REVISTA MATEMATICA IBEROAMERICANA
Vor. 3, N.° 1, 1987

Hankel Forms and
the Fock Space

P —

Svante Janson, Jaak Peetre and Richard Rochberg

Abstract

We consider Hankel forms on the Hilbert space of analytic functions square
integrable with respect to a given measure on a domain in C". Under rather
restrictive hypotheses, essentially implying «homogeneity» of the set-up, we
obtain necessary and sufficient conditions for boundedness, compactness and
belonging to Schatten classes S,, p > 1, for Hankel forms (analogues of the
theorems of Nehari, Hartman and Peller). There are several conceivable notions
of «symbol»; choosing the appropriate one, these conditions are expressed in
terms of the symbol of the form belonging to certain weighted L”-spaces.

Our theory applies in particular to the Fock spaces (defined by a Gaussian
measure in C"). For the corresponding L”-spaces we obtain also a lot of other
results: interpolation (pointwise, abstract), approximation, decomposition
etc. We also briefly treat Bergman spaces.

A specific feature of our theory is that it is «gauge invariant». (A gauge
transformation is the simultaneous replacement of functions f by f¢ and du
by |¢| ~2dy, where ¢ is a given (non-vanishing) function). For instance, in the
Fock case, an interesting alternative interpretation of the results is obtained
if we pass to the measure exp (—y%) dxdy. In this context we introduce some
new function spaces E,, which are Fourier, and even Mehler invariant.

0. Introduction

0.1. Background. By a Hankel form we will in this paper informally refer
to any (continuous) bilinear form H defined on a Hilbert space JC of analytic
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functions (usually consisting of (all) functions square integrable with respect
to a given measure p; cf. infra §0.2) such that its value H(f, g) for any f, g€ 3C
only depends on the product f- g. In particular, one then has the functional
equation

H(¢f, 8) = H(/, $2)

where ¢ is any (analytic) multiplier on JC.

Example 0.1. In the case of the usual Hardy class 3¢ = H*(T) (T = unit cir-
cle) the Hankel for H} with symbol b is defined by

H‘lﬂ;(fs g) = -21? J‘Tl;fgldzl = (fg’ b>H2(‘|]')

In the canonical basis {z’} j=0 it is given by the Hankel matrix (b(i + j )i j=0-
For the (classical) theory of Hankel forms in this case, highlighted by a
number of agenda such as the issue of

finite rank (Kronecker)

boundedness (Nehari)

compactness (Hartman)

belonging to Schatten-von Neumann class (Peller),

we refer to, Sarason (1978), Power (1980, 1982a), Nikol’skii (1985, 1986),
Nikol’skii and Peller (19877).

Usually, though, one formulates the results for operators, not forms. With
the form H one can associate the Hankel operator H defined by

Notice that A is an anti-linear operator in JC. To get a linear operator one
combines A with a conjugation; e.g. on T one usually considers f+~ Hf with
the range H*(T), or a variant with range H> (T).

For various reasons we prefer to work with bilinear forms instead. For
instance, this «zwanglos» suggests the extension of our theory to the multilinear
case (§5).

An easy extension of the H?(T)-theory concerns the space B2(D) (s < 0; D
unit disc, dD = T) defined by the condition

1
?J /@1’ - |z dm@z) <o (a= —1-2s> -1),

D
where the letter B may at will be read as Bergman on Besov (see Peller (1982),
Peetre (1983, 1984, 1985) and, for an extension to the case of the unit ball in
several complex variables, Ahlmann (1984) and Burbea (1986)); one also
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writes A% (D) for the same spaces. Actually, already on this level the theory
bifurcates according to (speaking of (linear) operators) whether one wants the
range to be BZ(D) or BX(D)*. Here we will only be concerned with the first
alternative. (The study of Hankel operators of the second species —which do
not correspond to Hankel forms in our sense —was initiated only recently by
Axler (1985) and thén further pursued in Arazy, Fisher and Peetre (1986)).

See also the works of Luecking (1985) and Zhu (1985) for Toeplitz operators
in Bergman space. (Some remarks in the case of general (homogeneous) domains
are further made in Arazy and Upmeier (1985)).

As a formal limiting case (@ = —1) of the spaces B2(D) one recaptures the
previous Hardy class H*(T) (the normalized 2-dimensional measure (@ + 1) -
(1 — |z|»" dm(z)/w over D tends to the 1-dimensional measure |dz|/27 con-
centrated on T).

Another limiting case (¢ — «) deals with the Fock space F i(C) (a>0)
defined by the condition

E'j | /(@)™ dm(z) < .
T JC

(If one writes the definition for the B-spaces for a concentric disc of radius
R then the weight factor becomes [1 — |z|*/R?]°. If now @ = «R? and R = ©

we formally get the weight e'“‘z‘z).
The number « plays a role similar to Planck’s constant in physics.

Remark 0.1. Besides Fock, other names occasionally are attached to this
spaces, viz. Bargmann-Segal, Fisher and possibly others. The same is true for
Bergman spaces (see e.g. Dzhrbashyan (1983)), so perhaps a more appropriate
appelation, without digging too deeply into the history of the subject, would
have been spaces of Bargmann-Besov-Bergman-Dzhrbashyan-Fisher-Fock-
Segal type.

Toeplitz operators in Fock space are considered in Berger and Coburn
(1985), (1986?) and Berger, Coburn and Zhu (1985).

6.2. Main Results (General Theory, §§1-6, 14). The aim of the present work
is to develop a theory of Hankel forms over quite general (in practise
«homogeneous») domains, which comprises both the Bergman and the Fock
case (the other limiting case of the Hardy class being exc/uded) and this in any
number of dimensions (a few results for the Fock space being formally valid
also in the physically most interesting case of dimension <, see §7). As there
is in general no boundary (and no Besov spaces) one has to proceed differently
then before. Note that potentially our theory is applicable to a much broader
range (including arbitrary symmetric domains and vasious limiting cases).
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More precisely, we consider the following set-up. Let Q be a domain in C"
and as in the beginning of §0.1, let 3C be a Hilbert space of analytic functions
now defined on Q. If £ is a positive measure on , which we, for simplicity,
assume to be absolutely continuous with respect to the Lebesgue measure m
on (2, we say that a Hankel form H defined on 3C has symbol b with respect
to ¢ if (with a convenient interpretation of the integral, if the latter is not
absolutely convergent; cf. §6)

H(f,e)= [ bfed:  (f,8€%0),
notation:
H = H}.

The point is that a form may have several (interesting) symbols with respect
to different measures and to some extent our theory is about the interplay be-
tween various symbols.

In most of the discussion we fix once and for all one such measure (fulfilling
the assumption VO stated in Section 1) and take JC = A%(y), the subspace of
L?(p) consisting of all square integrable (with respect to p), analytic functions
on Q. Clearly A%(y) is a Hilbert space with a reproducing kernel denoted by
K(z, w) or K, (z). We let P denote the orthogonal («Bergman») projection of
L*(n) onto A*(p) and we further set

1
Kz 2)

w(z) =

It then turns out to be advantageous to take symbols not with respect to pu,
but with the associated measure v defined as

dp

dv=w(@)dp = KG9 .

We will in the sequel use the notations
Fb = H;; ) Hb = Hg .

We further let L and Q denote the reproducing kernel in the Hilbert space
A?*(») and the corresponding projection, respectively.

Remark 0.2. For a general measure we similarly have the Hilbert space A%(£)
with a reproducing kernel K¢ and the projection Pf. We will use these concepts
only for £ = p or », where u and » are as above. We summarize the special
notations used for these cases in the form of a table. (The notation 42 will
be explained in (0.3) below).
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The Hankel forms always act in A%(p).

Measure Hilbert space | Kernel | Projection | Hankel form
£ (general) A%(®) K¢ Pt HE
p (fixed) A%(p) K P H,
v (associated) A? L Qo T,

We occasionally write I'(d) for I'y, etc.

To get a reasonable theory one has to introduce some supplementary
assumptions V1, V2 and V3 (see §3). The most severe of these is V2 which
amonts to requiring that

L(z, w) = xK(z, w)* 0.2)

where x is a constant.

Before stating our main result (infra) we need one more concept, the natural
scale of weighted L” and A”-spaces pertinent to our situation. We say that f
is in L7 iff

[ 1/1PeP~2dy < w0 0.3)

(fis in LY if and only if wf is essentially bounded on @), and let A? be the
subspace of L? consisting of analytic functions in L?. Let a{; be the closure
of A2 in the A%-metric.

We can now announce:

Scholium 0.1. Under the assumptions VO — V3 the following is true.

(@) T, is bounded (in A*(p)) if and only if Qbe AZ.
(b) Ty, is compact if and only if Qbea’,.
() Ty isin S,, where 1 <p < o, if and only if Qbe A%.

The Schatten-von Neumann classes of bilinear forms S, (where in general
0 < p < o) are discussed in Sub-Section 0.3. Some other comments are in order.

Comment 0.1. From this it is in principle easy to get results for general sym-
bols, because Hj has the symbol b d£/dy with respect to », Hj = I'pg;/q,. This
is discussed in §6. Notice also that H§ = H%,,, so that in many cases it is
natural to confine oneself to analytic symbols.

Comment 0.2. We expect part (c) of the Scholium to be true also in the range
0 < p <1 but this we have not been able to show.
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Comment 0.3. The proofs can be found in §4, where also other results can
be found, especially pertaining to the «Hankel projection». A crucial step is
however taken already in §3, where the boundedness of the projection Q in
L?, 1< p< o, is proved.

Our assumptions, in particular the crucial hypothesis V2, are fulfilled in all
cases when the situation admits sufficiently many «automorphisms». This can in
principle be found in the literature, but of course not in the Hankel context. We
refer especially to Selberg (1957), Stoll (1977) and Inoue (1982). In particular,
our theory applies in the B-case (the group is the Mobius group PSU (1,1)), see
§§12-13, and in the F-case (the group is now its «contraction», the Heisenberg
group).

We do not know of any other cases than homogeneous domains with highly
symmetrical measures when the assumption V2 is fulfilled.

However, there is a deeper reason for the appearance of the strange looking
hypothesis as condition V2 relating the square of the kernel K to the kernel
L: Namely, that the whole set-up admits certain «supersymmetries», here
termed gauge transformations. Let us briefly indicate what this is about.

Consider, quite generally, a closed subspace 3C of L*(Q, p), where Q is some
space equipped with a positive measure . We argue that we get an essentially
equivalent theory if we simultaneously replace f by ¢fand p by |¢| ~ >4, where
¢ is any non-vanishing (measurable) function. This is gauge transformation
or change of gauge. The point is that one should work only with gauge
invariant quantities. (A related point of view can be found e.g. in the works
of Berezin (see e.g. Berezin (1975) for a start), but also elsewhere). Especially
in our case (confining ourselves to analytic ¢'s), the («given») kernel K
transforms according to the rule K(z, w) = ¢(2)¢(W)K(z, w), where as the
(«associated») kernel L experiences the change L(z, w) = ¢(z)*¢(w)*L(z, w)
(see §§1 and 3). Thus V2 is a gauge invariant condition. Similarly, our
preference for the Hankel operator I', with symbol taken with respect to the
measure v (and not u, as would seem natural at the first glance) is explained
by the fact that T', is gauge invariant (with the symbol transforming b — ¢ 2b).

Note also that the measure \ defined as

d\z) = K(z, z) du(z)

has a gauge invariant meaning; in all group theoretic cases it reduces to the
usual invariant measure, in the very special case of the unit disc thus to a cons-
tant multiple of the Poincaré measure (1 — |z|%) ™% dm(z).

Finally, let us mention that we also prove a very general Kronecker theorem
(concerning the structure of finite rank Hankel forms). This is basically an
excercise in commutative algebra (sic!) and has little to do with the rest of the
paper so it has been relegated to the end of the paper, more or less as an
appendix (§14).
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0.3. Schatten-von Neumann classes of bilinear forms. The Schatten-von
Neumann classes (or trace ideals) S,, 0 < p < «, of (bounded) operators in
Hilbert space have been studied extensively (see e.g. McCarthy (1967),
Gohberg and Krein (1965), Simon (1979) and, as far as interpolation goes,
Bergh and Lofstrom (1976)). To define the same classes for bilinear forms
there are several (equivalent) avenues.

(a) Via operators (cf. Peetre (1985)). If H is a bilinear form on 3C; X 3C,,
then A defined by

H(g):f~ H(/, 8) (0.4)

is a linear operator from 3C, into JC#. (The natural, anti-linear, identification
of 3C¥ and 3JC, yields the anti-linear operator from JC, into 3C; defined by
(0.1)). We say that H is in S, if and only if Hisin S,, i.e. if and only if the
positive operator (H*H)?’? has finite trace. We define S, to be the space of
all bounded bilinear forms (operators). (Some authors prefer to let S, denote
the compact operators). _

One can also associate with H a linear operator H: 3¢, — 3C; doing the same
job, but not in a canonical way. Indeed, if J: 3C; — 3C, is any conjugation on
3C, (J is antilinear with J? = Id), then J defines a linear isometry of 3C§ onto
JC, (which we also denote by J) and we can take H = J o H. Notice in par-
ticular that H*H = H*H independently of J. (If {A;} is the matrix of H with
respect to some orthonormal bases in JC; and JC,, then this operator has the
matrix {b;} with by = X h;;hy).

Remark 0.3. For some spaces there is a natural choice of J, e.q. if 3¢, = 3,
(say 3¢, = L*(w)), Jf = fand if 3C, is a suitable Hilbert space of analytic func-
tions in the unit disc (or the complex plane) Jf(z) = f(Z).

(b) Directly using s-numbers (Schmidt, approximation). Put

Sa(H) = inf |H - F|, ©.5)

where ||, is the supremum norm and F runs through the set of all forms
of finite rank <n. We say that H is in S, if and only if (s,(H));-o€/p,
0 < p < . (Note that H is compact if and only if (s,(H));- ¢ € Co)-

0.4. Hankel forms of class .S, (Hilbert-Schmidt). To give the reader at least
a feel what it all is about we now briefly outline a direct treatment of the S,

theory.
The Hankel form I'(L,) with symbol L, with respect to » is

(f,8)~ [ L.fedv = f5@) = f@8(@) = < f, K.)<&, K. (0.6)
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(This is a continuous form of rank 1, and belongs thus to every S,). Thus
(P(L,T(Ly))s, = (K, K)(K,, K;) = K(z, W)’
If now
L(z,w) = xK(z, w)’, x>0,
it follows that
x(I'(L), TL,)> = L(z,w) =<(L,, L), 0.7)

whence b — x !/ 2I‘b is an anti-linear isometry of A%(») into S,. Conversely, if
b— »'?T", is an isometry of A%(») into S, for some »x, then the argument
above shows that

L(z, w) = (L,, L,y = xK(z, w)>.

This is closely related to the criterion by Aronszajn (1950), Theorem 8 II, p.
361, for L = K>,

0.5. Contents. Results for Fock and Bergman spaces (§§7-13). Again for the
benefit of the reader we pass to a more detailed description of the contents
of the individual divisions, including an explicit mention of the main results
in the Fock and Bergman cases.

Section 1 sets forth some basic material connected with Hilbert spaces with
a reproducing kernel (for a more detailed treatment we refer to Aronszajn
(1950)).

In the analytic case we also state the basic assumption VO (p. 74).

In Section 2 we study the reproducing kernels when there are sufficiently
many automorphisms. The main result is Theorem 2.1 proving the aforemen-
tioned condition V2 in such cases.

In Section 3 we introduce the assumptions V1-V4 (pp. 80-81) and we study
the «Bergman» projection Q, especially establishing its boundedness in the
full scale L?, 1 < p < o (Theorem 3.1). This result has a number of impor-
tant corollaries (Cor. 3.1-3.8).

Section 4 is devoted to the study of Hankel forms in the general context of
the assumption V0-V3 and we establish in particular all the results which
above were summarized in Scholium 0.1.

In §5 the extension to the multilinear case is briefly treated. As far as we
know, no theory is yet developed for S,-classes of multilinear forms. Here we
propose to define S,, 1 < p < o, using interpolation between S, and S,; in
the two latter cases the definition is unambiguous.

§6 gives various complements to the previous discussion (§§1-5). In par-
ticular we discuss a more general definition of symbols (hitherto the defining
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integral was taken to be absolutely convergent) and consider also symbols
with respect to a general measure £.

We also establish the minimality of A in a certain sense, and prove a weak
factorization result for AL.

In §7 we begin the study of Fock space proper. It then turns out to be
natural to study the whole family of measures

du, = (/e dmz)  (@>0),

on C", letting L% (1 < p < =) to the space of measurable functions fsuch that
fRRe™ alzl?/2 ¢ LP(m) and F” be its analytic subspace, denoting the correspon-
dingly projection by P,. More precisely, we consider the action of Hankel
forms on some fixed Hilbert space F2 but take symbols with respect to an ar-
bitrary measure dugz. The main result is Theorem 7.5 (= an almost immediate
convergence of the results in §§1-6 in the «abstract» case; cf. Scholium 0.2
infra).

We turn also the reader’s attention to Theorem 7.8, which gives an exact
result (not just a norm equivalence), and thus is potentially susceptible to an
extension to infinitely many variables. This is however only for the special
powers p = 2 and p = 4 and why this is so is a tantalizing question we do not
quite understand.

In §8 we go on studying the spaces F? and especially establish decomposi-
tion approximation and interpolation (pointwise, not abstract interpolation!)
descriptions.

