(co)] <€
for the same values of n, so that 2.4a is proved for T*. The proof for T~
is similar.
Assume now that ¢, — ¢y, ¢, < ¢ and let e > 0. Then by 2.3b there exists
N, such that for j > 1/(c, — ¢,) and n > N, we have
” C(Cm Cn + 1/.1) -T" (CO)" S €.

Taking the limit as j > oo we get | 77 (c,) — T~ (co)| < e which proves the first
part of 2.4b. The second part is similar. :

Finally, if e>0 and a=1#<t;<---<t,=b, we can find II:{, < 7}
<t <t/<---with

ang (T* (), C(t;, 1) < €¢/n.
Then
2 ang (T* (), T* (t;,1)) < ang (C(t;, 1), C(ti 115 1+ 1)) + 26 < T(e) + 2

and therefore /((T") < T(v) as claimed. The proof for T~ is similar.

Remark. We close this section with a sketch of the proof that T(a, b) is the
«total curvature» of the curve v when v has a curvature k = dT/dS, where
T = unit tangent vector = dv/ds and s is arclength. For a complete proof see
[71, Theorem 2.2. For simplicity we assume that  is a curve in R® parametrized
by arclength.

Setting cartesian coordinates in convenient way we have (see [10], Vol. 1,
Chapter 1):
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2.5. ~ ¥(s) = se; + (1/2)s°ke, + terms of higher order in s

where e; = (1,0,0) and e, = (0, 1,0). Here k£ denotes the curvature of v at
s=0.

Let now ¢ > 0 and K > 1, and pick y > 0 so that 0 < 5 < ¢, that 2.5 is valid
in the interval 0 <s <, and that |e, — dy/ds| <e for 0 <s<n. Let
0=s5y<s;<---<s,=nbechosensothat |v(s;) — v(s;— )| = dis independ-
ent of j. It is easy to see that 6 <s;—5;_; < (1 — €)d. Also, if # is small
enough, for C; = C(s;, s;, ;) we have

ICi—1— C;| <ang(C;_;,C) <K|C;_; - Cj|.
Then
T(D) = Yang (C;_,, C) <K |G-y - C)l.
On the other hand C;_; = (¥(s;) — ¥(s;—))/é and therefore
1Ci—1 = Cjl = [27(s;) — ¥(sj+1) — ¥(s;-1) | /8.
Using 2.5 we obtain
27(5) — ¥(Sj ) — Y(Si-1) = (25, — S5 1 — S;- ey

+ (k/2)Qs;— 57, —s;_Je+h-0-t.

(h - ot = higher order terms) so that, from s; —5s;_; =6+ h-0-t we con-
clude that

12v(Gs) — (54 10) — V(s )| = ké>+h-o-t.
Thus
TA) < Knék+ h-o-t=Kkn+ h-o0-t

because né6 = 4 + k- o - t. Therefore T(0, 7) < Kkn and K > 1 being arbitrary
we get dT/ds < k. It follows that T'(a, b) < [ kds.
The converse inequality also holds since, using 2.4c, we get

dT
kds=||—
Jra- ]|

(2.6) T(a, b) = j kds,

ds = I(T) = 1,(T) < T(a, b).

Therefore

and this justifies the terminology «total curvature» used for 7(a, b).
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3. Further Properties of the Total Curvature
The following result is easy to obtain:

3.1. For U, V,WeH-— {0} we have
ang (U, V) + ang(V, W) = ang (U, W)

whenever U= —W or V =rU + sW for some r,s = 0.

It corresponds to the fact that in any triangle an exterior angle is the sum
of the non-adjacent interior angles.

The next result is a corollary of 3.1. Consider distinct vectors V, V4, ...,
Varrin Hand let Vo=V, Vi=Vy,...,.Vio1=Vi_1, Vi=Vjip,...,
Va="Vns1. Denote D;=V; - V;, Di=Vi, - Vi, n,=ang(D;, D;_,),
n; = ang (D}, D;_,). Then
3.2, 2m; = 2mj.

