REVISTA MATEMATICA IBEROAMERICANA
Vor. 3, N.° 2, 1987

A Harnack Inequality
Approach to the
Regularity of Free
Boundaries.

Part I: Lipschitz Free
Boundaries are C!:*

Luis A. Caffarelli

Introduction

1. This is the first in a series of papers where we intend to show, in several
steps, the existence of «classical» (or as classical as possible) solutions to a
general two-phase free-boundary problem.

2. We plan to do so by

(a) constructing rather weak generalized solutions of the free-boundary
problems,

(b) showing that the free boundary of such solutions have nice measure
theoretical properties (i.e., finite (# — 1)-dimensional Hausdorff
measure and the associated differentiability properties),

(c) showing that near a «flat» point free boundaries are Lipschitz graphs
and

(d) showing that Lipschitz free boundaries are really C*>“.

From then on, the theory of regularity developed by Kinderlehrer-Nirenberg
and Spruck applies.
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We start here with the last part of the project, that is, to show that Lipschitz
free boundaries are C**®, mainly for two reasons: the first because many of
the ideas in this part reappear in a much more entangled way than in the
others, and the second, because this part is of immediate interest, since the
existence of solutions to which these theorems will apply has been obtained
already in many cases by different means.

An heuristic discussion of this paper can be found in [C]. The ideas
presented here originated in a joint work with J. Athanasopoulus (see [At-C]).

Notion of Weak Solution

We denote a point in R"*! as X or (x, ), with x = (x,, . . ., x,,). To state the
simplest version of our results, let us define what we mean by a weak solution
of a free-boundary problem.

Definition 1. In the unit cylinder C; = B, X [—1, 1] of R"*', we are given
a continuous function u satisfying
@ Au=00nQ* = {u>0]},
(i) Au=0o0n Q" = {u<0}°,
(iii) (The weak free-boundary condition). Along F = d{u > 0} u satisfies
the free-boundary condition

uV+ = G(uv—)

in the following sense.

If X, € F and F has a one-sided tangent ball at X, (i.e. 3B,(Y) such that
X, €9B,(Y) and B,(Y) is contained either in Q* or Q) then

u(X) = a(X — Xo, vy * — B(X — Xo, v) ™ + 0(|X — X))

and a = G(B).
The basic requirements on G will be strict monotonicity and continuity in u, .

Theorem 1. Let u be a continuous function in the unit ball. Assume that u
satisfies

() Au=0in Q% = {(u>0) and @~ = {u<0}°.

@) 2% = {(x,»):y > f(x)}, with f(x) a Lipschitz continuous function.

(iii) 0 F = 0Q" and along F, the free-boundary condition u;= G, ) is

satisfied in the sense described above.

Assume further that G(s) is strictly increasing and for some C large, s~ G(s)
is decreasing. Then, on B, ,,, f is a C* function.
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1. Some Properties of Harmonic Functions in a Lipschitz
Domain

In this section we recall some properties of nonnegative harmonic functions
in a Lipschitz domain.

Lemma 1. (Dahlberg, see [D], see also [C-F-M-S]). Let u,,u, be two
nonnegative harmonic functions in a (Lipschitz) domain D of R"*! of the
form

D={lx|<L|y<My>f(x)

with f a Lipschitz function with constant less than M and f(0) = 0. Assume
Sfurther that u, and u, take continuously the value u; = u, = 0 along the graph
of f. Then, on the domain

M’y<f(X)}’

1
D = <> <
172 {|x| ) |7l D)

we have

u<0 M)

v<c <&y T\ 2

'S uy(x, ) < M>
| 0

with C,, C, depending only on M. In particular, if

<G

u, (0, M/2)
u; (0, M/2)

we get

ul(x’y) <C
2-

0<C; < <
' U, (x, )

Lemma 2 (Jerison and Kenig [J-K], see also [At-C]). Let D, u, and u, be as
in Lemma 1. Assume further that

u, (0, M/2)
u,(0,M/2)
Then, u,(x,y)/u,(x, y) is Holder continuous in D, ,, (i.e. up to the graph of

f(x)) for some coefficient a, both o and the C* norm of u,/u, depending only
on M.
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Lemma 3 (Dahlberg [D], see also [C-F-M-S]). Let u be as u, (or u,) above.
Then, there exists a constant 6 = (M) such that for

D;s = {|x| <8, |y| <M,y > f(x))
we have

1 M
u|D6 < E u<0’ 7) *

Lemmad. Letu beasin Lemma 3. Assume further that D,u > 0 on D. Then,

(o)

0<C < <GC,.