We interrupt at this junctune the exposition by the collecting the results for
Hankel forms on the Fock space F as a Scholium (for those who like many
equivalent conditions). For simplicity we state them in terms of the symbol
taken with respect to the measure du,, which corresponds to the associated
measure dv in the general case (§4), when du = du,. We thus consider the
Hankel form H32* given by

Hy(f,9) = |, b dm,

acting in the Hilbert space F2. Let k2 be the normalized reproducing kernel
in F2, viz.

_ 2
kﬁ;(Z) — ea(z,w} alw| /2,
and use the notation k2* in the same sense.

Scholium 0.2. The following are equivalent for 1 < p < o« and any entire
Sfunction b.

() H>€S,.
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(i) H(f,8) = INC S ki)<g, kiy where (N} €l” (and ki= ky, for a
suitable sequence {w;}, separation condition etc.).

(iii) b = XNAP with (\;} € [P (same qualifications for k).

(v) beP, (I2).

) {dy)ge!? where d,, = inf {|b — gIIF?&:gEPN}, P, being the set of
linear combinations 3.7 | a;k3* of length N.

(vi) beF%,.

In §9 we first investigate for which values of the parameters involved the
projection P, is bounded as a map from Lf into F7. (Answer: The n and
s condition is a?/y > 2« — B). This improves on an old result of Sjogren’s
(1976), who was interested when P, maps LP(u,) into L(p,). (Answer:
g<4/p, or p=q=2). It is also connected with a duality result (Theorem
9.2):

(FD* = F7, 5,

in the duality induced by the inner product in F2. We also study the (complex)
interpolation of the 2-parameter family F2 (Theorem 9.3). It is somewhat sur-
prising but at second thought quite understandable that the parameter « inter-
polates «logarithmically» (Theorem 9.4):

1 1-0 6
[FP, FP), = F? if — = +—  a=a; .
o p Po 41

It is an interesting (open) question to determine the spaces which arise by
real interpolation from this scale. This can for p fixed be rephrased as a prob-
lem about spectral analysis for the dilation operator Djy: f(z) = f(62) 0 < 6 < 1)
in the space F?.

Example 0.2. Let

= (az)n

J@= 2 nl(1 + 167

where a is complex, ¢ > 0 and 6 fixed, 0 < 6 < 1. Is it true that
[[17@le” " dm(@) = 0e™,

with a constant independent of ¢? If this were the case we could prove that
Dy is a «positive» operator so the usual Grisvard type machinery can be set
at work (see e.g. Triebel (1977), Section 1.14).
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§10 is likewise devoted to Fock space and treats various left-overs from the
previous sections.

In §11 we treat Fock space in a different gauge (from the group representa-
tion point of view this is something half way in between the Bargman-Segal
representatition thriving on F' i(C") and the Heisenberg representation acting
in L*(R"). In this connection we are led to introduce some new function
(distribution) spaces E,, whose definition formally reminds of the use of
Besov spaces, only that the convolution parameter enters in an additive way
(f€E, < ¢,+f(-) e LP(L”) where ¢,(£) = ¢(£ + ) and ¢ is a «test» func-
tion) and have the conspicuous property of being Fourier, and even Mehler
invariant. Indeed, it turns out that they are special cases of more general
spaces known as modulation spaces and studied by Feichtinger (see, e.g.
Feichtinger (1981a), (1981b) and the discussion in remark 11.3).

The following two sections (§§12 and 13) are devoted to B space theory. In
§12 we spell out our results in the case of weighted Bergman spaces on the
complex unit ball (the «Rudin» ball). In §13 again we make changes of
variables and gauge and consider the case of the upper half plane, but only
for n = 1. (This is really a pity, for the case n > 1 when one thus has a Siegel
domain of the second kind (a generalized upper half plane) should be suscepti-
ble to potentially interesting considerations. Cf. Gindikin (1964)).

Finally, as already recorded at the end of §0.2, we give in §14 our general
Kronecker result.

Acknowledgement. The authors are grateful to several colleagues, including,
especially, Hans Feichtinger, for pointing out misprints and other obscurities
in the manuscript.

Note. (added Jan. 1988). In two loose appendices (written in the spring of
1987), for which the middle author alone is responsible, we indicate some further
developments after the main body of the paper was completed (June 1986).

1. Reproducing Kernels

In this section we collect some elementary, presumably well-known results
which will be used later. We begin with a very general setting, see Aronszajn
(1950).

Let J3C be a Hilbert space of functions on some set @ such that the point
evaluations f — f(z) are continuous linear functionals on JC for all z € Q. Then
there exist unique functions K, € 3C, z € 2, such that

f@=(f,K,>, fe3 and zeQ, 1.n
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and we define the reproducing kernel as the function

K@z, w) = K,,(2), (z, w) e Q% 1.2)

The definitions (1.1) and (1.2) yield (for z, we Q)

K(Z, W) = Kw(z) = (Kw3 Kz> (13)

Consequently,
K(w,z2) = K(z, w) (1.4)
K@ 2) = |K,]*>0 (1.5)
|K(z, w)|* < K(z, 2)K(w, W) (1.6)
If@I < | f] K| = Kz, 2| ] 1.7

Furthermore,
K(z,2)=0< K, =0 < f(z2y=0 forevery fel. (1.8)

If {¢,]} is an ON-basis in JC, then

K(z, w) = K, (2) = 21<{K,, 349, (2)
= 21 { b K\ 9, (2)
= 216,29 (W).

(The sums converge absolutely).
Finally we note that the linear span of {K_} is dense in JC, because no non-
zero function is orthogonal to every K.

We next impose additional structures on .

Continuity. If Qis a topological space and every function in JC is continous,
then K(w, z) is separately continuous (because of K, € 3C and (1.4)), but not
necessarily continuous. (Counterexamples are easily constructed, but we leave
that to the reader).

Proposition 1.1.  If every function in 3C is continuous, then the following are
equivalent.

(i) (z, w) — K(z, w) is continuous;
(ii) z— K(z, ) is continuous;
(iii) z— K, is continuous (mapping Q into 3C).
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ProOF. (i) = (ii). Trivial.

(ii) = (iii). Fix z. If w—z then K(w,w)— K(z,z) by (ii)) and K(w,2)
= K.(w) = K,(z) = K(z, z) because K, € IC.

Hence, using (1.3),

|K, — K;|* = <K,,K,,) + {K,,K,) — 2Re (K, K,,)

= K(w, w) + K(z,2) — 2Re K(w, 2)
- 0.

(1.10)

(iii) = (i). Immediate by (1.3). O

L?-spaces. In the remainder of this section we assume that x is a measure on
Q and that 3C is a closed subspace of L?(y) such that the point evaluations are
continuous on JC. (Note that the functions in JC thus are defined everywhere
although functions in L?(u) are defined only a.e.).

Let P denote the orthogonal projection L%(px) — 3C. Then, if fe L?*(x) and
zeQ, by K, €3, (1.2) and (1.4),

Pf() = (Pf,K;) = ([, K> = [ SONK (W) du(w) =

(1.11)
= [ K, w)S(w) du(w).

Change of gauge. Let ¢ be a non-zero measurable function on 2 and con-
sider the map

f=ef,  w—lol %, (1.12)

which maps L2(p) isometrically onto ¢L*(u) = L*(|¢| ~2x) and 3C onto the
subspace ¢3C = {f: ¢~ fe3C}) of L*(|¢| ).

This map, which we call a change of gauge, obviously gives an isomorphic
theory. It will later be important to see how various entities transform.

Proposition 1.2. The reproducing kernel for ¢3C is ¢(2)p(W)K(z, w).
Proor. E.g. by (1.9), since {¢¢,} is an ON-basis in ¢JC. O
Corollary 1.1. The measure K(z, z) du(2) is invariant under all changes of gauge.

Proor. A change of gauge transforms du(z)— |6(2)| " 2du(z) by
definition. [

Change of variables. Let ¥ be a bijection of Q onto ¢'. Then ¥ maps x onto
po ¥~ ! and the map f— fo ¥~ ! maps JC isometrically onto

Jeo¥ 'CL¥(po¥ '=L*uo¥ ).
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Proposition 1.3.  The reproducing kernel for 3¢ o ¥ =1 is K(¥ ~ (), ¥ ~}(w)),
zwe. O

This triviality will be useful in conjunction with a simultaneous change of
gauge in the next section.

Analytic functions. In the remainder of the paper (except in §14), we make
the following assumptions, for future references denoted VO.

VO: Q is a connected open subset of C" and p. is an absolutely continuous
measure on  with continuous, strictly positive Radon-Nikodym derivative
dp/dm (m is the Lebesgue measure).

Our basic Hilbert space is the space 4%(p) = 3C(Q) N L*(p), i.e. the space of
square integrable analytic functions. (FC(Q) is the Frechet space of all analytic
functions in Q. It is easily seen that A%(y) is a closed subspace of L*(y) and
that point evaluations are continuous; in fact, the embedding A4%(x) — 3C(Q)
is continuous). We let K denote the reproducing kernel in A%(y); all previous
considerations of this section apply. (In the special case p = m, K is known
as the Bergman kernel (in Q)).

We will henceforth only consider analytic changes of gauge and analytic
changes of variables, and note that they preserve our setting; e.g. if ¢ is
analytic and non-zero, then ¢pA%(u) = A*(|6| ~2w).

Proposition 1.4. K(z, w) is continuous on Q X Q, analytic in z and anti-
analytic in w.

Proor. K(z, w) = K,,(2) is analytic in z because K,, € A*(n). By (1.4), K(z, w)
then is anti-analytic in w. Hence K(z, w) is analytic in each variable on © X Q
and thus, by Hartogs’ theorem, analytic, in particular continuous. [

Corollary 1.2. Proposition 1.1 yields that z — K, is a continuous map of Q
into A*(p). O

We next prove that K is determined by its restriction to the diagonal and
the properties above.

Proposition 1.5. Suppose that J(z, w) is analytic in z and anti-analytic in w
on Q X Q and that J(z,2) = K(z,2), 2z€Q. Then J(z, w) = K(z, w).

Proor. We may assume that 0 € Q. The function f(z, w) = J(z, w) — K(z, W)
is analytic, and f(z,Z) = 0 in a neighborhood of 0. Hence f= 0, see e.g.
Bochner and Martin (1948), Chapter II, Theorem 7. [
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2. Symmetries

Let @ C C" and pu be as in VO (see above). In §§3-6, we will impose further
restrictions on Q and pu. These restrictions seem very restrictive and we guess
that the theory developed there only covers very special cases. The purposes
of the present section is to show that at least highly symmetric cases, such as
the Fock and Bergman spaces, are covered. Our main results extend results
by Selberg (1957), Stoll (1977) and Inoue (1982). A general reference to the
theory of automorphism groups is Narasimhan (1971), Chapters 5 and 9.

Let Aut (2) denote the group of analytic bijections of © onto itself. This group
is too large for our purposes, while the subgroup of maps that leave y invariant
is too small (and has the further defect of not being gauge invariant). Instead,
we study the subgroup of maps that leave p invariant modulo an analytic change
of gauge.

Definitions. G(p) is the set of all ¥ € Aut (Q) such that, for some analytic
function ¢ on ,

pov ! =|¢p. @2.1)
(Cf. (1.12). Since necessarily ¢ # 0, we may here replace ¢ ~! by ¢).
G*(w) = (v, $) € Aut (@) X H(@):po v~ ' = |[7n).
G*(p) is a group with the natural group law
)o@ ¥ =(°dé-Wor )

G(p) is a subgroup of Aut(2) and a quotient group of G*(u).

Remark 2.1. ¢ is determined by (2.1) up to a unimodular constant. Hence
G*(u) is an extension of G(u) by T. A unitary representation of G*(u) in A%(p)
is defined by

R, /@ = $@f(r7'(@). 2.2)

Remark 2.2. For the Fock spaces (§§7-11), G(u) is strictly smaller than
Aut (), while G(x) = Aut (Q) for the Bergman spaces (§§12-13), and for any
domain  when p is the Lebesgue measure (let ¢ in (2.1) be the Jacobian of

v .
Proposition 2.1. If (v, ¢) € G*(n), then

K(’Y_l(z)9 'Y—l(w)) = ¢(z)_1W—IK(Z’ W), Z, wefl (23)
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Proor. Immediate by propositions 1.2 and 1.3, since the change of gauge
induced by ¢ ~! and the change of variables induced by v map A?(x) onto the
same space, and thus they transform K into the same kernel. []

Corollary 2.1. The measure K(z, z) du(z) is invariant for all ve G(p). O

Corollary 2.2. |K(z, w)|*/K(z, 2)K(w, w) is a G(u)-invariant function of
(zZ,WmexQ 0O

Transitivity. We say that G(u) is transitive if for every z, w € Q there exists
v € G(u) with v(z) = w.

Lemma 2.1. If G(p) is transitive and A*(n) # {0}, then K(z,z) # 0 for all
ze.

Proor. Otherwise, by Proposition 2.1, K(z,z) = 0 for every z e Q, which
contradicts (1.7). [

Theorem 2.1. Suppose that G(y) is transitive and A*(u) # {0}. Let r be an
integer and let v be the measure K(z, z) ~ " du(z). Denote the reproducing kernel
for A*(v) by L. Then, for some constant c, >0,

L(z, w) = ¢,K(z, wy' * . 24
In other words, if f is analytic and fe L*(K(z,2) " du),

K(Z, w)r +1

f(Z)=C,Lf(W) Kw, wy du(w). @.5)

Furthermore, G(») D G(u).

Proof. Let v e G(u) and choose ¢ such that (2.1) holds. Then, using (2.3)

dyoy™! @ = KO '@,y ') dpovy™!
dv K(z,2)™" dp

— i¢l2rl¢|2 - l¢r+1|2.

()

Since ¢"*! is analytic, v belongs to G(»). Corollary 2.1 now shows that v
preserves the measures K(z,z) du(z) and L(z,z)dv(z) and thus the Radon-
Nikodym derivative

L(z, z) dv(z)

Lz, 2)avz) _ o
K(z, z) du(z) Lz, 2)K(z, 2) .
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Hence this function is left invariant by every v € G(u), and, since G(p) is tran-
sitive, it has to be a constant, ¢, say, i.e.

L(z,z) = ¢,K(z,2)"* .

The proof is completed by Proposition 1.5. [J

Remark 2.3. If Q is simply connected, the theorem holds for any real number
r. In particular, K(z, w)" is well-defined unless ¢, = 0, i.e. unless A%(») = {0}.
(The Lu Qi-keng conjecture states that K(z, w) # 0 for any simply connected
domain (with the Lebesgue measure), cf. Lu Qi-keng (1966), Skwarczynski
(1969)).1

Remark 2.4. A similar argument shows that the group of p-invariant automor-
phisms (i.e. those with ¢ = 1 in (2.1)) is transitive only in trivial cases. (K(z, z)
has to be constant, whence K(z, w) is constant and A%*(x) = {0} or C. We do
not know whether 4%(x) = C actually is possible). Note also the related fact
(valid without any assumptions on G(p)) that A*(K(z, z) du) = 0 or C, the lat-
ter case occuring if and only if A%(u) has finite dimension. (Sketch of proof.
It follows from (1.9) that if f € A*(K(z, 2) dp), then M:g— fg defines a Hilbert-
Schmidt operator in A%(x). Thus, the spectrum of M is discrete which implies
that f is constant).

Isotropy. Define, for z€Q, G(n), = {7 € G(n): ¥(z) = z}. In this subsection
we assume that G(u), is large enough, more precisely:

There exists a compact group H with H C G(u), such that
(v, 2) = Y(z) is continuous H X Q — Q and that the only (2.6)
H-invariant analytic functions on Q are the constant functions.

We let dvy denote the normalized Haar measure on H.

Lemma 2.2. Assume that z € Q is such that (2.6) holds. Then, for any f € 3C(2)
and wefl,

[ Sowmar = 1.

Proor. The integral defines an analytic H-invariant function of w, and is thus
independent of w. Choosing w = z we obtain

t Added May 1987. After the above was written we have been told that the Lu-Gineng conjecture
has been settled by Harold Boas.
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[fa@)dv = 1@ O

The next lemma may be compared to the Lu Qi-keng conjecture in Remark
2.3.

Lemma 2.3. Suppose that z € and that K(z,z) # 0 and that (2.6) holds.
Then K(z,w) # 0 for all we (.

Proor. Suppose on the contrary that K(w, z) = 0 for some w. By proposi-
tion 2.1,

K,(v(w)) = K(v(W), 2) = K((W), ¥(z)) =0 for all yveHCTI'(u),.
Lemma 2.2 with f = K, yields
K@ 2) = K.() = [K.(x(W) dv = 0,

a contradiction. []
We may now extend the reproducing formula to functions outside A%(y).

Theorem 2.2. Suppose that z € Q is such that (2.6) holds and K(z,z) # 0. If
fis an analytic function such that

[ [K(z, W) 79| du(w) < oo,
then
| K@ W W) du(w) = f@).