We leave the special cases j = 1 and j = n to the reader and prove 3.2 under
the assumption 1 <j < n. After cancellation of like terms, we get that 3.2
amounts to

3.2a. Mi—1+ M+ e 2051+ 0
Using D;_, =D;_,, D;_, = D;_, + D;, D; = D;,, we obtain from 3.1
n; = ang (D;_, Dj_,) + ang(Dj_,, D)).
On the other hand, by the angle triangle inequality 1.1a we get
nj—1+ang(D;_,Dj_1) 2 nj_4
Mj+1 + ang (Dj_y, D)) = nj

so that, adding up the last three relations, we get 3.2a.
In the sequel the following property, which sharpens 1.1, is used several
times:

3.3. When restricted to the unit sphere S = {|U| = 1}the function ang is a
distance equivalent to the norm distance, since

|U- V| <ang(U, V)< (x/2)|U - V].



TotaL CURVATURE OF NON-DIFFERENTIABLE CURVES 41

With the aid of 3.1, 3.2 and 3.3 we can obtain the following additional
properties of the function T for a curve v in a Hilbert space H.

3.4a. Monotonicity with respect to partitions: if I, is a refinement of IT,,
then T(IT,) < T(1,). In particular T(II) = lim T(IT). (see [2], pp. 254-256 or
[7]1, Lemma 1.1).

Proor. If suffices to consider the case where I, = {cy, ¢q,...,C,4 1} and
IT; = {¢p, €15+ - -5 €j_15Cj 15 - - -5 €y 41} and then apply 3.2 with V; = v(c).

3.4b. Total curvature of polygonal lines: if v is a polygonal line with vertices
at v(cp), v(cy), - - ., then T(y) = T(ITy) where IT, = {cy,Cyy ... }.

Proor. Using 3.4a we have T(y) = lim T(II); but T(IT) = T(I1,) for any II
finer than I,.

3.4c. Lower continuity with respect to intervals: if I; D I, D - - - are intervals
contained in [a, b] with N1, = & and v has finite total curvature on [a, b]
then 7(Z,) — 0.

Proor. Itis clear from the hypothesis that NI, consists of exactly one point,
say r. Also denote a,, b, the left and right endpoints of I,,. Since r ¢ NI, we have
r ¢ I, for nlarge. This implies that r = a,, foralln > Norr = b, foralln > N.
Consider the first case, the other being similar, and assume by contradiction
that T(I,) > k > Oforalln > N. LetIl, = {¢,=r, ¢y, ..., €41 = by} be apar-
tition such that 7(I1,) > k. Replacing ¢, = r by e; = r + € we get a new parti-
tion IT}; using the continuity of ang (see 3.3) we may assume that 7(I1}) > k
by choosing e small enough. Then setting d; = b,, we get T(e,, d;) > k.

Since b, — r we have r < b,, < e; for some m and repeating the argument
we conclude that 7(e,, d,) > k for appropiate r < e, < d, = b,, < e,. Continu-
ing in this way we obtain disjoint intervals J, = (e,, d,) with T(J,) > k which
contradicts T(a, b) < + in view of 2.2c.

3.4d. Upper continuity with respect to intervals: If I, C I, C - - - are intervals
contained in [a, b] and I = UI,, then T(I,) > T().

Proor. Denote by a,, b, the endpoints of I,,. Fore > 0letII = {a,c;,c5,...,
¢k, b} be a partition of [a, b] with T(II) > T(a, b) — e. Using again the con-
tinuity of ang we see that T(IL,) > T(a, b) — ¢, whereIl,, = {a,, ¢, - . ., Cx, b,}
and n is large enough. But then

lim T(Z,) 2 lim T(1,) > T(a, b) — €

and the result follows since € > 0 is arbitrary.
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3.4e. If I, = (uy,vy), I, = (u,, v,) are contained in (@, b) then
ang (C(ula vl)’ C(uZ, UZ)) < T(a’ b)'

The following property of 7 is a valuable tool for the sequel.

3.5. Proposition (the addition formula). Let v be a curve with finite total
curvature and let a<u<c<v<b. Then

3.5a. T(u,c) + ang(T(c), T*(c)) + T(c,v) = T(u, v).

Proor. LetIl,, n=1,2,... be a sequence of partitions in [u, v] such that
T(1,) — T(u, v). By 3.4a the convergence is preserved if we add partition
points to IT, so that we may assume that ¢ € IT, and that IT;, = {c;e€II,;¢; < ¢}
and II; = {c;ell,;c;<c} satisfy T(Il;)— T(u,c) and T(IL,)— T(c,v).
Abbreviate now «a; = angle formed by the chords C(c;_, ¢)) and C(c;, ¢;, 1)
and use 8 for the «; corresponding to ¢; = c. Then

T = 2o,
T@T) = 2} {a3¢;< c}
and
TaL) = 2 la; > ¢},
and therefore
T(IL,) = T(AL) + 8 + TAL).