As usual C; = C;(M).

Proor. From Lemma 3,

1 M M72 M
— < < — .
2 u<0, > > <, D,u(0,t)dt < u<0, 2 >

But D, is positive and harmonic in . Therefore, by Harnack’s inequality, all
the values along the segment of integration are comparable, and the formula
with d = M/2 follows. For 0 < d < M/2 we may use rescaling. [

Lemma 5. Let u be as in Lemma 3. Then, in D;, for some 6(M), D,u > 0.

Proor. Let u; = u and u, be the (bounded) auxiliary function

u,=C>0, on dD\graph f
u, =0, on graph f
Au, =0, on D.

If we compare u, with vertical translations in their common domain of defini-
tion, we obtain

D,u,>0 on D.

Let us adjust C so that
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Then, from Lemma 2, on D, ,,

ul(x’y) <C

0< (< <
Sy 2

and further, from Lemma 3

ul(x’y) _ ul()_csy)
uZ(x’y) uZ(X’y)

SC(x—x| + [y -yD*

In particular, if we freeze (x, y), at distance d from graph of f, and let (x, y)
vary in a d/2-neighborhood of (X, ), we get

ul()?’y)

m} ! < Cup(x, y)(|x — x| + |y = F*

u (x,y) — uy(x, y)[

< Cuy(%, y)d*
< CD,u, (%, y)d**!

(we may substitute u,(x, y) by u,(¥, ¥) by Harnack’s inequality, and u, (X, ¥)
by d(D,u, (%, 7)), because of Lemma 4). Therefore, taking D, derivative on the
unfrozen variable y, and evaluating at y, we get, from standard interior a
priori estimates for w = u; — u,k, k = u, (%, y)/u,(%, y)

D,u,(%,7) — [Z:—g:%]pyuz(x, y)‘ < CD,u,(%,3) - d°
that is
Dyuy(%,5) > {[%} - Cd“} . Dyuy(%, 3).

And this last term is positive if d® is small enough. [

2. Subsolutions to Our Free-Boundary Problems and
Comparison Principles

In this section we define weak subsolutions to our free-boundary problem,
and discuss a comparison principle.
We start by defining the notion of a weak subsolution.

Definition 2. The continuous function v(X) is a subsolution to our free-
boundary problem in Q if

() Av=0bothin Q" = (v>0} and @~ = {v<0})°

(i) let Xoe F=(027)NQ,
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assume that at X,, F has a tangent ball B, from the Q* side (i.e. B,C Q™,
X,€0B.NF). Then, for some o. = 0, B = G(c), v the unit inner radial direction
of 0B, at X,,

U(X) 2 B(X — Xy, v) T — ol X — X, v) ™ + 0o(| X — Xy|).
Definition 3. Given a subsolution v to our F.B. Problem, a point X, € F, at

which F has a tangent ball from Q" (as in Definition 2(ii)) will be called a
regular point.

We now state a strong comparison principle.

Lemma 6. Let v < u be two continuous functions in Q, v<uin Q* (), va
subsolution and u a solution. Let X, € F(v) N F(u) (the free boundaries of v
and u). Then X, cannot be a regular point for F(v).

Proor. Since Q% (v) C 27 (u), X, automatically will be a point for which u
has the desired asymptotic development (Definition 1)

uX) = (X — Xo,v) " — alX — X, v) ™ + 0(|X — X))
with 8 = G(x)

V(X)) = B(X — Xy, v) " — (X — Xp, v) ™ + 0(|1X — X))

with 8 = G(&). This implies that 8 > 8 and « < &.
Since G is assumed to be monotone « = & and 8 = 8. But u — v is a positive
superharmonic function in 2" (v). By Hopf principle, since X, is regular

W — 0)(X) = | X — X,|

radially into 2% (v), along v from X,. [
We refine the previous lemma to a continuous family of subsolutions.