Proor. Corollary 2.2 implies that |K(z, w)|*>/K(w, w) is a G(),-invariant
function of w. This and Corollary 2.1 imply that |K(z, w)|* du(w) is a G(i)-in-
variant measure. Consequently, if g = f/K, (which is analytic by Lemma 2.3),
then for any v € H C G(),,

[ K@ w) 100 duw) = [ 20K w, DK, ) du(w) = [ 2r(w)) K (2, W) du(w).
Integrating over H, we obtain by Fubini’s theorem, Lemma 2.2 and (1.4)-(1.5),
[ KWW duw) = [ [ g(rO)IKG, w)I* dp(w) dy
= [, [ .20 av|K Gz, w)|* di(w)

= [e@IK. W) du(w)

= g(2)| K, |?
= 8(2)K(z,2)
=f(z). O



HANKEL FOrRMS AND THE Fock SPACE 79

Proper actions and invariant measures. We say that a topological group
G C Aut (2) acts properly on { if the action v(z) is continuous G X @ — Q and
the map G X Q= Q X @, (v, 2) = (¥(), 2) is proper. If G acts properly, then
its topology coincides with the compact-open topology. Aut () with the
compact-open topology is a topological group, but is does not always act
properly.

A related question concerns the existence of G-invariant metrics (defining
the usual topology) on Q. In fact, if such a metric exists and G is a closed
subgroup of Aut(Q), then G acts properly, see van Dantzig and van der
Waerden (1928) and Kaup (1967).

Now assume that

K(z,z) #0 for every ze(.

Then the Bergman (pseudo)metric (with respect to p) is defined as the Rieman-
nian (pseudo) metric with the infinitesimal from
0*log K(z, —
P Y. L ORI o @7
i dz;0%;
cf. Bergman (1950), Chapter 1X.3.
The form (2.7) is positive semidefinite (the proof of Kobayashi (1959),
Theorem 3.1, holds verbatim in our situation too) and is positive definite if
and only if

{grad f(z): f€e A*(u) and f(z) = 0} = C". , 2.8)

For example, if j (1 + |z|) dp < o, then all affine functions belong to A*(p),
whence (2.8) is satisfied for every z € @ and the Bergman metric is a metric.
Furthermore the form (2.7) is invariant under (analytic) changes of coor-
dinates and changes of gauge; hence (2.7) and the Bergman metric are G(u)-
invariant.
We are now prepared to show that (1.7) can be improved to

f@) = o(K(z,2)'"?)

in some cases, cf. Kobayashi (1959), Section 9.

Theorem 2.3. Assume that G(p) is transitive and that (2.8) holds for some
(and thus all) z € Q. Then, for every fe A*(u),

f(@)/K(z,2)"* € Cy(D). (2.9)

Proor. It suffices to prove (2.9) when f = K,,, we Q, because of (1.7) and
the fact that these functions span a dense subspace of .-.?(x). Assume thus, in
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order to achieve a contradiction, that we @ and that (2.9) fails for f= K,,.
Then there exists a sequence {z,,} C Q that is not relatively compact such that
inf K,,(z,)/K(z,, 2,)*"% > 0. Thus, for some 6 > 0 and every n,

n

|K (2, W)| > 26K(w, W)' K (2, 2,)" 2. (2.10)
Let k,(w) = K,(w)/|K,| = K(w,2)/K(z,2)"">. Then |k,| =1 and

(K., K,) K(w, 2)
(kz) kw> = = *
K| 1Kal Kz, K (w, W)

Let A = {zeQ: |k, — k,| < &}. Since z— k, is continuous, A is open. Choose
Y. € G(p) such that v,w = z,,. Then, if z€ A, using Corollary 2.2,

|<kw’ k'y"—lz>| = ’<k7nw’ kz>| 2 |<kz"’ kw>| - "kz - kw" >26—-6=0.
Consequently, by Corollary 2.1, for every n,
Iv,,- @) du(2) = L; | s k) PK (2, 2) dp(@) > [ | 8°K (2, 2) d@) > 0.
Now, let B be a compact subset of Q such that
2 2
jm |k, > dp < 6 L K(z, 2) du(2).

Then BN v, A # & for every n. Since the Bergman metric is G(u)-invariant,
and G(u) is a closed subgroup of Aut(2), G(r) acts properly by the result
referred to above. Hence {v:vANB # 0} is compact, whence {v,} and
{z,} = {v,w]} are relatively compact, a contradiction. [

Remark 2.5. The assumptions of Theorem 2.3 imply also that G(y) is a real
Lie group, and Q thus a homogenous space, cf. e.g. Kobayashi (1959).

3. The Bergman Projection

We assume that Q and p satisfy the basic condition VO in Section 1 and fur-
thermore:

V1: If zeQ then f(z) # 0 for some fe A*(p).
Equivalently, K(z,z) > 0 for zeQ.

We introduce, as in §0.2, additional notations and assumptions which will
be used in the remainder of the paper (except Section 14).
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Definitions. A\ and » are the measures given by
d\z) = K(z, 2) du(z), (3.1)
dv(z) = K(z,2) "' du(z). (3.2)

L(z, w) is the reproducing kernel for A%(»). Q is the projection L%(») = A%(»).
(K and P denote as before the corresponding objects for 4%(p)). w is the
function

w(z) = K(z,2) " (3.3)
LP

P, 1< p< o, is the weighted LP-space {f: wfeLP(\)} with the obvious
norm, and A” is the subspace of analytic functions.

Note that \ is the invariant measure of Corollaries 1.1 and 2.1, and that
Ll = L'(u) and L? = L*(v), whence A2 = A*®»).

We wish to stress that the spaces L? are the natural LP-spaces to consider
in our setting, and not the differently weighted spaces L?(»). (For example,
the results for L? in this section do not hold for L”(»), see Section 9).

It is easily seen that under the (analytic) change of gauge (1.12), » = |¢| ~*»,
L(z, w) = $(2)*¢(W)*L(z, w), @ = |¢| “%w and L2 — ¢*LP, A® — ¢*AP . Hence
the transformation f— ¢f («of weight 2») operates on L? and A” (in par-
ticular, on A%(»)).

We make two additional basic assumptions. Presumably, the first is very
restrictive while the second is more technical. Both assumptions are gauge
invariant.

V2: L(z, w) = x(K(z, w))* for some constant x > 0.
V3: If fis analytic on @ and
[1LG, w).fom)] dyw) <
for every z, then
(L@ wimdvw) =f@),  zeQ. (3.4)

At a few places we need a further assumption.

V4: If fe A*(p), then f(2)/K(z,2)"? € Co(D).
(It suffices that this holds when f= K,,, w € Q, because of (1.7) and density.
Hence V4 is equivalent to |K(z, w)|*/K(z, 2)K(w, w) € C,(Q) for every fixed w).

We will always let » denote the constant in V2; it will appear in various
norm estimates.
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If VO and V1 hold, then K2e A*(») because, by (1.6) and (1.5),
[ 1K1 dv < [ 1K Kz, DK (w, W) dv(w)
= K(z,2) [ |K.(w)[> du(w) (3.5)
=K(z,2)* <o

Hence (1.8) implies that L(z, z) > 0 and thus, if V2 too holds, » > 0. In fact,
by (1.5) and (3.5), then

L&D = | Ll = o [ 1Kol dv < x°K (@, 9 = L, 2),

and thus » > 1 (with equality iff A%(p) is one-dimensional).

Remark 3.1. An inspection of the proofs below shows that in most places
we could replace V2 by the weaker L, € A*(x) ® A%(x) with norm bounded by
xK(z, z) for each z. However, we do not know of any example that satisfies
this condition but not V2. (Cf. the Appendices, written much later).

We collect the: main results of Section 2. S

Proposition 3.1. Suppose that VO holds and A*(x) # {0}. Suppose further
that G(p) is transitive and that (2.6) holds for some z€Q. Then V1, V2 and
V3 hold. If furthermore (2.8) holds for some z €2, then V4 holds too.

Proor. V1 and V2 follow by Lemma 2.1 and Theorem 2.1. Since G(u) is
transitive, (2.6) holds for every z. Since G(u) C G(») by Theorem 2.1 and, as
was shown above, L(z,z) > 0, V3 follows by Theorem 2.2 applied to » and
L. V4 follows from (2.8) by Theorem 2.3. [

This proposition gives us the only non-trivial examples satisfying VO — V3
that we know. After these preliminaries, we show that the «Bergman» projec-
tion Q can be extended to L? for any p €[1, «]. Note that this contrasts to
the classical case of H*(T), where the analytic projection is a bounded
operator in L? for 1 < p < o, but not for p = 1 or p = . Recall (cf. (1.11))
that if fe L? = L(»),

0f (@ = [ Lz WS dv(w). (3.6)

We use this formula to extend the domain of Q.

Theorem 3.1. Suppose that VO — V3 hold. Then

(@) (3.6) defines Q as a bounded linear operator L. + L2 — A%,
(b) Q is a bounded linear projection of L%, onto A%, for every p, 1 <p < .
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Proor. If feL!, then, by V2 and (1.6),
[ 1L, wyf W) dv(w) = x [ 1Kz, W F )] () dNOW)
< x [ K@, 9] fw)]w(w) d\w) 3.7

= %K@z, )| ;-

Hence Qf(z) is well defined and QfeL’,. Next we observe that, by V2 and
1.5),

[ 1L, W) aNow) = x [ [K(w, 2)|Pw(w) d\(w)
(3.8)
=x f |K,|> du = xK(z, 2)

Hence, if feL?,

[ 12 wfom) dvw) = [ | Fme)] |L&, w)|w(w) d\w)
< Sl 22Kz 2),

(3.9)

whence QfeL’.

It follows that Q maps L, + L% into LY. Furthermore, by Morera’s theorem
(using Fubini’s theorem and the estimates (3.7) and (3.9)), Qf is analytic if
feLl +L?, ie. Qf€AZ. This proves (a). We have proved in (3.9) that

w?

Q:L2— L2. Dually, if fe L], then by (3.8),

10711, < [[ 1Lz, W) fW)] dv(w)o(@) dNR)
= [[1L0w, 2)lo@) dN@)| S0 dv(w) (3.10)
= x [ |SODIKOw, W) dy(w)
= x[flz1-

Hence Q:L! - L!. .

By interpolation, Q:L” — L? for every p € [1, ]. Since Qf is analytic for
any felL” C Li + L by (a), Q: L > A®. Finally, V3, (3.7) and (3.9) show
that if fe Li + L7 is analytic (in particular, if f € A” for some p € [1, ©]), then
of=f 0O

Remark 3.2. The proof shows that the norm of Q as an operator in L?,
1 < p € =, is at most x. It is easily seen that this norm equals » for p = 1 and
p = . On the other hand, when p = 2 the norm is 1. Interpolation yields bet-
ter estimates for p # 1,2, o, but these estimates are presumably not sharp.
The norm is strictly greater that 1 for any p #2 (unless A%(u) is one-
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dimensional), since otherwise a result of Strichartz (1986) would imply that
the norm would equal 1 for all p, 1 < p < o, which contradicts the fact that
the norm for p=1is » > 1.

Corollary 3.1. If1<p<g< o, then A C A?.
Proor. If feA? then f=Qfel’NLTCL?. [0

Corollary 3.2. The spaces A¥, 1 < p < =, interpolate as expected for the
real and complex methods:
1-6 0

1
LA, AZY, = (A2 A, = A, where —— = L.
[} 0 1

It is obvious that, if 1 < p < o, (LP)* = Lﬁ' (1/p + 1/p’ =1 as usual) with
the pairing (wf, wg), = (£, 8),.

Corollary 3.3. Q is self-adjoint in the sense that if feL? and geLﬁ',
1< p< o, then

(Of, &),=(f,08),. @3.11)

Proor. By (1.4) and Fubini’s theorem, justified by (3.7) and (3.9). O

Corollary 3.4. If 1< p < o, then (A°)* = A‘:' with the pairing ( ) . O

v

Corollary 3.5. The linear span of {L,} is a dense subspace of A” for every
P, 1 <p<co,

PROOF. LzeA:, CA® by (3.8) and Corollary 3.1. If ge(49)* = A‘Z' is
orthogonal to every L,, then g(z) = Qg(z) = {g,L,) = 0 for every z. [

Corollaries 3.4 and 3.5 fail for p = «, but we have the following substitute.
Define a;, as the closed linear span of {L,} in 4.

Corollary 3.6. If 1 <p <, then A” C a2 densely. (aX)* = A, with the
pairing { ).

v

Proor. The first assertion follows by Corollaries 3.1 and 3.5. Thus, if
X € (@2)* there exists ge(A2)* = A2 such that x(f) = (f,g), for every
feA? CaZ. Hence, if fe L2NLZ, by Theorem 3.1 and Corollary 3.3,

. (f7g>,,= <fs Qg>,,= (Q.f’g>,,= X(Qf)
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and

| [ofedv| = 1</, < IXI 17 Lig < CIS g
This implies ge L,,, i.e. g€ A.. The rest is easy. [

Corollary 3.7. A” is reflexive when 1 < p < . (@X)** = AZ. Thus A} and
A are reflexive iff a, = A7, [0

Corollary 3.8. Suppose that also V4 holds. Then
a;={feXlQ):ufeC,(D)].

ProoF. A7Nw~ 1C,(Q) is a closed subspace of A, which by assumption con-

tains every L, = xK? and thus a7. On the other hand, if fe AN w ™ 'C,(9),

let f; = X f, where {K} is an increasing sequence of compact subsets of
J

with UTint (K)) = Q. Then f;e L2 N L} and f;— fin L7, whence Qf; € A2 C @}
and Of;— Qf=fin A7. O

4. Hankel Forms

We assume throughout this section that the conditions VO — V3 are satisfied.
We continue to use the notations introduced in §§0 and 3.

As explained in the introduction, we will in this section study Hankel forms
on A%(y) with symbols taken with respect to », i.e.

T,(/,8) = (fg, by, = [ Bfgdy, @.1)
where f, g € A% (p).

Theorem 4.1. Let beL. + LY. Then T, is a bounded bilinear form on
A¥w), T, =T, and

2T Ob] e < IT,1 < 1Qlas 4.2)
Proor. By Hoélder’s inequality,

17202 = 17281 1y S 1S Lazgy 181 a2 4.3)

Thus fge AL ¢ L1 NLZ (Corollary 3.1) which proves the first assertion, and

IT,1 < 151 (4.4)
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By Corollary 3.3 and Theorem 3.1,

T'op(f,8) = (fe, Qb), = (O(fe), b), = (fg,b),=T,(/, @),
which proves the second assertion, and
IT,| = [Tl < 19P] 4o
Finally, if z€Q,
|x7'Qb@)| = |x (b, L), = [<b,K2) |

= |Ty(K K| < [Tyl - K[

= |T,|K(z,2). O
We proceed to the Schatten—ilon Neumann theory. We define an anti-linear
operator I': L) + L2~ S_by T'(b) =T,.

Theorem 4.2. If1<p< o and bel?, thenT €S, and |T;|s < |b|,,.
P @

Proor. If suffices to prove the result for p = 1, since the general case then
follows by (4.4) and interpolation. Thus, assume that beLi. The Banach
space valued integral j b(z)L, dv(z) then converges in A(p) = Af, , because the
integrand ‘is measurable (recall that z— L, is continuous by Corollary 1.2
applied to ») and '

[16@] I, o @7 = [ 16|z, 2> dv
= j *2|b(z)|w(z) " dv (4.5)
= ”1/2||b||1,3, < .
Evaluating the integral pointwise by (1.2) and (3.6), we obtain
b = [_b@L, dv(@). (4.6)
Since, by Theorem 4.1, I" is a bounded anti-linear operator:
A2CLl+L?-S,,
this yields
T(b) = T(Qb) = [ BEI'(L,) dv(z) @.7)

with the integral convergent in S_.
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However,
L)/, &) =<fg L), =/2@)=([K),(&K),. 4.8)
Thus I'(L)) is a bilinear form of rank 1, and
IT@)ls, = ITE)s_ = 1K %2, = Kz 2)- 4.9
Thus |
[ 1P@r @)l dv = [ @K@ D dv = [B], < . (4.10)

Furthermore, since I'(L,) — I'(L,) has rank at most 2,
ITZL) - T, s, <2|T'L) -T)| s, S C|L, - Lw'"Az(.,) -0

as z = w, whence z — I'(L ) is'a continuous map of Q into S, and z %P(LZ) v
is a measurable map into S,. Consequently the integral (4.7) converges in S,
as well and I'(b) € S, with norm bounded by (4.10). [T

Next we defin.e, for every bounded bilinear form T on A%(p),
T*(T)@) = T(K,, K,). | (4.11)

Cf. (for operators) Aronszajn (1950) and Berezin (1975).

Theorem 4.3. T'*is é bounded anti-linear mapping of S intc; AT that maps
S, into AP with '

Py <715, 1<p<e. @.12)

Proor. Fix we . Since f— T(f, K,) is a bounded linear form on A?(p), there
exists g € A*(p) such that T(f, K,) =< f,g). Thus

T(K,K,)=(K,g)=(8K,) =g

is analytic in z. By symmetry, T(IT,K_J is analytic in w too, whence it is
analytic in (z, w) by Hartogs’s theorem. In particular, I'*(7")(z) is analytic.

It remains to prove that |I'*(T)|,, < | T| . By interpolation, it suffices
to consider p = o and p = 1. The case p = oo follows by

IT*T@)| < | Tl 1K N5 = 1 Ts K@ 2 = | Tls 0@

Next, if T is of rank 1, say 7(f,8) = (f, ¢>,{(g,¥),, then

I'*7T() = (K, 8>, (K, ¥), = 6(2)¥(z) (4.13)
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and thus by Hoélder’s inequality
IT*T | s = 1991 11gy S 191z ¥ a2y = 1 Tl s, .