Taking limits we get the desired formula as an application of 2.3.
Using the notation

T'(c) = lim T(a,, b,), @,<c<b, b,—a,~0

introduced in 1.2, we have
3.6. Corollary. For any c€(a, b),
3.6a. T'(c)=ang(T (c), T"(c)).

PrROOF. Write
T(a,, b,) = T(a,, ¢) + ang (T~ (c), T* (c)) + T(c, b,).

Taking limits and using 3.4c we get 3.6a.
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Of course the addition formula 3.5a¢ holds more generally in the form

3.7. T(ag, an+ 1) = 'Z% T ai, 1) + 21 T'(a)
fora<aegy<a;<---<a,,.;<b.

3.8. Corollary. If v has finite total curvature, then

(@) The inequality T'(c) # 0 can happen only for countably many values
S15 85, . . . Of ¢ and the series 2, T'(s;) is convergent.
(b) The curve v has a unique tangent at all but countably many points.

Proor. From 3.7 we obtain
2iT'@) <T@, b)< +o

for any choice of ¢y < a; < - - - < @, ; and this suffices to obtain 3.8a. Using
3.6a we see that 3.8b follows from 3.8a.
Property 3.8b can be sharpened in the following way:

3.9. Proposition. If vy is a curve with finite total curvature, its graph splits
in a finite number of graphs of Lipschitz functions. In particular the curve is
rectifiable.

Proor. Observe first that given any m > 0 there is a partition @ = ¢, < ¢;
< +++ < €,y = bsuch that T(c;, ¢;, ;) < m for all i. In fact, there exist only
finitely many ¢ with 7'(¢) > m. Label them ¢, ¢,, ..., . For each u interior
to an interval J=[f;,¢;,;] we have T'(u) < m and therefore there is a
neighborhood (¥ — ¢, u + ¢€) with T(u — ¢, u + €) < m. Also there exist ¢; < ¢}
and ¢}, <t;,, with T(¢;, t}) <m and T(¢;,, ¢, ) < m, by 3.4c. Hence by
compactness we obtain a partition

ti=u0<u1<---<u,=t,-+1 with T(ui,u,-+1)<m.

This can be repeated for all J= [¢;,¢;,,] to obtain the desired partition
CosevesCpiy-

Suppose that 0 < m < w. Then on each I = [c;, ¢;, ;] we have T(/) < 7 and
therefore T'(c) < w for c interior to I. This means that W(c) = T*(c) + T~ (¢)
satisfies W(c) # 0 at all interior points.

Let now T* and T~ be arbitrary unit vectors with W= T* + T~ #0.
Denote by L = {aW; « real} the line generated by W and by L* the orthogonal
complement of L, L* = {UeH; (U, W) =0}. Suppose that X = | X|V
with V a unit vector satisfying |T* — V| < | W| /4, and write the decom-
position X = hW + Y (with 4 real, Ye L") induced by H=L @ L".
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Under these conditions we claim that

3.9a. 1Y] <2h.
In fact,

3.95. (X, Wy =(hW, W) =h|W|?

and

(X, W) = |X|<V, W)
= | X|KT*, WY =(T* -V, W))
> | X|(TH, Wy = |W[?/4).

But

(T, Wy =1+(T*, T y=Q1/|T* + T |*=(1/2)| W]
so that
3.9c. (X, Wy = |X||W|*/2.

Combining 3.9b and 3.9c we get |X| < 2h; then a fortiori |Y| :
claimed.

Fix now c interior to J = [c;, ¢;, ;] and apply this to the case T -
T- =T, X=v@) —-), V=C(s,t). Certainly the hy
|T* = V| <|W]|/4holds if c <s<t<c+eand e is small (by 2..
write Y(u) = h(W)W + Y(u), then X = (h(t) - h(S)W+Y(@)-Y
therefore from 3.9a we get, for c<s<t<c+ e

3.9d. | Y() - Y| < 20k(8) — h(s)).