Since S, is spanned by forms of rank 1, the case p = 1 follows. [J

Next we prove that, as our notation suggests, I'* is the adjoint of I'. (Recall
that the operators are anti-linear which explains the form of (4.14)).

Theorem 4.4. I[f1<p<oandl/p+ 1/p' =1, then
(T,T,) =(b,T*T),, TeS,, bel?” (4.14)

Proor. We study two cases separately. If 1 < p < o, then forms of finite
rank are dense in Sp,. Since both scalar products in (4.14) are bounded
bilinear forms on S, X L? (by Theorems 4.2 and 4.3), it suffices to prove
(4.14) when T has rank one, say 7(f,g) = (f,qs)“(g, 1&)“. In this case
I'*T = ¢y by (4.13), and

(T,T,) =Ty (9, ¥) = (oY, b), = (b, ¢¥), = (b, T*T),.

If p = 1 we use the representation (4.7)
T, = [b@I(Ly)dv,
which converges in S, by the proof of Theorem 4.2. Since
LL)(f, 8) = ([, K, (8, K},
by (4.8),
(T,T(Ly)) = TK,, K,) = T*T(2),
and
(T,T,) = [b@(T,TLY) dv = [b@T*T@ dv = (b, T*T),. O

We proceed to study I'*I" and I'T'*.
Theorem 4.5. T*I'(b) = x ~'Qb for every be L. + LZ.
PRroOF.

M*T(B)R) = T,K,K,) = (K3, by, = (b,x 'Ly = x~'0b(z). O (4.15)

Theorems 4.1, 4.2, 4.3 and 4.5 yield one of our main results.
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Theorem 4.6. Let beL, + L and 1 <p < . Then T, €S, if and only if
QbeA?. O

Theorem 4.7. Let1 < p < o. ThenT is an anti-linear isomorphism mapping
AP onto the set of Hankel forms in Sp. The inverse is given by xI'*. If p = 2
then Vx T' is an anti-linear isometry.

Proor. The first assertions follow immediately. That »'/T" is an isometry
was proved in the introduction (0.7), and follows also by Theorems 4.4 and
4.5. O

Remark 4.1. The proof of Theorem 4.6 yields the estimates
urb"sp< ||lel,45<%||f'b|lsp, 1<p<K o,

but Theorem 4.7 shows that improved estimates can be obtained for 1 < p < o
by interpolating with the case p = 2.

Theorem 4.5 yields xI'T'*I' = I'Q = I" and »I'*I'T" = I'*. The results above
now give the following results on the Hankel projection.

Theorem 4.8. xI'T'* is a linear projection of S, onto the subspace of Hankel
forms. xI'T'* is bounded on S, 1<p< oo, and {xI'T*S, T) = (S, »I'T'*T)
for S eSp, TesS,, 1 /p + 1/p' = 1. In particular, the restriction of xI'T* to
S, is the orthogonal projection onto the space of Hilbert-Schmidt Hankel
Sforms. O

Remark 4.2. This contrasts to the classical case H>(T), where the Hankel
projection is bounded when 1 < p < oo, but not at the endpoints, see e.g.
Peller (1980).

Corresponding results for compactness are easily obtained using the fact
that the space of compact forms equals the closed hull of S, in S_ together
with Corollary 3.6.

Theorem 4.9. T, is compact if and only if Qbea,. T maps a;, onto the set
of compact Hankel forms. The Hankel projection xI'T'* maps compact forms
to compact Hankel forms. [

5. Multilinear Hankel Forms

The theory above for bilinear Hankel forms is easily generalized to multi-
linear forms. We will here sketch this generalization omitting most of the
details.
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Let m > 2 be an integer (m = 2 gives the results of the preceding sections)
and define the measure dv,, = w™d\ and, for f,,... ,meAz(/.L) and b a
suitable function on (,

Ty(fyseoosd) = [ B fyyy (5.1)

The weight ™ in the definition of »,, makes the expression (5.1) gauge invariant,
with b transforming as b — ¢™b («weight m») under an analytic change of gauge
(1.12).

Let L, denote the reproducing kernel in Az(Vm). We assume throughout this
section that VO and V1 hold, that L (z, w) = x,,K(z, w)" for some constant
%, and that

[L,@wimadr,w=1@, zeQ (5.2)

for every analytic function f such that the left-hand side is defined for all z.
(The natural generalizations of V2 and V3 to the present situation). Note that
these conditions are satisfied, for every m, whenever VO holds, A%(p) # {O},
G(p) is transitive and (2.6) holds for some (and thus all) ze Q. (Because
the proof of Proposition 3.1 extends immediately, using Theorem 2.1 with
r=m-1).

Define Q,, by

0,/ @ = [ L@ WS (W) dv,,(w)
and let
L2, = {fi0"?* fe PN}, AP,,=1L~,,N3C(Q).
Note that if fe A%(n), then
||w1/2fl|L2(>\) = "f”AZ(,L)
and, by (1.7),
[0 %F | oy < 1 Lazgy -
Hence also
10" %F 1 ey < 1 L a2
and, by Holder’s inequality,
1™ Ll oy S Wibazgy -+ 1 mlazg (5.3)

||wm/2f1 T 'fm”L‘”()\) < "f1 ”AZ(u) Tt ﬂfm"AZ(u)' (-4



HaNkEeL ForMs aAND THE Fock Space 91

Consequently,
fiooo i fn€AL L, NAL, ,, if f,....f,eA%w.
In particular,
L,.=x,Ke Al,,NAZ,,.

It is now easily seen, as in Section 3, that Q,, is a projection of L?,,,, onto
AP, for 1 <p < oo, and that the analogues of Corollaries 3.1-3.8 hold.
Equipped with these results, we proceed to study the multilinear Hankel form
defined by (5.1). Theorem 4.1 extends easily.

Theorem 5.1 Letbe Li,,,,z + L,.,,. ThenT, is a bounded multilinear form
on Aw), T, =T, ,and

H 1 Qnblus,, < IT,1 < 19,60 4o, (5.5)

m/2

Proor. We prove (5.5) and leave the rest to the reader. We may assume that
b=Q,b. Then, if | f; {|AZ(F), - j|A2(u) < 1, (5.3) yields
Lyl = [ 6™ 5™, . @] < 1™ B gy = 1]

wm/2

which proves the right inequality. The left inequality follows by
10,,b()| = | | l_)Lm,dem. = ‘ %, | DK,
Sy, ”Fb” ||Kz||2'2(“)

=x, T, 0@ ™2 O

= % T, (K, - .-, K|

z

Also the S,-results of Section 4 extend. However, as far as we know, no
theory is so far developed for S ,-classes of multilinear forms on a Hilbert
space JC. Hence we confine ourselves to the case p = 1,2, o.

Let S_ be the space of all bounded multilinear forms on JC X - - - X JC. Let
S, be the space of nuclear forms, i.e.

{(xv e X)) Zl a; T ey 2la)] I1 [yylae < °°} ;
Jj= J i

S, is the m-fold projective tensor product 3¢ ® - - - ® JC (identyfying JC and
its dual).

Let S, be the space of Hilbert-Schmidt forms; S, is the Hilbert tensor prod-
uct X ®,--- &, 3.

It follows that S, C S, C S, and S¥=S_.
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Furthermore,
[S; 8.1y, = (S}, Soo)l/2,2 =8,.

Remark 5.1. This is an instance of the general principle that interpolation
between a space and its dual (by one of these two interpolation methods) gives
a Hilbert space. (We call this a «principle», not a «theorem», because it is not
yet proved in a complete generality, see Janson (1986)).

LetI'(b) = T,. r'c,, ) is a multilinear form of rank 1 and it follows as in
Theorem 4.2 that b eLi,m*I‘beSl. For the converse we define for any
multilinear form 7 on A%(y),

I*T(z) = TK, - .., K)

(cf. (4.11)) and obtain as in Theorem 4.3, using (5.3), that I'* maps S, into
A%, and S, into Aim/z. Furthermore, »,, I'*I" = Q, . Hence we obtain the
extension of Theorem 4.6.

Theorem 5.2. Ifp=1,2,, then
FbeSp if and only if Q,beA”,,. U
It is also easy to treat the case S, directly as in §0.4.

Remark 5.2. 1If we define Sp for 1 < p < o by (real or complex) interpola-
tion between S, and S_, Theorem 5.2 holds for every p > 1. Indeed, this seems
to be the only reasonable definition one can think of if one wants to carry over
the usual theorems on Hankel forms (operators) to the multilinear situation
(see Peetre (1985)).

6. Miscellaneous Complements
We assume that VO — V3 hold.

6.1. More general symbols. In §4 we assumed for technical reasons that
be Li + L, which made all occurring integrals finite. In the next subsection
we have to consider more general symbols, which may be done as follows.
Recalling that the linear span of {K} is dense in A%(p), we say that ', exists
when

j|b1<zl<w|dv< o forall z,w,
and

|[ofeav| <Clrl gl forall fgespan(K,). 6.1)
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Then T, is defined on A?(p) X A%(p) by continuity. The assumption (6.1)
implies that Qb is well-defined and

Ob() = [bL dv = x [bK2dy = xT*T, € A7

by Theorem 4.3, whence the preceding theory applies to Lop-

If we assume that T') = I‘Qb for all b such that (6.1) holds, then the results
of §4 can be carried over to this enlarged classs of symbols; in particular, it
follows that I', € S, if and only if Qbe A% .

An alternative formulation of this assumption is:

If (6.1) holds and

JEKidu =0 for every z
then
[BK K, dv=0 forall z,w (6.2)
To see this equivalence, notice that
[@®-0opKzdy=o.
Thus, by (6.2),
j bK K, dv = j ObK K, dv,

that is, I'y = T',,.
Unfortunately, we have not been able to prove (6.2) in general, but it is easily
verified in the examples in §§7-13. Note that (6.2) is gauge invariant.

6.2. Symbols with respect to other measures. The time has come to treat
Hankel forms with symbols with respect to general absolutely continuous
measures. We recall the notations, cf. §0.2,

Hi(f,) = | bfgdg (6.3)
and, as a special case,
H, = Hj. (6.4)

More precisely, we say that H f, exists if f bfg dt is absolutely convergent and
defines a bounded form for f, g espan {X,].
If follows from the definition that

e _ ﬁ)
H —I‘<bd 6.5)

14
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where the two sides are defined (in the sense of this section) for the same set
of b. Hence the previous results for I' can be transfered. The condition (6.2)

is equivalent to
If

|[bfede| <Clfllgl,  fizespan(k), and [BK1dE=0 (6.6)

for every z, then
[BK K, dE =0

for all z, w.
The discussion above and Theorem 4.6 and 4.9 yield:

Corollary 6.1. Suppose that (6.6) holds. Then

H}eS, if and only if Q<b%> €ed?, 1<p< .
P . : dg
Hj is compact if and only if Q b—d— ea’.
14

Note that, for & = W(H§ = Hy), Qb - du/dv) = Q(w ™ 'b).

It remains to identify Q(b - d&/dv), in particular for analytic symbols b. Here
the general theory fails us (even for £ = p), and this has to be done by a
separate analysis in each case (because b — Q(b - du/dv) = Q(b(2)K(z, 2)) is
not gauge-invariant, cf. §§7 and 11). We observe nevertheless the formula

Q<b§>(z) = jbﬁizdv = Jbizdé (6.7)
dv dv

and that b —» Q(b - d¢/dv) formally is the adjoint of the (possibly unbounded)
identity map A%(v) = A%(£) because, for fe A*(»),

a\ \ _/,d \ _
<Q<b dy>’f>f<” = ’f>y— (b, f. 6.8)

6.3. Minimal and maximal invariant spaces. The representation f = f J@L,dv
expresses any function in Ai as a continuous linear combination of {L_}.
There is also a discrete counterpart.

Theorem 6.1. fe Al if and only if f= 2.Ta,0(z,)L, for some sequences
{z;) CQand {a;} ell. | f| 41 is equivalent to the infimum of 2. |a;| extended
over all such representation;.
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Proor. By (3.8),
lw@L,| ' = w(@)xK(z,2) = » for every ze€Q.
Hence we may define a linear operator T:/'(2) = A. (with norm x) by

T{a,} = %azw(z)Lz.

The adjoint T* maps AZ = (A))* (cf. Corollary 3.4) into /°(Q) = (/'())*. Let
geAZ. Since

(g L), =08k =gk,

it is easily seen that 7*g = {w(2)g(z)}, and thus | T#g|,uq, = |&] 4o-
Consequently 7* is an isomorphism into, and 7 is onto. [ “

In other terms, Ai is the smallest Banach space that contains all L_ with
norms bounded by some constant times K(z, z).
It is easily seen that G*(n) acts isometrically in each A” by the action

R /@ = 2’f(v"'(2)) (6.9)

(Cf. (2.2) and recall that A” transforms with weight 2). Using (2.3), it follows
easily that

R, 4L, @ =6@L(y™ (), w) = $(v(W)) "*L(z, Y(W))
and
R, »@WL,) = o(WS(YW)) ~°L,,, = sign o(y(W)’w(YW)L ,, -

Hence, if G is a transitive subgroup of G(p) and G* is the corresponding
subgroup of G*(u), the theorem above shows that Ai is the smallest
G *-invariant (under the action (6.9)) Banach space that contains some L_.

Dually, A7 is the largest G*-invariant Banach space of analytic functions
in Q@ admitting continuous evaluation at some point. This follows because, if
|f(z))] < C| f]| for every function in the space, (v, ¢) € G* implies by (2.3)
and (6.5) )

I

|[6(z)| *w(ze)| £~ (zp))]
(@R, /@)
< Cw(zo) “R('y,Q‘)f“

= Calzg) | f1-

(v NSz

I
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We will not pursue the investigation of invariant spaces here, but refer to the
surveys Arazy and Fisher (1984) and Peetre (1984), (1985).

6.4. Factorization.
Theorem 6.2. fe A if and only if f= 2.7a;8:h; for some sequences {g;}
and {h;} in the unit ball of A*(p) and {a,} ell. | f1 41 is equivalent to the

infimum of 2. |a;| over all such representations.

Proor. Holder’s inequality yields

21: a;8;h;

| < 210 18] gac 1l -
Al

The existence of representations follows by duality as in the proof of Theorem
6.1, or alternatively, from Theorem 1 by taking g,=h,=K_/|K_ | and
replacing a; by xa; (because then

’fgihi = "Ki/ HKz,. "2 = w(zi)in). O

This is a so-called weak factorization. We do not know whether a similar
strong factorization is valid in general, i.e. whether each fe Ai can be fac-
torized as gh with g and % in A*(y) and |g| || < C| f| 4 - For the special
case of Bergman spaces in the disc, Horowitz (1977) provedw strong factoriza-
tion.

6.5. Another S, criterion. Let k, =K /|K | be the normalized reproduc-
ing kernels. If T is any bounded linear operator of 4%(x) into a Hilbert space

JC,, then if {e } is an ON-basis in JC,,

[ 1761 D@ = [ I1TK,1? dut@) = [ DKTK €, du(2)

= S [ KK, T*e )P du@) = 3 [ 1 T*e, () du(2)

(6.10)
= DI T*e,|? = |T*[2,
_ 2
= T2,
It follows, by interpolation with p = oo, that
Tk lse, ey < I T, 2<p <0 (6.11)

and, by duality,
[Tk dse, lpy 2 1T, 1<P<2 (6.12)
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For Hankel operators there exist converses to (6.11) and (6.12) (within con-
stants). Let f‘b be the operator corresponding to the form I'y as in (0.1). We
may assume that b€ A°. We begin with the case p > 2, where there are no
problems.

Theorem 6.3. If2 < p < o, then

F,eS, ifandonly if [T,k |eL?(N. (6.13)

Proor.
IT,k | = KTk, k)| = [Tylk,, k)| = 0@IT,(K,, K)| = x ™ w(@)|bR)],
cf. (4.15). Thus, by Theorem 4.2,
ITyls = 1Tyl < 10Blpgy < %1 IEpk] Iorgye O

The converse for p < 2 only holds in some cases, however.

Theorem 6.4. Suppose that

Kz, w)|
wet j (K(z, 2K(w, w)'"? dNZ) < e (6.14)
Then, for every 1 < p < ©,
F,eS, ifand only if |Tk|eLP(N. 6.15)

Conversely, if (6.15) holds for p = 1, then (6.14) holds.

Proor. By Theorem 6.3 and Theorem 4.6, it suffices to prove that if (6.14)
holds, b € A? implies |I',k,| € L”(\). By interpolation we may assume p = 1,
and by Theorem 6.1 this implication is equivalent to

sup {| Pbkz"Ll()\): b=wWwL,} <. (6.16)

A simple calculation shows that (6.16) is the same as (6.14). [

If G(p) is transitive, then, by Corollaries 2.1 and 2.2 the integral in (6.14)
is independent of w, whence it is sufficient that it is finite for some w. Hence
(take w = 0) (6.14) and (6.15) hold for the Fock space (§§7-11), and for the
Bergman spaces (§§12, 13) with parameter ¥ > n — 1, but (6.14) does not hold
for Bergman spaces with ¥ < n — 1. (Presumably, (6.13) holds for some p < 2
even in the latter case; more research is needed).
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The corresponding result for H*(T) and p = o is given by Bonsall (1984);
it is equivalent to an oscillation condition.

7. Fock Space

The general theory will now be applied to the Fock space. Let, as in the in-
troduction, @ = C" (n = 1,2, ... will be fixed in the sequel) and, for o > 0,

du, = (a/7)"e™ % dm. 7.1)

We define F2 (Fock space) as the Hilbert space A%(u,).

More generally, let L% be the space of measurable functions f on C" such
that f(z)e‘“'zlz/ 2 e LP(m), and let F” be the subspace of entire functions. (We
normalize the norms so that | 1| = 1. In any case, the results below in general
hold only up to equivalence of norms).

Remark 7.1. Note that L% is not the same as L”(u,) unless p = 2; in fact,
L?(p,) = L%, ,,. The parametrization L% is, as we will see, very natural. We
return to L?(p,) is Section 9.

Remark 7.2. Inour analysis it is natural to consider the whole scale of spaces
F? at this time. The parameter o which plays something like the rdle of
Planck’s constant, is of course devoid of intrinsic interest. Notice that the
dilation f+~f((8/2)'/?*z) maps F% into F% isometrically. This is exploited
several times below.

Whenever necessary, we add a subscript « to the notation. Thus

(f:8)a = [ [Eduas

K, is the reproducing kernel in F2, etc.
It is easy to see that {z”}, where v ranges over all multi-indices, is an or-
thogonal basis in F2 and that |z”|2 = o~ "ly!. Hence, by (1.9),

K, (z, W) = D, 2"Wa"/y] = e*&", (7.2)

((z, w) = X z;w; is the scalar product in C").
It is easy to see that, for each w e C", the mapping C_(w) defined by

C. (W) ) = f(z — wye*=m> =/ (1.3)
is an isometry of F? (and L”) onto itself, 1 < p < . Further,

C,(w, + w,) = C,(w))C, (w,)e'm "7, (7.4)
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Hence (w, t) = ei"“Ca(w) is a unitary representation of the Heisenberg group
in Fﬁ. (Recall that the Heisenberg group is C" X R with the group law
z,t) o (w,s) =(z+ w,t+s—Im(z, w))).

In the notation of Section 2, G(u_) contains the group of translations of C”,
and the corresponding subgroup of G*(n ) is essentially the Heisenberg
group. (It is the quotient group C" X T = (C" x R)/2#Z). In particular, G(n_)
is transitive. Furthermore, G(u_) obviously contains the group U(n) of linear
isometries, which satisfies (2.6) for z = 0.

Proposition 3.1 shows that VO — V4 holds, so our theory is applicable.

Let us identify the notations in §3. p = p_ and K = K are given above.
Hence

d\ = e du_ = (a/7)" dm,
a constant multiple of the Lebesgue measure, and
dv=e " Tdy_ = (a/m)y'e 2 dm =2""dy,_. (7.5)
Thus, e.g. by Proposition 1.2, the reproducing kernel for » is
L=2K, =2"K> (7.6)

which gives a direct proof of V2 and shows that x = 2". Q is the orthogonal
projection onto

Ap) = F2; (1.7)

hence Q = P, . By (7.2), w(z) = e“""zlz, and thus L? = L7 and A” = F} .If
we write f©= { fe 3C(C"): f(z) = 0(e*¥*/2) as |z| - »}, then a®=f3 by
Corollary 3.8.

Thus translating, and replacing a by «/2, the results of Section 3 yield the
following for every a > 0.

Theorem 7.1. P_, defined by
P,f@ = [e*="f(w) dp, (), (7.8)
is a bounded self-adjoint projection of
L? onto F%, I<p<o. O
Theorem 7.2. If 1 <p<q< =, then
FPCF!CfrCFy.

This first and second inclusions have dense ranges. [
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Theorem 7.3. If1<p,<p, <o and 0<0<1,
[F2, F™, = (F7, F7)),, = F7,
where 1/p, = (1 - 0)/p, + 0/p,. O

Theorem 7.4. (F2)* =FP 1< p<oo, and (f2)* =F. with the pairing
=

Since e%2/2 g F>\f7, the spaces Fi, F? and f7 are not reflexive. It is also
easily seen that F% # F? when p # q.

We turn to Hankel forms in F i Let H g, B8 > 0, denote the Hankel form
with symbol b with respect to p, (i.e. H f, with £ = p, in out general notation);

H{(f,8) = | bfedu (7.9)

(suitably interpreted).
Thus H, = H; and, by (7.5), ', = 2'"H§'1. Note that (6.2) and (6.6) hold

because K K, = K7, . Furthermore, by (6.7), (7.6), (7.2) and (7.8),

Q<b ﬂ"’1>(z) = jb]:z dpg = J‘b(w)Z"eZ"‘(Z'w> dpg(W)
dv

2
=" J b(w)Kﬁ<—g— z, w> dpg(W) (7.10)
n 200
=2 Pﬁb<—6— Z> .
Thus, if we restrict attention to analytic b,
g P D 20 p D
Oo{b o €A’ =F) < b ?z €FS, <= beFg,,,- (7.11)

Consequently, the results of §§4 and 6 yield

Theorem 7.5. Suppose that b is an entire function on C" and a > 0, 3 > 0,
1< p< . Then

(@) HieS,(F2) ifand only if be F%, , , i.e. if and only if b(z)e” @ /4e)zI?
€ LP(dm). The respective norms are equivalent within constants.

(b) HY is compact if and only if bef5,,,, i.e. if and only if b(z) =
o(e(52/4a)|z|2)_

(c¢) The Hankel projection is bounded in every Sp.

In particular, I‘beSp if and only if beF , and HbeSp if and only if
beF?, O
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(As the family {H 5} is independent of B, there is only one Hankel projection
in S_(F2)). Note the formula

Hy=H} 50 B71>0, (7.12)

which is proved as (7.10), or by checking f = K; ., 8=K; .

Remark 7.3. Strictly speaking, the argument above presumes 3 < 4, because
otherwise e.g. the integral

j bK K, du,

may diverge for b € F;z 2~ Theorem 7.5 is true for all 8 with a suitable inter-
pretation of H? (e.g. by (7.12)).

We may also study the Hankel form (7.9) when f and g are in two different
Fock spaces F2 _and Fiz. (Cf. Feldman and Rochberg (1986)).

Theorem 7.6. Let1<p< o, a,>0,a,>0,B>0and assume that b is an
entire function. Then erSp(Fil X Fiz) if and only if b Eng/(D‘l*“z)'

Proor. The case 8 = a; + «, is proved exactly as in §4, using the fact that
+a, = K, K, - The general case follows by (7.12). [

oy
Theorem 7.5 also generalizes to multi-linear forms as is shown in Section 5.

Theorem 7.7. Letm>2,a>0,8>0,p=1,2or «, and b € 3C(C"). Then
j'l_afl oo Spdpgis an Sp multilinear form on Fi if and only if b ngz/ma.

Proor. By Theorem 5.2 if 8 = ma; the general case follows by a multilinear
version of (7.12). [

We end this section with some remarks on the norms in Theorem 7.5 and
their dependence on n. For simplicity we take 8 = «; the general case is
covered by (7.12). We obtain from the estimates in §4 (cf. Remark 4.1) by
straight-forward computations.

A, |bley, < Hyls <B, 15y, (7.13)
with
Ap — 2nmin 1/p,1 - l/p)p -n/p

and

1/p,1-1/p),, — n/i
szznmax( 4 p)p n/p.
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In particular, |H,| s, = 1&] 2, However, if p # 2,
b,/A,=2""""Pl5 0 as n-ow

(a consequence of the fact that » = 2" — o as n — o). The constants given
above are not best possible, as we soon will see for p = 4, but simple examples
(take b = 1,z,...) show that |b| and |H,| are not strictly proportional for
any p # 2,4, even when n = 1. By considering symbols of the type b(z;) - b(z,)
-...-b(z,) (i.e. tensor products), we then easily see that it is impossible to
have A, and B, in (7.13) independent of n, except when p = 2 or 4. Surprising-
ly, however, there is an exact result for p = 4.

Theorem 7.8. It b is entire, then

nd I Hb | 5, 1] F2, = ”b“ L2(n, )

“Hb”54 = ”b”Fi/z = ”b”u(ﬂa)-

Proor. The S, result was given above. Let us for notational convenience
assume n =1 and o = 1, and let

N .
b(z) = 2. b7’
0
be a polynomial. {z/(j!)~V 2}?fis an ON-basis in F f In this basis, H, has the
matrix representation {4 77 Py with
by = H(&(G) V22500 V) = by, G+ RIGH ™2k ™2

Let ﬁb be the corresponding linear operator F' f - (F f)*. H gﬁb corresponds
to the matrix {24,k ), . Thus

|H,ls, = | H3H, |5, = TrH A, A3H,
= Sk hy Ry (7.14)
jkl

G+ )G+ Ik + DYJ+ i) .

=ijzklbi+jbj+kbk+lbl+i ik

Let @, = b, - i!. Then (7.14) may be written

=1
“Hb“§4 = mZJO Wzm,

with

m!

Ym= a4, a,, .a. . .4a,,;.
) K% +1%

ivj+rkal=m LYIEUY HHITH HITEHE
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A combinatorial argument, which we omit, shows that

m m 2 m 2
z,= p;()(p)apam_p = p=0m!bpbm_p
Hence
© © 2 © © 2
15, = Zym| 50| =] 2, (000 )7]
(ry)

= ”bZHEZ(ﬂl) = ||b”24(u1) D

If we study the Fock space in infinitely many dimensions (a well-known object in
physics), we obtain (at least formally, ignoring all questions of definition etc.)

H,eS, < belXy,,, and H,eS, < bel’(p).

We repeat that Theorem 7.8 does not extend to any other p. (In particular,
interpolation between p = 2 and p = 4 is not possible!)

Problem. What happens on the infinite-dimensional Fock space for p # 2, 4
(in particular for p = «)?

8. Decomposition, Approximation and (Pointwise) Interpolation
Theorem 6.1 yields, replacing « by «/2, the following.

Theorem 8.1. feF. if and only if
f(Z) — i a'ea(z,zﬁ - O(|Zj|2/2
J ’
1

for some sequences (z;} C C" and (a;} €l'. O

Let the Heisenberg group act on functions on C” by (w, ¢) — ei“'Ca(w), cf.
(7.3)-(7.4). Then, by Section 6, we have the following.

Corollary 8.1. F i is the smallest Heisenberg invariant Banach space that
contains the constant functions. F, is the largest Heisenberg invariant space
such that f— f(0) is continuous. [l

Theorem 8.1 says that the functions k, = K/ |K_| are atoms in F.. We
will show that suitable subsets of them can be employed as atoms in F? also
for p> 1.
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We will call a set of points {z;} C C" e-dense if every point of C" is within
distance ¢ of some Zjs i.e. if every ball with radius e contains at least one z;.
We call the set separated if there exists a constant M such that any ball with
radius 1 contains at most M points. (Any other fixed radius would do as well).
In particular {z;} is separated if inf — z;| > 0. The lattice ed "~ 17272n is
e-dense and separated.

i#jlzi

Theorem 8.2.  There exists ¢, > 0 such that if {z;} is e-dense with € < e;o ™ />

and separated, and 1 < p < «, then fe F? if and only iff
f(z) - leajea(z,z_j) —Dt|z_,'[2/2 (8.1)

with {a;} € I” (and similarly for f7, and c;). The norm | f | ., is equivalent to
inf | {a;}|,, within constants depending on o, e and the “constant in the
separation definition.

Remark 8.1. The coefficients a; are not unique, but the proof shows that
they may be chosen as continuous linear functions of f.

Remark 8.2. A characterization of the lattices {z;} for which {e*‘*%}
span F i is given by Bargmann et al. (1971).

Proor. We assume, without loss of generality, that « = 1. Let G=C" X T
be the quotient group of the Heisenberg group defined by

(z,u) © (W, v) = (z + w, uvexp (—iIm{z, w)))

cf. the discussion after (7.4). As Haar measure on G we choose dm (z)|du|/
27!'" + 1.

Given a function f on C” we define 7f on G by
Tf(z, u) = uf@e” 7%, (u)eG=C"xT.

T is a linear isometry of F¥ onto a subspace of LP(G) (with the norm in F¥
suitably renormalized).
Let ¢ = T'1. We write in this proof

g=(z,u) and h=(w,v).
Thus ¢(g) = ue™19"/* and

d(gh™1) = d(z — w, up~ el m<EWY) = yy=lgitmzw) - lz—w|*/2 62

2 2
=uv~ le(z,w> —|z|*72 - |w| /2.
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Consequently, if F = Tf, the reproducing formula (Theorem 7.1) yields,
$#F(g) = |_o(gh™)F(h)dh

= IG up = le<@w> = (2172 = w/2y £y 0= W72 gy (w)|dv|/27"*?
ue™ /2 { fw)e =™ dy, (w) (8.3)
ue™ 1721 (z)
= F(g).

Let N = [27/e] + 1 and hy, = (z, ™M), 1 <j < 0, 1 < k < N. Partition G
into disjoint sets G, such that lhhj;’ —(0,1)] <2ewhen heG,.. ((0,1) is the
unity in G).

Define

-,

Jk

F(g)dg}lsjsm,lsksN
and

— 2 N[22
S({a))@) = T, e o lof2

8.4)

© N
. J
Jj=1
It is easily seen that R: L?(G) — [*. Since
IS({a; ))@e™ 472 < <> |a;le™ 12172
<N3e = apa,

Csup] el

because {z,} is separated, S({ak})eF“ when {a; } el®. Also,

J
"S({ajk})npl Zl kl ”e<z 7-!>” e - |zj*72

= C|{ay} |-
By interpolation, S:/” = F%, 1 < p < . Next we observe that, by (8.2),

. N 10279 — 2
TS({a;,))(e) = Z,:cajkue“z’”"/”e“’zﬂ /2= 1272

Z a, $(ghy
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Hence, if fe FT and F = T,
TSRF(g) = 3, [ F(h) dhe(ehy")
5 kG

and, by (8.3),

Flg) = TSRF(®) = 3} | . (8(eh™") = 6(gh; NF(R) dh.

Jrk ¥
Define
8(g,€) = sup {|p(g) — d(M)|: |g~'h — (0, 1)] < ¢}

and

8¢ = |, 8(g, 9 dg.

8.5)

Note that 6(g,e) >0 as e—>0 for every g, and thus, by dominated con-

vergence, 6(¢) ~ 0 as e — 0. (8.5) now yields

|F(g) — TSRF(g)| < Zl]( fG 8(gh™",2¢)|F(h)| dh < 6Q26) | F| ;.
Js Jk

Thus
| Tf — TSRTf | ;. < 8Q2€)| Tf | 1o
Since T is an isometry of F7 into L*(G), this gives
|1 = SRT | =< 5(20).
Similarly, if fe F},
|F— TSRF | 116, < [[ 8(eh ™", 20)|F(h)| ah dg
= J 8(2¢)|F(h)| dh
=020 F| 1,
and

|1 SRT| s < 5Q26).

It follows by interpolation (Theorem 7.3), that if e is sufficiently small,
|I— SRT| m<l whence SRT is invertible and S maps /” onto F¥, for every

D, 1 < p < co. The conclusion of the theorem follows easily.

As a corollary we obtain an approximation definition of F”. Let P, be the
set of entire functions of the type Zf’aje“’z”, with ¢,eC and z;eC",
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J=1,...,N.(Pyisnot alinear space!). If b € P, then H, has rank <N; the
converse is almost true, see Section 14.

Theorem 8.3. Let «>0and 1 <p <. Then feF” if and only if feF?,
and the sequence {dN}O €l”?, where d,=inf {|f— g||F,,, gePy} is the
distance from f to P, in F,

Proor. If feF?, then (8.1) holds for suitable sequences {z;} and {aj} el”.
Reordering the sequences simultaneously, we may assume that {aj} is decreas-
ing. Then

-]
2. ae
NT1

alz, zj) — alzj|?/2

st <C“[aj}:/'+1||lﬂ°=ciaN+1|’

F>
@

by another application of Theorem 8.2. Thus {d,;} € /*. Conversely, if g€ P,
then H, has rank < N as a bilinear form on F_ 2 . Thus, on that Hilbert space,

< |H,— H, ||s @2y S C|f- g|lF,o, because of Theorem 7.5. Thus
N( ) < Cd,. Hence {d,} €!” implies that H eSp(an) and, by Theorem
7.5 again, feFf{. O

In the classical case H*(T), Adamjan, Arov and Krein (1971) have proved
that sy(H) = inf { | H, — H,|: H, is a Hankel operator of rank < N}. Theorems
8.3 and 7.5 suggest that something similar may be true on the Fock space too,
possibly in a weaker version such as

Sy(H) < Cyinf { |H, - Hg||:gePC2N}.

Another consequence of Theorem 8.2 is the following weak factorization,
cf. Theorem 6.2. We do not know whether strong factorization is possible (as
for Bergman spaces by Horowitz (1977)).

Corollary 8.2. Let a=ay+a;, and 1/p=1/p,+ 1/p, with oo, >0,
Dy Py < ®©and 1< p < . Then fe F? if and only if f = 2.7 a;8;h;, for some
sequences {g;} and {h;} in the unit balls of F*° and F”', respectively. The
norm of f is equivalent to inf >, |a |, extended over all sulch representations.

Proor. Let {zj} be an e-dense lattice, with e sufficiently small. Any fe F”
has a representation of the type (8.1), and it is easily seen that it suffices to
consider functions that has a finite representation

N >
f= Eza ea(z,z,')—ozlzjl /2
1 J .
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Let b; = |aj"’/”° sign (¢;) and ¢; = |aj|P/”1, and define, for each sequence
I=(y,... 1) with each ¢; = 1,

— 00(z, 2j) — ao|zj|%/2 _ o142, ) — ay|zj|2/2
g jZijje , h,= ;chje .