In particular A(s) < A(¢). However A(s) = A(t) implies Y(s) = Y(¢) frc
and then v(s) = v(¢), impossible. Thus u — A(u) is a strictly monotor
tion for ¢ < u € ¢ + e. This allows us to use x = A(u) as a new variable
from x = A(x) to x, + 7 = h(c + €). Set Z(x) = Y(u) when x = A(u). "
x = h(s), y = h(t) we have | Z(x) — Z(»)| <2|x — y| and therefore .
is a Lipschitz function from [x, X, + 7] into L*. The equality

XW + Z(x) = h(u)W + Y(u) = v(u)

shows that the curve v(f), ¢ < ¢ < ¢ + € is the graph of Z.

A similar reasoning yields the definition of Z on the interval [x, — 7
glueing both halves together we conclude that the curve is the gre
Lipschitz function on an interval with v(c) corresponding to an interi
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The special case when c is an end point of J is handled in the same way taking
T* and T~ both equal to the one-sided tangent available.
Finally, a compactness argument yields a desired decomposition.

3.10 Corollary. A curve with finite total curvature can be parametrized by
Y(@®), a<t<binsuch a way that the right and left derivatives of v exist at
all t and neither of them vanishes. Further these derivatives coincide except
at countable many values of t.

4. Associated Functions

From this section on, all curves (unless specified) will be assumed to have
finite total curvature.

4.1. Definition. Fora<u <v < b set
4.1a. E(u,v) = ang (C(u, v), T* (1)) + ang (C(u, v), T~ (v)).
4.1b. E(u,v) = T(u,v) — E(u, v).
In order to study these functions we begin with a lemma about partitions.
4.2 Lemma. For_any partition Il = {u,uy,...,u, v} of [u, vl we have
T(u, v) = ang (T (u), C(u, uy)) + T(AT) + ang (T~ (v), C(u,, v)).
Proor. Pick u <u’'<u; and u, < v’ < v. Then
Tw,v) 2 T{u,u',uy, Uy, ...,uU, V', 0}.
But this last number is the sum of
x = ang (C(u, u’), C(u', u;)) + ang (C(u,, v"), C(v', v))

and z = T(W’, uy, Uy, . . . , Uy, U), so that taking limits as ¥’ — u and v’ = v we
get that x and z approach, respectively,

ang (T (), C(u, uy)) + ang (C(u,, v), T~ (v))

and T(IT), which proves the lemma.

4.3. Proposition. The function E has the following properties:
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4.3b. 21 B, v) < E(u, v)

JSor any system of disjoint intervals (u;, v;) contained in (u, v). In part
is monotonic.

4.3c. E'(c) =0 for all c.

ProoF. (a) Taking the trivial partition IT = {u, v} we obtain from
T(u, v) > ang (T* (), C(u, v) + ang (T~ (v), C(u, v))

so that T > E which means that 5 > 0.
(b) 1t suffices to prove that

4.3d. E(u,v) =2 E(u,c) + E(c,v), for u<c<uv.
Denote

U=T"w), V=T ),C =T (c),C* =T"(c), L=C(u,0), R =
and abbreviate UL = ang (U, L), LC™ = ang(L,C"), etc.; by defini

E(u,v) = T, v) — (WU + WV)
B(u,c) = T(u,c) — (LU + LC™)
E(c, v) = T(c,v) — (RC™ — RV).

Using the addition formula 3.7 we get
E(u,v) = E(u,c) + E(c,v) + A
where
4.3e. A=LU+LC'+RC* +RV+T'(c)- WU- WV

and therefore the desired inequality 4.3d is equivalent to A > 0.
Observing that T'(c) = C~C*, from the triangle inequality 1.1 w

4.3f LC™ +RC™ +T'(c) 2LR

and from the fact that v(u), v(c) and v(v) are the vertices of a triangle
clude (see the figure 1 in the following page), that LR = WL + Wk
from 4.3e and 4.3f we obtain (using again the triangle inequality):
AZLU+RV+ WL+ WR-WU- WV~
=WLU+ WL - WU)+ (RV+ WR - WV)
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v(u) _ r(c)

Figure 1

(c) First observe that if B is a limit of chords C(c — ¢,, ¢ + §,), then
B=pT (0) +9T"(c)

for some p, g > 0. In fact, write

C(c—¢,c+6,) =p,Clc—€,0) +g,Clc,c+ 6y)
with

Pn=17() = v(c = )| /|¥(c + 8,) — ¥(c — &)

qn = [7(c+8,) = v@I/|v(c+8,) —v(c— el
Taking limits we get p = limp, > 0, g = limg, > 0. This means that

BC™ +BC* =C~C* =T0).
On the other hand, T% (¢ — ¢,) = C~ by 2.4a, whence
VC~ =limang (C(c — €,, ¢ + 8,), T* (c — €,));

similarly

VC* =limang (C(c — €,, ¢ + 6,), T~ (¢ + §,)).