It is easily seen that
f= 2_NZI]g[h1

and, by Theorem 8.2 again, for each 7,
l&rlpay < CHB im = CH 57 and [y pp, < Cl{a,) 177,

The remaining, simple, details are left to the reader. [
Theorem 8.2 has also an interesting dual.

Theorem 8.4. Let (z,} be edense and separated with €< eja™'2. If
1< p< o and feF?, then

Cl@e™ ) < 1 S| p < G 1 (S (RDe™ 2}

with C, and C, depending only on a, € and the constant in the separation
definition.

Proor. If p> 1, let p’ be the conjugate exponent. The linear mapping
{aj} — Z aje_ alzjlz/szj

is by Theorem 8.2 a quotient mapping of /* onto F? ", whence the adjoint
map, which maps fto { f(zj)e“"'zf‘z/ 2} is an isomorphism of F” = (F”)* (cf.
Theorem 7.4) into /*. If p = 1, we use ¢, and f. [

In fact, the left inequality in (8.6) holds as soon as {zj} is separated and
the right inequality holds as soon as {zj] is e-dense, because then {zj} can be
enlarged or reduced, respectively, to become both separated and e -dense (for
any €, > €). In particular, if fe F” vanishes on an e-dense set (¢ small enough),
then it vanishes identically.

The right inequality in (8.6) is not valid without some a priori assumption
on f. (E.g., if n = 1, Weierstrass’ theorem shows that f may vanish at every
z; but not elsewhere). It is easy to show that the condition f € F© may be relaxed
to fe F;,. We have proved that the mapping f— { f(z)e" “'zflz/z} maps F” in-
to /2, if (and, as it is easily seen, only if) {z;} is separated. If the set is suffi-
ciently well separated, this map is also onto.
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Theorem 8.5. There exists D < oo such that, if {z;} is a sequence in C" with
inf, _; |z, — zj] > Do~ 2, and 1 < p < ©, a sequence {a;} of complex numbers
equals { f(z)} for some feF”, if and only if {aje‘“lzflz/z} el”®.
Proor. We may assume that o = 2. Define
- ~ |zl? _ 2§z, 2> - |z

Tf= (f(z)e™ ¥} and S{a;} = > aq;e**% 14

Let
6 =inf|z; — g/ > 0.
i=j

T'maps F? into I” by Theorem 8.4, and it is easy to see, interpolating between
p=1and p = o, that S maps /” into F?. Furthermore,

TSt = [Sa et i157)
i

J

and thus, again interpolating between p = 1 and p = oo,

"I— TS "11} < sup Z |e2<z,,',z:'> - |zil* ~ !zjlzl = sup Z e~ |zi = zil* <1,
i j#i i j#Ei

provided 6 in large enough. Hence 7S is invertible and 7 is onto. [J

9. More on Projection, Duality and (Abstract) Interpolation

We have shown that the projection P_ is a bounded operator in L?(1 < p < ),
but it is also of interest to study the action of P_ on Lg when ( # «. In par-

ticular, this applies to the spaces L?(u_) = L% o

Theorem 9.1. Let a >0, 8 <2a, 1 <p < «. Then P, maps Lf onto F{'; with
1/y =2/a - B/a®. P, is not bounded on L% unless 8 = o.

Remark 9.1. 'We may here allow g8 < 0. In particular, P, (L") = F? ,.

Proor. We introduce explicitly the dilation and multiplication operators
defined by

D, f(z) =f(6z2) 9.1
E_f(z) = e f(2), 9.2)

the idea being that D, maps F” isometrically onto F%,_ (c, 8> 0) and E, maps

L§ isometrically onto Lg +2. (B, e€R). Furthermore, it follows by the same
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argument as in (7.10) that, for any «, 8 > 0,

o (33

(at least when fe L‘;° for some v < 2B), i.e.

PE .= <%>nDa/BPB. 9.3)

Hence, substituting 2o — 8 for 8 in (9.3),
Pot (Lg) = POIEB - a(Lgoz - ﬂ) = Da/(Za - B)P2u - B(Lgoz - B)
= Dot/(th— B)(FIZJa - /3) = F§2/(2a -B"

The last statement follows because v > 8 unless 8 = . [

Applying the theorem to L”(p ), we obtain (and refine) a result by Sjogren
(1976).

Corollary 9.1. Let «a>0, 1<p< o and 1/p+ 1/p’'=1. Then P maps
LP(p,) onto F%, .. Hence P, maps L?(u,) into L%(p,) (0 < g < ) if and on-
ly if either g < 4/p’ or p = q = 2. P_ does not map L”(u,) into itself unless
p=2.

ProoF. We may assume that o = 1. Theorem 9.1 shows that P, maps
LP(p) = L’z’/p onto F{’, with v = 2 — 2/p) ™' = p’/2, which is contained in
Li(p) = Lg/q if and only if 2/g > v =p’/2 or 2/q = p’'/2 and g > p. Since
pp’ > 4 unless p = 2 (e.g. by the inequality between geometric and harmonic
means), the latter case entails p =g =2. [

Let A”(u,) be the space of analytic functions in L”(n,). Thus A”(n,) = F%,_,,.

Sjogren (1976) used the above result to show that the dual of 4”(n ) (for
the pairing ( ) ) is strictly larger than A7 '(ua), unless p = 2. More generally,
now we can prove the following.

Theorem 9.2. Let o,$>0, 1<p<o and 1/p+1/p'=1. Then (FP)*
= FZ,,; with the pairing { ). Similarly, (f5)* = F,, .

Remark 9.2. j fgdp,, does not necessarily converge when fe F4, g eFﬁ’z /85
but ( ) _ is easily extended. We omit the details.
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Proor. Since

B

<fsg>3=<g> <fsEa_/3g>a’ (Lg)*EEQ_BLg,

with this pairing. The Hahn-Banach theorem and the fact that

(f,8),=<[,P &,
shows, using (7.3), that

(FB*=PE,_,(I5)=D,, Py(L5) =D, F5 =F",,.

o [+4

(f;;)* = F;z/ﬁ is proved similarly (using C} = M), or by letting p — oo, noting
that all constants stay bounded. [

Corollary 9.2. If1 < p < o, then A”(p )* = Fﬁ;/z, with the pairing ) . U

If p#2, pa/2>2a/p', whence F2, , 2 F% . = A”(u,), and we recover
Sjogren’s result.

We may now extend the interpolation theorem (Theorem 7.3) for the com-
plex method. Since Fock spaces with different values of « are related by dila-
tions, this is related to interpolation between spaces of functions defined in
different discs, cf. Lions and Peetre (1964).

Theorem 9.3. Let oy, >0, 1<p,p, <, and 0<60<1. Let 1/p,
=1 -0)/p, + 0/p, and o, = o}~ ’a’. Then

[Fzz!lel]g = anoa Dy < ©, 9.4
[F':O,F:l]o =f:0, a, # oy, 9.5)

" (Note that Py = if and only if p, = p, = ). (9.4) and (9.5) hold also with
F? replaced by f7, (j =0 or 1) on the left hand side.
J J

Proor. Define, for {€C, T, = Daoxa1(§ —-0)/2, i.e.

a &-6)/2
TefR) =f < <a—°> z> . (9.6)

1

T, is an isometry of Ff(‘(’) onto Fﬁ‘; when Re ¢ = 0, and of Fﬁ‘l onto leo when
Re¢=1.

Furthermore, T, Sand T =7 ¢ f are analytic in ¢ (when fis analytic).
Hence, by the abstract Stein interpolation therorem, see e.g. Cwikel and Jan-
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son (1984), Theorem 1, T, = I is an isometry of [F{:‘(’), F‘;‘l] p ONtO

[Feo, Fp1], = Fpo
g g

%

(using Theorem 7.3), provided p, and p, < .

The same argument holds if p, = o or p; = o, provided we use /* instead
of F*. However, an extra argument is needed for F*, because e.g. t = T}, f
is, in general, not a continuous map of R into F:o when fe F :’O, cf. Cwikel
and Janson (1984). One possibility is to use duality (Theorem 9.2) and the
result just proved (with pg, of ! etc.) to conclude that, see e.g. Bergh &
Lofstrom (1976), Theorem 4.5.1,

po P19 — P
o Fal” =Fol, 1 <pysp; < . 9.7
Berg (1979) proved that, for any Banach couple [X,, X|], equals the closed
hull of X, N X in [XO,XI]", which gives (9.4) and (9.5) from (9.7). [

Remark 9.3. Also (9.7) remains valid if F, is replaced by /7 on the left
J J

hand side (except in the trivial case p, = p, = », a, = «,). This follows from
(9.4) and (9.7) when p,, or p, is finite. That

U2 f21=F2 (@ #ay)

follows directly from the definition (Bergh & L6fstrom (1976), Chapter 4), taking
gw) = ["T_,fds

with T as in (9.6) and fere.
Note that o, is the (weighted) geometric mean of «, and «,, while

pPo P1 — JPo
(Lo, 7], = L

(1- 6)ay+ ba,

with the arithmetic mean of o, and «,.

Exercise 9.1. Let us review Theorem 9.1 in the light of Theorem 9.3. First,
Theorem 9.1 plainly may be restated as follows: Given «, the set of pairs (8, v)
such that P, : L — F§ is precisely given by the inequality o®/v < 2a — 8.

We leave it to the reader to show that this region cannot be enlarged by the
interpolation theorem.

10. Addenda

10.1. Convolutions. The Hankel operator, which is a modified multiplica-
tion, is surprisingly aiso a convolution operator on the Fock space.
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Theorem 10.1. IfbeF., andf,geFi, then
H,f@) = (D& + *),.f ), = [ bz + w)TW) du, (W) (10.1)
and
H,(f,8) = ([5G + W)/ @e) du,@) du, (W). (10.2)

Proor. Since both sides of (10.1) are continuous anti-linear functionals of
/f, it suffices to verify the formula when f= K, for some ¢. Then

H, K (2) = (H,K,K,)) = H,(K,K,) = (b, KK,

=(b,K,, > =bE+9)

= [ bz + WK, (W) du, ().
(10.2) follows. [
10.2. Finite rank. It follows from (10.1) that (for be F?, ) I-?wa = b(s + w).
Hence the linear span of the set of translates of b is a dense subspace of the
range of ﬁb. In particular, invoking our general Kronecker’s theorem (Cor-
ollary 14.1):
Theorem 10.2. The following are equivalent (for b entire).

() H, has finite rank.
(ii) Span {b(« + W)} has finite dimension.

(ii) b(z) = % >, c;,2’e"j for some m, k;, w;.
iv) b ePNJf—olr I;l;rfé N, with P, as in §8. (Closure e.g. in F?).
If n=1, we can add:
(v) Db = 0 for some constant coefficient linear differential operator D.

10.3. An abstract characterization. Let H be any Hankel form on F (21 (©).
Then it is abstractly characterized by (cf. the introduction) the property

H(zf,g) = H(f, z8).

Notice that in terms of the associated anti-linear Hankel operator H this can
be written as

HA* = AH
where, taking o = 1, A* and A are the creation and annihilation operator
respectively, Af = f’, A*f = zf. This should be contrasted with the well-



114 SvANTE JANSON, JAAK PEETRE AND RICHARD ROCHBERG

known abstract characterization of Hankel operators H,: H*(T) — H*(T)
using the shift operator S, Sf = zf, and its compression to H* (T) (cf. e.g.
Nikol’skii (1986), p. 180).

10.4. Other Gaussian measures. Let A be a positive definite matrix. Then
we may define

_detA .
=—=

Py -<{Az,z) dm

and F’ = A*(u,). The results of §7 extend immediately (because F is mapped
onto F i by a (linear) change of variables). The results of §9 extend too
(Foy*=F& , for 1<p<e  (while =1L~ )
in the duality ¢ >ﬂ1’ and
PO Pl — Po
[F2, F51, = F%! (p,< )

for some A, (a «geometric mean» of 4, and 4)).

11. Fock Space with a Different Gauge

In this section we for simplicity consider only the case n = 1. We write
z=x+iyand w=u + iv.

The gauge transformation f(z) ~> e~ az?/ 2f(z) maps F' ? onto the space of en-
tire functions g such that

|g@)|eRee="2= 2872 = |g(z)|e " e L(dx dy).

We denote this space by G?. In particular, Gfx is the Hilbert space
Az<ﬁe'2""vz dxa’y>-
s

The reproducing kernel for Gi is, by Proposition 1.2 and (7.2),
K(z, W) = e~ °F /2=« /2t 0aW _ pmae=W)/2 (11.1)

Thus K(z, 2) = e~ @72 = 207 and w(z) = e~ 2", Consequently, AP =G? |
1<p< oo, cf. §7. It follows from (7.3) that the Heisenberg group acts
isometrically in every G? by (w, t) = e"'C,(w), with

C! (wg(z) = e-azz/Zerx(z—W)z/zg(z _ W)eazw—a|w|2/2
(11.2)

iav(w — 22)

= g(z — w)e
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Remark 11.1 From the group theory point of view this is something which
lives «half way» between the Bargmann-Segal representation of the
Heisenberg group, which lives in Fock space Fi (C), and the Heisenberg
representation of the same group, which lives in L*(R).

Letge Gz, let g,(x) = gx + iy) and let g € S'(R) be the Fourier transform
of g(x), xeR. Then gy(g) = e ¥§(¥) and, by Plancherel’s theorem,

63 2
1212, = 2 [ 17@pe ™ avay

07 2
-2 [1g1e ™ a
(11.3)

@ - o — o
=Wje >4 g(e) %" dedy

al/Z 2
Conversely, it is easily seen that if
[ 1A@Pe> d < e,

2
then h = g for some g € G2 . Thus, g = g(£)e* /** is an isomorphism of G2 on-
to L?(R); with a suitable constant factor we obtain an isometry.

Remark 11.2. The composition of the isometry F2— G2 given above and
this isometry is the Bargmann transform F2 — L*(R) which maps the function
7% to the k:th Hermite function /, (e™%/** times the k:th Hermite
polynomial; the normalization depends on o). Now let g e G2 for some p,
1<p< o, let v(8) = (9t /* and $(£) = e~ ¥7/**. Then

£,(5) = 8™ = V(DB + 20p)e™”
and thus

llgllog =1 8y I Lp(dx)e—u;v?-" 12(dy)
= | [7(©®dE + 209)| 2o | 1
= Qa)~ Ve ” ” Y(®)e(§ + ) “ p “ P

Again the converse holds, i.e. the mapping g = v maps G” onto the space of
all distributions 7 such that | |v - ¢(s + )| z» | ;» < o0. Furthermore, the lat-
ter space is a kind of generalized Besov space defined by translations instead
of dilations of the kernel ¢ (cf. Peetre (1976), Chapter 10 with, formally,
Af = f(s + i) on L*(R)), and it is seen, just as for ordinary Besov spaces, that
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the space remains the same if ¢ is replaced by an arbitrary test function (ex-
cept 0). Also, it suffices to restrict y to the integers, provided some non-
degeneracy condition holds. We omit the details.

Theorem 11.1. Let ¢ € Cg(R) with ¢ = 0. Then the space
Ep= {ved": " "‘b(' +y)7”1:” ”Lp(dy)< o} (11.4)
does not depend on the choice of ¢, and if ¢ #0 on [0, 1],

E,={ved" | 1o( + n)Y| z» “1P< ©}.

3 2/4a

The mapping g — 8(&)e is an isomorphism of G4 onto E,, 1 <p < . [

Note that E, does not depend on «. Define mappings M, by
e — " 2
M,g(%) = (9e.

Corollary 11.1. Let o,3>0 and a = 1/4a — 1/4B. Then M, is a isomor-
phism of G* onto Gg, I<p<g o, O

We are now prepared to deal with the Hankel forms I', and H, on Gi. Cf.
Theorem 7.5 and recall that the results for I', are gauge invariant, but as we
see here, not those for H,.

Theorem 11.2. Let b be entire and 1 <p< . ThenT, €S, if and only if
beG% , i.e. if and only tfb(z)e‘z"‘y eL"(dxdy), and H € S if and only if
be sza, i.e. if and only if b(z)e™ "3 e L”(dx dy).

Proor. The result for I', follows by Theorem 4.6. The result for H, follows
by Corollary 6.1 once we note that Q(w~ 'b) = c¢M, b for some constant ¢
and thus Q(w ™ 'b) € G, if and only if b € G4, by Corollary 11.1. The latter
formula follows by (6 8) and (11.3):

(Q@™'B),/), = (b,f>, = C, [ BE© F@e* > dt
= C, [ (M, bY O F@et " dt = CM, 5.0, O
One can similarly show, more generally, that if 0 < 8 < 4a, then the Hankel

form H? with df = e 2% * dx dy belongs to S,(G2) if and only if b € G¥ with
1/v=2/8-1/2a.

Remark 11.3 The spaces E, are interesting in their own right . They are
essentially special cases of more general function spaces studied intensively
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(also in the context of general locally compact Abelian groups) by Feichtinger.
Here we briefly recapitulate some of their salient properties. They form an in-
creasing scale of spaces of distributions, with E, = L2 E, is the minimal
strongly character invariant Segal algebra, see, e.g., Feichtinger (1981a),
(1981b). The spaces are translation invariant (isometrically) and dilation in-
variant. They are also preserved by (Feichtinger) the Fourier and (new!)
Mehler transforms. This follows because F” is mapped onto E, by the
Bargmann transform (see Remark 11.2), which maps z’ to A, with, for
a =1/2, h; = (27)"*(=i)’h;. Hence the Bargmann transform intertwines the
rotation f'~ f(iz) (which obviously preserves F4 ,) and the Fourier transform
on E . (In particular, we may take a Fourier transform in (11.4) and obtain
the definition of _Ep given in the introduction). More generally, the Mehler
transform h; — §’h; (¢ is fixed with |¢| < 1) corresponds to f~ f(2) in FY,.