MLin Af mnviwna ~dvvan 1ea T/ A - ~ o N TH AN A TSN N
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Another function associated to a curve is the Gauss map : [a, b] = S (where
S is the sphere |X| =1) defined by 7(t) = T*(t), a<t<b, and 7(d)
= T~ (b). In general, 7 is discontinuous.

Recall that the length [ (7) is defined by

Iy(1) = I5(a, b) = Sup 2 ang (1(x), 7064 1)),

the supremum taken over all partitions.
Observe that we have

4.4. Iy(a, b) = Ig(a, ) + T'(c) + I5(c, b),

for a < ¢ < b, so that «arc length» is additive only if the partition point is a
point of continuity of 7. For the same reason, the length of 7, considered as
a map in H, will be equal to /;(7) only if 7 is continuous everywhere.

The main property of 7is given in 4.7, which requires the following proposi-
tion.

4.5. Proposition. Let f:[a, b] = L (L a Hilbert space) be a Lipschitz func-
tion with right (resp. left) derivative f', (t) (resp. f'_ (¢)) at all a < t < b (resp.
a<t<b), and let v:[a,b] > R @ L be the graph of f, i.e., v() = (¢, f(?)).
Suppose that f', is a function of bounded variation on [a, b) with I(f',) < 1.
Then

4.5a. v has a finite total curvature;
4.5b. T(v) = Ily(7).

Proor. The hypotheses on f imply that v is absolutely continuous with
¥, =(1,f’,) of bounded variation. Hence, for ¢ < u < v < b we have

1) - 1@ = v, @dr = [ rOv, ) dt.

Now the integrand 7|v’, | = 7', is a function of bounded variation, hence
Riemann integrable, and therefore v(v) — v(u) is the limit of Riemann sums

R =277, @) At

(A;t = t; — t;_ ). On the other hand, R = A 2 a;7(t;) with a; = |v', ()| Ait/h
and 2 = 3} | 7', (¢)| A;t. Taking limits we get that (v(v) — v())/I() is the limit
of convex combinations of points of the form 7(¢), u < ¢ < v. In particular,
C(u, v) belongs to the closed convex cone spanned by {7(¢); u << v}.

L & & ZFURSUNRE. RS Y o L R R A R o R S R e
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4.6. Lemma. Let N C S be a subset with diameter strictly less than = /2 for
the ang distance, and let M denote the intersection of S with the closed convex
cone spanned by N. Pick U, V in N and denote by g the function defined on
S by g(X) = ang (U, X) + ang (X, V). Then Sup,,g = Sup, &.

Let now Il = {#y, ¢, ...,t,}, ¥, = a, t,, = b be a partition of [a, b] and let
e> 0.
Observe that, for a <s,1< b,

ang (7(?), 7()) < (w/2)| 7() — 7(s)| < (@/2) | (&) = V5 &)
< (n/2l(vy) = (/DU f) < 7/2
so that the set {n(¢); a < t < b} has diameter less than 7/2 for the ang distance.
Thus, the lemma applies with U= 7(¢;), V=17(,,) and N= {7(f),1; <t

< t4,). Clearly there is u;e[t;,t;,,] with Sup, g < g(7(u;)) + ¢/m, and
therefore (by the lemma),

ang (7(¢;), X) + ang (X, 7(¢; ;. 1) < ang (7(#y), 7(;)) + ang (7(uy), 7(¢; 4 1)) + ¢/m

for all X in M. In particular, as proved above, this inequality holds for
X=C(@t; t;41)-
Abbreviating C(t;, t;) = C;;, 7(f;) = 7; and ang (X, Y) = XY, we get

T() = Cy,Cyy + CiyCoy + -+ -
L 79Co1 + Co171 + 11C15 + Ciamp + 7,Co5 + -+
L 7o7(Ug) + T(Ue)Ty + TiT(UY) + T(U)T, + - + €
Sl(1) + e

whence T(v) < [j(7) which proves 4.5a. The converse inequality was proved
in 2.4c, so that T(v) = [4(7), as claimed in 4.5b.