(Cf. Peetre (1980)).
Note also that Theorems 7.3 and 7.4 imply (already in Feichtinger (19815))
[EPO’EP1]9 = (EPo’EPI)"Po =E,, (11.5)

0

and (Ep)* = Ep, (1 € p < =), with the usual pairing on R.

Remark 11.4. An argument similar to the proof of Theorem 9.3, using the
operators M, with @ complex, can be employed to show that (11.5) implies (for
Dy < ®)
(G2, GP'], = G** (11.6)
(1] 1 0
with p, as before and 1/a, = (1 — 0)/ay + 0/, .
Thus «, is the harmonic mean of «; and «,, while we obtain the geometric
mean for F? (Theorem 9.3) and the arithmetic mean for L?. In fact, both

these results can be understood from the point of view of the Shale-Weil
representation of the so-called metaplectic groups. (Cf. again Peetre (1980)).

12. Bergman Spaces in a Ball

In this section we study the case Q = the open unit ball in C" and
dp = c(1 — |z|*) dm, (12.1)
where v > —1 is fixed, m is the Lebesgue measure, and
c=x""T(n+v+ 1/T(r+1)

is a normalization constant making u(Q) = 1. Thus A?(n) is the (weighted)
Bergman space in the unit ball.
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It is easily seen that {z®}, where o ranges over the set of multiindices, is
an orthogonal basis in A%(x). An integration shows that

w2 QT +n+1)
121" = T'(a| +v+n+1) (12.2)

and thus the reproducing kernel is

2327w/ |z%|?

K(z,w)

Sz, wyT(m +v+n+1)/T(y+n+1) (12.3)
m=0

(CEREAT)

(Cf. Rudin (1980), Chapter 7.1.)

The group Aut(Q) is the Mobius group PSU(n, 1) (Cf. Rudin (1980),
Chapter 2). Every automorphism acts on x as an analytic gauge transforma-
tion, i.e. G(u) = Aut(Q) = PSU(n, 1). Since the Mobius group is transitive
and isotropic in the sense of (2.5) (choose z = 0 for convenience), the results
Sections 2-6 apply. The invariant measure is by Corollary 2.1 and (12.3)

d\z) = K(z,2) du(z) = c(1 — |z|) ™"~ 1 dm(z). (12.4)

(Conversely, since this measure can be shown directly to be invariant, Propo-
sition 1.5 yields an alternative proof of (12.3)). We observe that

w(z) = (1— |zt (12.5)
An elementary computation yields

n+2y+1+j
¥ = H#
Jj=1 Y+J

We will, after some preliminaries, apply the general theory to the Hankel
forms H, and I', on A%(p). The same argument yields similar results for
Hankel forms H f, with £ = ¢(1 — |z|»? for any 8 > 0, but that is left as an
exercise for the reader. See also Burbea (1986), where (independently) this
type of Hankel operator is treated by a different method.

It is convenient to relate the Bergman spaces to the (analytic) Besov spaces
on the unit sphere §2”~! C C". These Besov spaces can be defined as follows,
in complete analogy with the standard Besov spaces on R, cf. e.g. Peetre
(1976), Ahlmann (1984), Mitchell and Hahn (1976). Let ¢ € L'(R) with
e C;(0, ) and define, for any analytic function (or formal power series)

f@) = Zf(@z",
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/= [l fe D) ds = £ d(|a) (", (12.6)

Define ¢,(x) = ¢~ '¢(x/1); thus ,(¢) = (%), and
- . dt
By = [f J;) (| ¢x*f”Lp(s2n-l))qT < oo} : (12.7)

Hence —0o <s< 0,1 <p<oandl < qg< « (with the standard modifica-
tion if g = ). These spaces are independent of the choice of ¢; furthermore,
it is equivalent to use only the discrete values {2~ % }, for z. In the sequel we
let B? = BP*.

When s < 0, we may in the definition of B3? allow $() = e, £> 0 (and
#(0) = 0; thus ¢ ¢ L', but that does not matter). This choice gives

b, *f(2) = goe'““'f(a)z“ = f(e™'z) — £(0).

Restricting attention to f < 1, as we may do, and changing variables, we find
that, when s < 0,

feBY < t7°| fe™ )| oeszn-1y € LU0, 1), dt/1)
< (1 =171 f0D)] poeszn-1y € LU0, 1), (1 — )™ dr).

(12.8)

Hence these Besov spaces coincide with the weighted Bergman spaces in the
unit ball. In particular, in the important case g = p,

B’={f:(1 - 2@ e L@, — |z[») "' dm)}, (12.9)

provided s < 0.
We now see that A%(p) = B2

(v+ 12 @nd, cf. the definitions in §3,

AL = (i (1= |2 " @ e L((1 ~ [2[) 7" 'dm)}) = B

4
n/p—-n—1-—+"

Define

n af
D = z,——.
4 jgl ’ 0z,
Thus Dz® = |a|z®. The Taylor coefficient multiplier D” gives an isomorphism
of B?? onto B??  (modulo constants) for any real s, and 1 <p, g < .

Similarly, f € B%? if and only if af/azj eB? ,j=1,...,n. This yields a way
to extend (12.8) and (12.9) to s > 0; e.g.

feBy < (1-zPIDfR)|<C < (1-zPV/@|<C

(By is the n-dimensional Bloch space).
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We will also consider a related multiplier. Taking f=z* (and &£ =) in
(6.8), we see that

(Q(w™'b),2%), = <b,2%), = b(a)|z*|?,
and thus

Q@™ 'b) = 21 ¥(@)b(@)z®,

with
W) = [2%],/ 1z*12=T(e| + 2y +2n+2) /T(ja| + v+ n+ 1)

(cf. (12.2)). It is easy to show that the multiplier (|| ~*~"~! maps any
space B?? onto itself. Hence,

Q™ 'b)e A = B”

n/p-n—-1-v
if and only if

Dn+1+'ybEBp

n/p-n—1-«

if and only if
beB, .

The results of §§4 and 6 thus yields the following. (To see that (6.6) holds,
let g(z, w) = (f, K _K,) and note that g is analytic and

D2DPg(z, w)|, _, = const { £(§), £(1 — (¢, z)) "~ 1=l
(L = (5, zy) T IAy

= const D**fg(z, 2).)

Theorem 12.1 Let b be analytic and 1 <p < . Then T, eSp if and only

ifbeB:,, . ,_ ifandonly if (1 - |2I)"*'*7bz) e LP((1 - |z|")~"~ " dm)
and H, € Sp if and only if be B p- 1N particular, H, is bounded if and only

if |Vb(z)| = O((1 = |z|» ™), T, is compact if and only if |Vb(z)| = o((1 —
|z~ ""'"") and H, is compact if and only if |Vb(z)| = o((1 — |z|)~") as
lzl—=1. O

When n = 1, this result is due to Peller (1982). Note that H*(T) formally
is the limit of A%(p) as ¥ > —1, and recall that the result above for H, is valid
on H*(T) too, provided p < =, see Peller (1980), (1982).
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For multilinear Hankel forms we obtain by Theorem 5.2 and arguments as
above the following, with H,(f,,...,f,) = [bf,- ... f, dp.

Theorem 12.2. Letm >2andp = 1,2 or . Then, if b is analytic, the m-linear
formT, €S, ifand only if (1 — |z[>Y"*1* V2 e LP((1 — |2|*) "~ ' dm) if and
only if be B? and Hye S, ifand only ifbeBf, ,, . ..., D+ g

—m(n+1+~)/2+n/p

The same result is true for 4, on H*(T) too, cf. Peetre (1985), Lecture 5.

Theorems on decomposition, approximation and interpolation for
Bergman spaces are given by Coifman and Rochberg (1980) and Rochberg
(1985).

Theorem 3.1 shows that the Bergman projection Q is bounded on L”. The
problem of telling exactly when such a projection is bounded on L?(Q, m) is
solved by the Forelli-Rudin Theorem, see Rudin (1980), Chapter 7.1.

13. Bergman Spaces in a Half Plane

In this section we consider Q = the upper half plane (n = 1) and du = y" dxdy,
v > —1. Thus, by Plancherel’s formula,

112 = [[ |F@Py dxdy = [*["le” /@)y dy dg

o (13.1)
=c, [(f@OPE s @=x+iy).
Hence the (weighted) Bergman space A%(p) equals the analytic Besov space
B* G+ 1)/2° (See Peetre (1976) for definition and properties of Besov spaces.
We do not distinguish between functions in  and their boundary values on R).
The change of variables z — (z — i)/(z + i) maps Q onto the unit disc, and
the measure c(1 — |z|»)dxdy (c = (v + 1)/x) on the disc corresponds to
4"z +i| 7~ *yYdxdy on Q, which is mapped to y” dxdy by the change
of gauge f—2"* e (1 - iz) 2 (2).
It follows from (12.3) and Proposition 1.3 and 1.2 that the reproducing
kernel in A%(p) is

y+1[z—w\ "2
Kz, w) =~ < 5 > : (13.2)

Thus, the invariant measure

+1
K@z, 2)du = -%T—y-zdxdy
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We, again, for simplicity consider only the Hankel forms I', and H,. We
obtain by §§4 and 6, if b is analytic in ,

I,e$, < Y 2b(x + iy) e LP(y "2 dxdy) < beB” ;..
If g = Q(w™'b), then by (13.1) and (6.8), for suitable f,
@.f),=C, [ 8OF @ > 2 dt = (b.f), = G, [6@J®F " dk.

Hence £(§) = £"*?h(¢), and Q(w™'b)eB” ifand onlyif b €B?, . .,
—oco< § < o, We thus obtain

Theorem 13.1. Let b be analytic in the upper half plane and 1 < p < . Then
I'yeS,ifand only if b eB"_v_ZH/p andeeSp if and only ifbeB‘;’,p. O
For this and similar results, see Peller (1982), Rochberg (1982), Semmes
(1984), Janson and Peetre (1985).
Note that H*(R) formally is a limit of B> __  ,as v~ —1.

Remark 13.1. By conformal mapping followed by a suitable change of
gauge one can also get interesting formulations in other domains (not
necessarily (generalized) discs). For instance in the case of the standard strip
0 <Imz < 1, the condition on the symbol takes the form

fi . J; |b(2)|P(sin 7y)* dm(z) < . (13.3)

Such a condition can be made more explicit using Besov spaces on the bound-
ary lines Im z = 0, 1. Some limiting cases are likewise of interest. If one writes
(13.3) for the strip 0 < Im z < s then s — « gives back the upper halfplane.
Similary taking the strip —s/2 <Imz < s/2, so that we have the weight
(cos wy/s)®, then if we let @ = a\, w2/2s*=X"1, A= o then Fock space
evolves once more (use cos 7y/s = 1 — ©2y%/2s* = 1 — y%/\).

14. A General Kroneckers’s Theorem

The classical Kronecker’s theorem asserts that an ordinary Hankel form (or
operator), in the Hardy space H(T), is of finite rank if and only if its symbol
is a rational function. Here we wish to establish an analogous result in max-
imal generality. A closely related multivariable Kronecker theorem, contain-
ing the algebraic part of the proof below, is otherwise in Power (1982b).

We consider the following set-up, which differs considerably from the one
used in the main part of the paper; in particular, we do not any longer require
the Hankel forms to be defined on a Hilbert space.
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Q is a domain in C". Let R be the ring of all polynomial functions in Q. We
say that a bilinear form H defined on a space X that contains R (or, more
generally, or a pair X, Y of such spaces) is a Hankel form if

H(f,g) = H(fg,1), f,g€R. (14.1)

We will study spaces X that satisfy the following assumptions.

W1: X is a topological vector space of analytic functions in Q.

W2: X contains R as a dense subspace.

W3: The inclusion X C H(f) is continuous.

W4: If zeC"\Q, then the mapping f— f(z), f€ R, has no continuous
extension to X.

Note that W3 implies that the mapping f— D’f(z) is continuous for every
multi-index » and every z € Q. Conversely, if e.g. X is a Banach space, it
follows from the Banach-Steinhaus theorem that W3 is equivalent to

W3': If zeQ, then f— f(2) is continuous on X.

Hence, in that case, W3 and W4 may informally be summarized by
«f— f(2) is continuous if and only if z € Q».

The Fock spaces in Section 7-10 and the Bergman spaces in Section 12 are
examples where these assumptions are satisfied (also for p # 2 as long as
p < ), but W2 fails to hold for the related spaces in Sections 11 and 13.
Another example where the assumptions hold is the classical Hardy space
H?*(T) (a limiting case of Bergman space hitherto not permitted).

Theorem 14.1. Assume that X and Y are two vector spaces such that X
satisfies W1-W4 and Y satisfies W1-W3. Then every (separately) continuous
Hankel form H on X X Y of finite rank is given by

N

H(f,9)= 2. 2 ¢, D'(/8)z), (14.2)

j=1 Iv|skj

for some finite sequence {zj}]lV in Q, integers kj and constants Cp Conversely,
(14.2) defines a continuous Hankel form for any {zj}f' cQ, kj and Cjye

Proor. The last statement is obvious by Leibniz’ rule. In order to prove that
a Hankel form H has the sought representation, it is by continuity sufficient
to show that (14.2) holds for all £, g € R. Hence we will study the restriction
of Hto R, and the remainder of the proof will be almost purely algebraic. Let

J={feR:H(f,g)=0 forall geR}.
If feJ and h, g€ R, then

H(fh,g) = H(fhg, 1) = H({, hg) = 0.
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Thus fh € J. This proves that J is an ideal in R. Furthermore, J has finite
codimension because H has finite rank. (In fact, dim (R/J) equals the rank
of H).

To fix the ideas, let us first study the case » = 1. The structure of the ideals
in R = C[z] is well-known and, since J# 0, we conclude that here exist
Z;,..-,2y€C and integers kj such that

J=(feR:D'f(z)=0,0<v<k;,j=1,...,NJ}. (14.3)

Since J thus is described by finitely many linear functionals, and the linear
functional f— H(f, 1), f€ R, vanishes on J, there exist contants <, such that

N

kj
H(f,1)= 2, Zo chD"f(zj), feR. (14.4)

Jj=1v

The formula (14.2) follows by (14.1), but it remains to show that z;€ 2. We
may assume that Cip # 0 for j=1,...,N. Define, for i <N,
J

N
8@ =TI @-z)v*' %
i=1
Then, by (14.1) and (14.4),

N Kk
H(/, gi) = H(fgi’ 1) = JZI vZO ijDD(fgi)(zj) = Cikik,'!f(z,-)s SER.
Consequently the mapping f— f(z;) is continuous, and z; € follows by W4.
This completes the proof when n = 1.
When n > 1, we will require the following result which is an exercise in com-
mutative algebra, see Power (1982b). For completeness we will supply the
details of the proof. Our reference will be van der Waerden (1959).

Remark 14.1 When one of the authors was a young student he bought a copy
of that venerable treatise. Now after many years he has finally got use for it.

Lemma 14.1. If J is an ideal of finite codimension in R = C[{,...,{,],
then there exist finitely many points z,, ...,z €C" and integers k., . . ., ky,
such that

JO{feR:Df(z) =0,[v|<k;,j=1,...,N}. (14.5)
Proor. Let V= {zeC": f(z) =0 for all feJ} be the algebraic variety cor-

responding to J. If V is an infinite set, let {zj}"fbe distinct points in ¥ and
pick f},f,, ... in R such that

fi(z1)= "':.fi(z,'_])zoa f,'(z,')z 1.
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Thenf,,f,, ... arelinearly independent mod J, which contradicts the assump-
tion that J has finite codimension. Hence V is finite, V' = {z,,...,2,].
Let us now invoke the primary decomposition: since R is Noetherian, Jis a
finite intersection of primary ideals (van der Waerden (1959), p. 73). Thereby it
suffices to prove the lemma for primary ideals (of finite codimension).

Claim. 1If Jis primary, then V is a point.

ProoF. Suppose that N> 1. Choose f in R such that f(z,) =1, f(z,)
= f(z;) = -+ - = f(z5) = 0. Then f(1 — f) vanishes on V. Thus, by Hilbert’s
Nullstellensatz (van der Waerden (1959), p. 102), f™(1 — f)" e J for some
m > 1. Since (1 — f)™ ¢J and J is primary, f™ e J for some k > 1; a con-
tradiction. The claim is proved.

Let now J be primary and V = {z}. Let M be the maximal ideal
{feR:f(z) = 0}. If fe M, then, by the Nullstellensatz again, some power of
flies in J. It follows that, for some £k,

JDOM* = {feR:D*f(z) =0, |v| < k}

(van der Waerden (1959), p. 70). The lemma is proved for primary ideals, and
thus in general. [J

We may now complete the proof of Theorem 14.1 as in the case n = 1. It
follows by (14.5) that H(f, 1) = X 2.¢; D’f(z). Hence, using (14.1), (14.2)
holds for some {zj]f’C C”". Fix j. We may assume that ¢;, # 0 for some » with
|| = k;.Letg = (z — z)’h"™ where h(z;) = 1, h(z) = O for i # j, and m > max k;.
Then, by (14.2), H(f, g) = cjyv!f(zj), and W4 implies that z;€Q. O

Let us now specialize to the case when X is a Hilbert space. Define the symbol
of the Hankel form H as the function b € X which satisfies H(f, 1) = {f, b),
fe X. Equivalently, by (14.1) H(f, g) = { fg, b), f,g€R.