Proor oF 4.6. It suffices to prove that if F'is a spherical polygon with ver-
tices Py, P,,...,P, in N (each side is a maximum circle segment) with
diameter of F strictly less than 7/2 (for the ang distance), then

4.6a. g(X) < max (g(Py), &(Py), . - ., 8(P)}.

for X inside F.
Observe that g is the sum of functions of the form g,(X) = ang (X, U). It
is not hard to see that 4.6a follows if we prove that g, is convex, i.e.,

4.6b. &1(X(\ + (1 = N§) < hgi (X)) + (1 — Mg (X()
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where X(f) runs on a maximum circle. We will assume that coordinates ar
set on a three-dimensional subspace containing U, X(6), so that

X(0) = (cosf,senb, 0), U=(v,0,w), o0v<l1 oswgl.

Then, letting o(f) = g,(X(6)), we have 0 < a < /2 and cos a(f) = vcosé
Differentiating,
d2
703—( () = cotan o(1 — v*sen®6/sen’ a)

= cotan a(l — v?)/sen’ o > 0

and this implies 4.6b, which completes the proof of the lemma.
Observe that the same proof applies to the case of

gX)=ang(X,U) + --- + ang(X, U)),

and that the U; need not belong to N as long as NU {U,,...,U,} ha
diameter less than /2.

4.7. Corollary. For a curve to have finite total curvature it is necessary an
sufficient that it can be parametrized as Y(t), a <t < b, in such a way tha

4.7a. (t) is a Lipschitz function;

4.7b. ', =d*v/dt exists and satisfies |v'. (¢)| =1 for all t;

4.7c. v, is rectifiable.

4.8. Corollary. Any curve vy with finite total curvature satisfies T(v) = I;(7,

For the proofs, combine 2.4c, 3.7, 3.9, 3.10 , 4.4 and 4.6.

We close this section by indicating a measure-theoretic interpretation of 7
Recall that any non-decreasing function g: [a, b] > R determines a positiv
regular Borel measure p by means of the Lebesgue-Stieltjes integral, whic
satisfies plu, vl =g(w™) —gw™), plu,v)=gw™)—gm™), etc. Takin
g(t) = T(a, t), it follows from 3.4c, 3.4d and 3.5 that g is non-decreasing an
left-continuous so that:

4.9. Proposition. Let v(t), a < t < b, be a curve with finite total curvature
Then there is a unique positive real Borel measure v on la. bl such that for an
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Proor. Leta<c<c+ h<b. Then from 3.5
T@a,c)+ T'(x) + T(c,c + h) = T(a,c + h).

Letting A— 0% and using 3.4c we obtain T(a,c) + T'(x) = T(a,c*) ¢
+ T'(c) = g(c™). Since g(c™) =g(c) we get T'(c)=g(c*) —g(c™)
proves that u({c}) = T'(c). On the other hand, takea<u<v<b. T
T(u,v) = T(a,v) — T(a,u) — T'(u) = g(v) — gu) — gu™) + g(w)
=g() ~ g*) = u(u, v),
as claimed. The case ¢ = u is similar.

We have no answer for the following question: (a) which measures y &
in this way? (b) what is the measure-theoretic interpretation of = and

5. Total Curvature of Plane Curves

In this section we assume that H is the plane R

5.1. Theorem. Let~(¢), a <t < b bea plane curve. Then the followin
ditions are equivalent:

5.1.1. v has finite total curvature.

5.1.2. v is the union of finitely many graphs of real functions f wi
properties:

(a) f has a right derivative f', everywhere,
(b) f', is a function of bounded variation.

5.1.3. v is the union of finitely many graphs of functions which ai
ferences of Lipschitz convex functions.

Proor. The equivalence between 5.1.1 and 5.1.2 is a special case ¢
(2) implies (3): A theorem-of-the-mean-like argument shows that und
hypothesis of 5.1.2 f satisfies: for x < y there exists £ and » between x
with

i< (fO) =/ —x) <L ().

But then, f, being (of bounded variation, hence) bounded we concluc
fis a Lipschitz function. Therefore



52 Gustavo CoraCH AND Horacio PorTa

f@ =f@)+ j:f; (t)dt.

Write now f), =h—g with >0, g>0 and A, g non-decreasing. Then
f=H—- G where G, H (the indefinite integrals of g and A) are convex
Lipschitz functions.

(3) implies (1): If fis the difference of two Lipschitz convex functions then
f', exists at all points and, being the difference of two non-decreasing func-
tions, it has bounded variation.

It is clear that in any Hilbert space T = 0 characterizes straight lines. For
plane curves the next result gives and interpretation of Z = 0.

5.2. Proposition. The plane curve v(t) with finite total curvature is convex
on the interval a <t < b if and only if E(a,b) = 0.

Proor. Convex plane curves can be characterized by the following property:
whenever u < u’ < v’ < v, the line segment [v(x), Y(v)] and [y(u'), v(v')] do
not cross each other, i.e., either they are disjoint or the first contains the
second.

Suppose now that v is not convex and that u, #’, v and v’ have been chosen
so that the segments do cross (see the figure 2).

Denote also the following angles (not all drawn) by the indicated letters

o = ang (T* (u), C(u, v))

o' =ang(T* (u), C(u, u")
6 = ang (C(u, u"), C(u, v))

Figure 2
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g8
BI

€

ang (7~ (v), C(u, v))
ang (T~ (v), C(v', v))
ang (C(v', v), C(u, v)).

Using the angle triangle inequality 1.1.a we obtaina’ > o — dand 8’ = 8 — e.
Now, according to 4.2

T(u,v)?a""'a] +a2+61
Za—-0+toytaptf-e=at+twtwt+f,
so that F(u, v) > 2w > 0. This shows that v is convex when Z is zero.

The converse is easy since all polygonal lines inscribed in a convex curve
satisfy o' + 8’ =y + o + - -+ + @,

Figure 3

and taking limits we get T=E, or & = 0.

In view of 5.1.3 and 5.2 it may be true that functions in general euclidean
spaces whose graphs have finite total curvature can be written as differences
of functions with 5 = 0; we know no proof of this.

6. The non-Hilbert Case

Let X be a real Banach space, S the unit sphere |x| = 1 and & the geodesic
distance on S: &(x, y) = inf [((¢) where o ranges over all continuous curves in
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S joining x and y and /; denotes the length of the curve o,

Is(0) = Sup 2] |o(ti, 1) — a(t)].
It is well known that ([6]):

lx —y] <8(x,») <2|x - y|

for any pair x,y €S.

Of course, in a Hilbert space 8(x, ¥) = ang (x, y) and the inequalities
are trivial consequences of 3.3. This suggests that we define, for a curv
X and a partition IT = {¢,, #;, . .. }, the number T(IT) by T(D) = > 6(C;_
where C; = C(t;, t;,,) and, as above,

Clu,v) = (v() — @)/ |v() — @) €8.

In the same way, we set 7(y) = Sup T(II), and define curves of finite cur:
by the property T(v) < +oo. With these definitions, all the results in Sec
hold true without changing their proofs.

For the results in Section 3 the situation is different. In fact, the are
on 3.1, 3.2 and 3.3. Now 3.3 is valid in any Banach space with w/2 rej
by 2, as observed above, which does not affect the use it is made of 3.:
on. Also, 3.2 is a corollary of 3.1. Thus, only 3.1 has to be checked f
validity of all results in Section 3.

It turns out however that 3.1 holds for some Banach spaces and do
hold for others (see below), so it may be thought of as too restrictive
is not the case if the monotonicity of T with respect to partitions (3.4a) i
sidered a natural condition. In fact we have:

6.1. Proposition. Let X be a Banach space. Then the following proy
are equivalent:

6.1.1. For any curve v in X, T(II) increases when more partition poir.
added to I1.

6.1.2. The equality (U, V) + &V, W) = 6(U, W) holds for any U, V
S with U= —W or V = pU + gW for some p,q = 0.

6.1.3. For any U,V in with U + V # 0, the function
o)=L - DU+ tV)/|(1 - OHU + tV|

defines a curve with minimal length joining U and V, i.e., I (o) = 8(L

Proor. First let us see that 6.1.1 is equivalent to
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6.1.4. For any U, W, V, R and Z in S satisfying V = pR + qZ for son
D,q =0, the inequality

6.1.5. U, VY+6(V,W)<O6(U,R)+ (R, Z) + 6(Z, W)
holds.

Assume 6.1.1 and consider a curve 7 satisfying v(z,) =0, v(¢,) = U, v(
=U+dpR, v(t;)) = U+ dV, v(t,) = U+ dV + eW for a partition IT = {i
11, by, t3, t,) of its domain, where 0 < d <1 and 0 < e < 1 are convenient
chosen to avoid selfintersections (we are also assuming that V' # R and V #
since in either case 6.1.5 follows from the triangle inequality). If I, = {#, i
13, 14} then T(I1,) and T(II) are equal, respectively, to the left and right ha
side terms of 6.1.5.