Let K_ be the reproducing kernel defined in Section 1. Then K| is the symbol
of the Hankel form (f, g) — f(z)g(z). Recalling that K is an antianalytic X-
valued function in Q, we obtain the following.

Corollary 14.1. Assume that X is a Hilbert space which satisfies W1-W4. Then
a continuous Hankel form with finite rank on X has a symbol of the form

N
bwy= >, 2] ¢;,(3/92)’K (W), (14.6)
ji=1 |y = kj
withz,, ...,z €%Q, and every such symbol defines a continuous Hankel form

with finite rank. O
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Theré is no problem to extend the results above to multilinear Hankel forms
of finite rank. We leave the details to the reader.

Remark 14.2. Theorem 14.1 implies that any finite rank continuous Hankel
form H is a limit (pointwise, and uniformly on bounded subsets of X X Y)
of Hankel forms

Nm
H,(f,8)= Zl €S8 (2,5
=

z,,€Q, with {N,,} bounded (e.g. N,, < % Y(k; + 1)"). The converse is obvious.
We conjecture that it is possible to take /V,, as the rank of H, i.e. that the set
of continuous Hankel forms of rank <r coincides with the closure (in any
reasonable topology) of the set {(f, g~ ;cjfg(zj): ¢,---,6€C,z,...,
z,€Q } (For n = 1, this follows easily from (14.3), but we have been unable
to find a proof in higher dimension). For the Fock space, this would imply,
in the notation of Section 8, that H, has rank <rif and only if b e 17, (e.g.in

Fo).

Remark 14.3. What can be said about the kernel { f: H(f, g) = 0 for all g}
of a general Hankel form (not of finite rank)? Again restricting attention to
R, we see that the kernel is an ideal J. Let V be the corresponding subvariety
of Q. Then the Hankel form is «concentrated» on V. Examples of such forms,
given V, are those of the type jVBfg do, where o is (e.g) the are measure. What
can be said about the boundedness or smoothness of such forms?

We end with another open question: How can the results of this section be
extended to the case of a general complex manifold! Is there an analogue of
the polynomial ring R?
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APPENDICES by Jaak Peetre

Appendix I. Hankel Forms in Weaker Assumptions

In the main body of the paper, referred to below as [JPR], a general theory
of Hankel forms is developed but in rather severe restrictions (essentially a
homogeneous situation). As the title indicates, the aim of this note is to
establish all the essential general results of that paper in much weaker assump-
tions. We assume that the reader is somewhat familiar with the contents of
[JPR] so we repeat only the most rudimentary notions.

Let Q be a domain in C? and p a positive measure on Q. Denote by A%(Q, )
the space of analytic functions over  which are square integrable with respect
to u and let K(z, W) be the reproducing function in A%(Q, x), L(z, W) the one
in A%(Q, »), where » is the «measure» associated to »

dv(z) = w(z)du(z) where w(z) =1/K(z,3?).

We make the following hypothesis:

§s°S

vweQ wecan write L =X uv
(weak-V) . "
with Z:s ” us "AZ(Q,,;,) ” Us ”AZ(Q’”,) S C/O.)(W),

(that is, L, is in the image of A%, ) ® A*(Q, p) with norm <C/w(w)).
Then we have in particular

) [, 1L, W) du@) < C- KOw, W)

(ProoOF. Just use Schwarz’s inequality).
We consider Hankel forms I, with (usually) analytic symbol b with respect
to »:

T,(/,8) = [ 5@ /(@) dv(2).
We require the following spaces of symbols

£P(Q, v) = {b: b locally integrable, wb € LP(Q, 0)},
GP(Q, ») = £P(Q, v) N {b: b analytic}.

Here o is the «invariant» measure corresponding to u, »:

do(z) = du(2)/w(z) = dv(z)/w(z)’.
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It is clear that

£2(Q,v) = LXQ, ),
L@ ») = L' p

and, generally,
£, ) = LP@, " " %0) = LP@, 0" 'p).
Similarly with @ and A instead of £ and L.

Proposition. The projections Q: £1(Q, ») = @X(Q, ») and Q: £2(Q, ) = @°(Q, »)
are continuous.

Proor. As the kernel of Q is L(z, W),
0/@) = [ L(z, w)S(w) dv(w),
this follows from the estimate (1); the latter can also be rewritten as
[, 1Lz )|/ o(@)dy(z) < Clw). O

By interpolation (real or complex) we obtain

Corollary. The projections Q: £°(Q, v) > G°(Q2, v), ]l < p < «, are continuouﬁ

Corollary. (G@%°, @"),, = [@"°, @"'], = @® if 1/p=Q0-0)/p,+ 6/p,
0<o<1). O

We can now prove
Proposition. T, is bounded (on A%Q, p) X AXQ, p)) if and only if b e @™(Q, v).
ProoF. <« If be @(Q, ») then |b(z)| < Cw(z)~'. Therefore
I0,(/,8)] < [, 16@)] /)] @) dv@)
< [, 1/@1 2@ duta)

S ClS | azca, 18l a2, 10

where we in the last step used Schwarz’s inequality.
= Assume that I' is bounded. We may write

[bw)| < [T | ; | us”AZ(Q,“) I Us“AZ(Q,M) < C|T, | /w(w),

completing the proof. [
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Without «any» assumptions we can prove
Proposition. b e @(Q, v) implies T, €S, .

Proor. For each we Q introduce the Hankel form
L, (/.8 =fwew) = (f,K,) (g, K,).
It is clear that
I < 1K, 1 Gaga, 0y = K9, ) = 1/w(w).
Now formally we may write
T, = [ BT, dv(w).
Therefore, if is legitimate to use Minkowski’s inequality in this situation, we get
IT, 1, < [ 160)] [T, ], dv(w)
< [, 1600 - (1/e(w) - w(w) du(w)
= [ 1bow)| du(w)
= ”b"al(n,v)' O

Remark. Notice that the constant in this imbedding is 1.
By interpolation we obtain at once

Corollary. b e ®”(Q, ») implies ', € S,(1<p<e). O

Remark. In particular thus b € G*(Q, ») = I', €S, (= Hilbert-Schmidt (H. S.)
forms). Is it possible to prove this directly (without using interpolation)?
So far we have only proved «direct» results (except for p = ). We now
come to the «converse».
We have the following formula

*) Ty Toys = [ D@ dv(),
where ¢ is determined from c via the formula
&@) = | K, £c(§) dv(s).
PROOF OF (). The Hilbert space A%(Q, p) admits the «continuous» basis

{Kw/ ||Kw ”Az(Q,;L) }WEQ )
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Therefore, for any bilinear forms B, C on A*(Q, u) X A*(Q, ) one has

(B,CYyy = | BK,,K,)CK,K,)du(w) du(w).

For a Hankel form B =T, the «matrix elements» in this basis are given by
I,K,.K,) = [ B@KGE WK, ) dv(z).
Similarly for C =T',. This gives
Ty Toys = [ D@ [ K@ WKE, W) du(w) -
- [ Kl WK (G, W) du(w') - dv(@) dv(§)
=[], o PR, §) dv(z) dv(s),

which is the «bilinear» form of formula (¥). [
By a standard duality reasoning we now obtain

Proposition. T' €S, implies ¢ e GQ°(Q, »).

Proor. IfT' € Sp then by a previous proposition <I",, T, ), ; makes sense
for any be @”'(v) (where 1/p + 1/p’ = 1). In other words we have a con-
tinuous linear functional b+~ (I',, T}, ¢ on @”" (Q, v). By one of the cor-
ollaries then ¢e @P(Q, »). O

Let us introduce an operator § by the relation gc = ¢ and let us make the
new assumption, supplementing the previous assumption (weak-V),

I g is invertible in each of the spaces Q@P(, ») (1< p<oo).

Then we can summarize our findings in an elegant

Theorem. T, eSp(l < p < ) if and only if be @”(Q, v) (or if and only if
be GP(Q,»)). O

Remark. In [JPR], apparently, the case & = » ~'b was considered, that is
g = x~'. (Identity operator) so hypothesis (I) is trivially fulfilled. (Also in this
case the strong(er) hypothesis (V), implying our present (weak-V), is fulfilled).
We know as yet no other cases when (I) is fulfilled.

Reference

[JPR] Janson, S., Peetre, J., Rochberg, R. Hankel forms and the Fock space. This
issue.
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Appendix II. Recent Progress in Hankel Forms

On these pages I would like to report very briefly on work done by me —in
one instance, jointly with Svante Janson— since last summer (’86). One of my
main objectives has been to push beyond the limitations on the entire theory
put in [JPR]. (It is assumed that the reader us somewhat familiar with the
main ideas of that paper).

Here is an appropriate quotation: «Then, English, French, and mere
Spanish will disappear from this planet. The world will be Tlén.» ([B], p. 35).

1. Weak factorization and boundedness. Let Q be a domain in C%. If p is
a positive measure on @ we denote by A”(Q, u) the subspace of L?(Q, u) con-
sisting of analytic functions. Let K = K(z, w) denote the reproducing kernel
in A%Q,p) and L = L(z, w) the one in A*Q,p) where » is the measure
«associated» with u (definition:

dv(z) = w(z)du(z) where w(z) = 1/K(z,7))

or, possibly, an equivalent measure. The basic hypothesis in [JPR] is («fac-
torization» of the reproducing kernel):

V) L =xK*  (x a constant > 1).

But already there the following weaker hypotehsis is mentioned («weak fac-
torization»)

veQ onecan write L = ; U,

(weak-V)
where Z “ U “AZ(Q’") " g “AZ(Q,V«) < c/w(w).

(Then sum may be finite or infinite). It is shown in Appendix 1 that, under
the hypothesis of (weak-V), holds:

I', is bounded on A*Q,p) X A*Q,p) if and only if beR%(Q, ).
Here I', is the Hankel form with (usually) analytic symbol b with respect to »,
T,(/,8) = | 5@ /(@) dv(),
and, generally speaking, the symbol class @?(2, »), 0 < p < o, is defined as
{b: b analytic, wb € L?(Q, 0)},

where again ¢ is the «invariant» measure (definition:

do(z) = du(z)/w(2) = dv(z)/w(z)?).
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The condition (weak-V) has been verified in several concrete cases.

In [P1] the case d = 1, @ = an annulus {z:1 < |z| < R} is treated. In this
case there is a natural family of measures u = p, (o > —1) to be considered:
dp(z) = M2)* dE(z) where ds = |dz|/\Mz) is the Poincaré metric on Q@ and E
is the Euclidean area measure dE(z) = dxdy = i/2 - dz dZ). (This construction
applies to any plane domain @ bounded by finitely many smooth arcs (a
«regular» domain); if Q is the unit disk then (@) = 1 — |z|? so one gets back
the usual weighted Bergman (or Dzhrbashyan) spaces). For « integer (o = 0,
1,2,...) the weak factorization can be verified on the basis of the fact that
the kernel L ( and K') can be expressed in terms of elliptic functions. Here it
is natural to take » = pgs B =20+ 2, so it is not exactly the associated
measure, only equivalent to it.

In [P2] I plan to extend the analysis in [P1] to the case of arbitrary regular
planar domains. My idea is to invoke the Shottky double @ of Q (= set
theoretically the union @ UQ U 3Q, where @ is Q with the «opposite» complex
structure) and thus the theory of «symmetric» compact Riemann surfaces
(= real algebraic curves). However, if the genus is >1, this cannot be done
as explitly as in the above case of genus 1, because no such nice tool as the
theory of elliptic functions is available.

Let me also remark that the case o not an integer is entirely open, also in
genus 1.

In [JP] the case of «periodic» Fock space is considered, that is, entire
periodic functions (with period, say, 2«) which are square integrable with
respect to the measure e 7 dxdy (if «Planck’s constant» is taken to be 1/2).
The basic fact about this case is now that the reproducing kernel can be written
in terms of theta functions so the desired weak factorization can be obtained
by just looking up in the literature the appropriate formulae for theta functions.

Again [P3] is addressed to the case of subspaces of Fock space singled out
by symmetries. Example: f(—z) = f(2) (even functions), f(—z) = —f(z) (odd
functions). In this case the reproducing kernel is expressed in terms of hyper-
bolic functions (cosh, sinh) and the weak factorization follows from the
duplication formulae for the latter (viz. cosh2x = cosh?x + sinh?x, sinh 2x
= 2sinh x cosh x). In a more general situation one similarly requires generalized
hyperbolic functions.

I have assigned to a student the task of extending the analysis in [P3] to the
case of weighted Bergman spaces. This seems to involve a sort of generaliza-
tion of the generalized hyperbolic functions.

In [P4] I determine explicitly the reproducing kernels for certain Hilbert
spaces of holomorphic tensor fields over the unit ball in C? (the «Rudin ball»).
Of course, these are then tensorial too. In this case «strong factorization»
holds true (an appropriate tensor version of the previous condition (V)), so
a corresponding boundedness result for Hankel like forms can be established.
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Again the case of the ball is just the simplest case of a symmetric domain
(essentially the rank one case). It is conceivable that one has similar results for
other symmetric domains in E. Cartan’s list.

Finally, in [P5] I have reformulated the relevant portions of [JPR], that is,
as far as the issue of boundedness goes, in the language of holomorphic line
bundles and, more generally, holomorphic vector bundles.

2. Sp Theory. In [P6] I address myself to the question of generalizing the
Sp-theory in [JPR]-carried out in the hypothesis of condition (V)-to a more
general setting. It turns out that besides condition (weak-V), which seems to
be virtually indispensable, one requires basically only one more assumption.
To formulate it let us introduce the «square operator» g on @*(Q, ») (@ and
u are general now, as in the beginning of Sec. 1), defined by

9/ @ = [ K@, wf W) du(w).
The relevant hypothesis is then
€)) g is invertible in @P(Q, »).
In this hypotheses ((I) + (weak-V)) it is easy to establish that
I'yeS, ifand only if be@®@?(Q,7), 1<p<oo.

It is trivial that (V) = (I). Indeed, if (V) is fulfilled then clearly § = » ~* (iden-
tity) where » is a constant >1. So far I have no non-trivial case when (I) is
fulfilled but it should not be difficult to establish it in some of the simpler
cases mentioned in Sec. 1. Work is in progress! (Note (added Jan. 88). See
[JPI].)

3. Some related investigations. In [P7] I study the action of the metaplectic
group on the spaces F? (C), which are the natural L” symbol classes correspon-
ding to the scale of Fock spaces F”(C); see [JPR] for details. (Similar results
as those now described are expected in C?, d > 1). In particular I verify that
this action is bounded continuous but not isometric, which is a result at least
implicit in the work of Feichtinger (see e.g. [F1], [F2], [FG]). To get an
isometric action one has to consider a new «caloric» representation of the
Heisenberg group (and the metaplectic group as well), a «caloric Fock space».
This leads also to the idea of a «caloric Bloch space» and a «caloric minimal
space», which ought to be studied more. In this context, «caloric» means that
the elements of the spaces are (analytic) solutions of the heat equation.

Turning to the situation of regular planar domains treated in [P1], [P2] (see
Sec. 1), there is for any fixed halfinteger /€ 1/2N a natural duality between
the following type of objects
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holomorphic (1 — /)-forms F(z)(dz)' ~' — «integrals»
and
holomorphic /-forms g(z)(dz)' — «differentials»,

embodied in the presence of the pairing

[F./1= [, F@@)' ™ g@)da).

In particular, it gives a possibility to lift invariant Hilbert metrics for differen-
tials (for instance, the Dzrbashyan metric mentioned in Sec. 1) to a metric for
integrals. One can then define corresponding «minimal» and «maximal»
spaces, thus obtaining a new opportunity to extend Arazy’s great program for
Moébius invariant spaces (cf. [P8]). This connects also with lots of interesting
notions such as (real) projective structures of Riemann surfaces, uniformiza-
tion, Eichler cohomology, Schottky double, real algebraic curves etc. I have
started a cooperation on these matters with Bjérn Gustafsson (Stockholm),
who is a specialist on quadrature domains (see e.g. [G]). In particular, we have
begun to study invariant differential operators on compact Riemann surfaces
equipped with a projective structure (generalizing the classical Schwartz
derivative).

It is not clear how much, if anything, of the above can be extended to
several variables but on the whole I am about to believe that there must exist
interesting illustrations to the theory of Hankel forms with higher dimensional
algebraic varieties, especially algebraic surfaces (complex dimension 2).

4. A small selection of open problems.

4.1. To extend the AAK theorem beyond its classical H*(T)-setting (see e.g.
[N], App. 4).

4.2. The Sp—theory in [JPR] and its extension indicated in Sec. 3 below is
confined to the case 1 < p < . It would be interesting to have any general
results for 0 < p < 1 too. In the case of Fock space rather complete results
have been obtained by Svante Janson’s student Robert Wallstén [W].

4.3. To extend the theory of higher weight Hankel forms in [JP2] to more
general cases, for instance the unit ball in C?. This is basically a question of
Invariant Theory.

4.4. Is there an analogue of the metaplectic group in the case of Bergman
space (cf. [P6])?
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