Conversely, if 6.1.4 holds it is easy to see that for any curve and any pe
of partitions IT; and IT with IT having one more point than II; we ha
T(I1,) < T(D). An induction argument finishes the proof. '

Setting R = U and Z = Win 6.1.5 and using the triangle inequality we g
6.1.2; conversely, from 6.1.2 we obtain 8(R,Z) =6R,V)+6(V,Z) a1
using twice the triangle inequality we get 6.1.5. This shows that 6.1.2 a1
6.1.4 are equivalent.

We prove that 6.1.3 implies 6.1.2: let

o) =((1-DU+tW)/|(A - HU +tW|

and denote by o, and g, the restrictions of ¢ that join U to ¥V and Vto }
respectively. We have, using 6.1.3,

(U, W) = I(0) = [((a1) + I5(03) = 8(U, V) + &(V, W).

To prove the converse, pick a partition 0 =¢,<?; <---<t,=1 such th
(with ¢ as above):

Is(0) — e < 2] Jo(tisy) — o).
From 6.1.2,

2 lo(tis 1) = a@)] < 228(0(), 0(ti.41)) = 8(a(0), o(1))
=6(U, V)
so that, e being arbitrary, /() < (U, V) whence /;(0) = 6(U, V) and 6.1
follows. Thus 6.1.1, 6.1.3 and 6.1.4 are all equivalent.

6.2. Theorem. All properties of T stated in Sections 2 through 5 are va.
in Banach spaces having the equivalent properties of 6.1.
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6.3. Remark. Hilbert spaces and two-dimensional Banach spaces have t}
equivalent properties of 6.1. It is possible that these are the only ones, but v
know no proof of this fact. In support of this observe that such spaces hax
the following property, not hard to obtain from 6.1.3: all curves of the for:
SNV, where Vis a two-dimensional subspace of X, have the same length. St
also [9] for related notions. Finally we observe that R® with the nor:
(x* + y)'?* + |z| is a Banach space where 6.1.1 (and then also 6.1.2 and 6.1.
fails.

7. Related Concept

Let v be a plane curve given in polar coordinates by v(6) = r(6)(cos 6, sin 6
0 <6 < o< 2w, where r(f) > 0 is a continuous function.

7.1. Proposition. Consider the following properties:

(a) There exists s > 0 such that for each 0 < 6 < « and each point z in t
Dplane satisfying |z| < s, the line segment joining z to v(6) meets t
curve only at v(0) («interior cone condition»).

(a’) r(6) is a Lipschitz function.

(b) r() is a function of bounded variation.

(b') v is a rectifiable curve.
(¢) v has finite total curvature.

Then:

7.1.1. (a) and (a') are equivalent.

7.1.2. (b) and (b') are equivalent.

7.1.3. (a) implies (b) and (c) implies ().
7.1.4. All other implications fail in general.

Proor. (a') = (a)is proved in [6], 7.1, and (a) = (a’) is proved in [11]; tt
settles 7.1.1.

Assume now that 7 is rectifiable. Then r(6) cos 6 and r(f) sin 6 are functio
of bounded variation, which is equivalent to r = (r* cos? 8 + r? sen®§)'/? bei
of bounded variation (use r > minr > 0 and the differentiability of squa

root away from 0). The converse is just as easy, so that 7.1.2 is proved.
Nevt (AN = (h\ and (A = (h"\ (cee R O) ¢n that 7 1 3 follows.
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We finish the proof with three examples: first, let 7v; be the curve whos
graph is the cusp [x|"* + y2 =1, -1 <x< 1, 0 < y < 1. Next, let v, be th
curve described by the figure 4

Figura 4

Here r increases from 6 =0 to 6 = w/2. Finally, let P,P,,P;,... be
sequence on x2 + y% = 1 converging orderly to (0, 1), and let 5 be the cur
obtained by joining P; to P;,; with the broken line formed by tangents to tt
circle x2 + y? = 1/4 (see the figure 5 in the next page).

It is not hard to see that () holds for v,, but (a’) and (c) fail; (c) holds fc
v, but () fails, and (@) holds for v, but (c) fails. This completes the proof ¢
7.1.

Remark. Observe that 7.1 improves the statement (@) + (c) = (a') = (i
proved in [6].
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Figure 5
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