Lemma 7. Letv,, for 0 <t < 1, be a continuous family of subsolutions in Q
(continuous in Q X [0, 1]). Let u be a solution in Q, continuous in Q. Assume that

(i) vo<uinQ.
(i) v,<uondQand v,<uin[Q* ()N for 0Kt 1.
(iii) every point X, € F(v,) is regular and
(iv) the family Q* (v,) is continuous, that is Q*(v,l) C Ne(9+(vt2)) whe-
never |t, — t,| < 6(e) (N, denotes the e-neighborhood of the set).

Then v, < u in Q for any t.
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Proor. The set of #’s for which v, < u is obviously closed. Let us show that
it is open: first, if v, S U, it follows from (ii) and the strong maximum principle,
that U, < U inQ* (v,o). And since every point of F(v,o) is regular (assumption
(iii)), it follows that [ * (v,,)] is compactly contained in @ * () (up to 99, from
assumption (ii)). From assumption (iv), the openness follows. [

Remark. Since u may be the solution of a one-phase problem, that is
uln_(u) = 0, assumption (iv) is necessary (an easy counterexample where
Q" (v,) = Q for ¢ > 0, can be constructed).

3. Continuous Families of Subsolutions

In this section we construct particular families of subsolutions, starting from
a given solution. The simplest family is the following:

Lemma 8. Lef u, a continuous function in Q, be a weak solution of our F. B.
Problem. Let

v(X) = glg{)) u(Y), t>0.
t

Then v, is a subsolution of our F. B. Problem in its domain of definition. Fur-
thermore, any point of F(v,) is regular.

PROOF. v, is the supremum of a family of translations of u, and as such, v
is subharmonic both in Q* (v,) and 2~ (v,). Let now X, € F(v,). That means
that B,(X,) is tangent from Q™ (u) to F(u) at a point Y,. Therefore

(@) X, is regular since B,(Y,) C @* (v) and is tangent to F(v) at X,.
(b) At Y,, u has the asymptotic behavior

U=p(X—-Ypr)" —adX =Yy, ) +0(X - Yy,
with 8 = G(a), and » the outer normal to dB,(X,) at Y,, and hence
V2P{X —Xp )" — X — X, v)~ +0(|X — X,|). O

The family v, on the previous lemma is an admissible family for the com-
parison lemma (Lemma 7) and as such it can be used for a comparison princi-
ple that says: «If u; and u, are two weak solutions, with u#; < u, and near 92,
SUPg (x, 41 < u,(X), then also in the interior of Q sup B0 %1 < U, (X)», keeping,
in particular F(u,), e-away from F(u,).

This family has the problem of being too rigid. If u, is, for instance, much
larger than 4, in some section of 32, one cannot exploit that fact. Therefore,
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we will now introduce a more delicate family of perturbations, where we make
the radius of the ball B,(X,) dependent on Xj itself (¢t = #(X,)).
The key lemma is the following.

Lemma 9. Let o(x) be a C*-positive function satisfying

C|ve|?

Ap 2
el

(for C large enough) in B,(0) (the unit ball of R"). Let u be continuous, defined
in a domain Q large enough so that the following function be defined in B;(0)

w(X) = sup u(X + o(x)»).

v|=1

Then, if u is harmonic in {u > 0}, w is subharmonic in w > 0.

Proor. Assume w(0) to be positive. We will show that

lim & HBI@ W(X) — w(0)) dx] > 0.

=0 r

For that purpose, we will estimate w(x) by below near 0, choosing an appropriate
value for » = »(X): Choose the system of coordinates so

(1) w(0) = u(¢(0)e,)
) Ve(0) = ae, + Be,.

We evaluate w by below by choosing »(X) = »*/|»*| with

. (Bx; — ax,) Y ('S _
(3) v*(X)=e, + 20 e, + 20 <‘221 x,-e,->

Here 7 is chosen so that
@ A+7?=01+p8)>+a>

Let us examine the point Y obtained by such a choice.

Y=X+ iw(O) + Vo(0)X + %(D,-jso)x,-x,- +o(|X Iz)}

(Bx, — o) Y S J
He” FO RO

_@ﬁ—_cfﬁf,_(l)“'l 2 4B
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The above expression has a constant (translation) term ¢(0)e,, . A first-order term
Y* — o(0)e, = X + (ax; + Bxp)e, + (Bx; — axy)e; + ¥ 2, X

than can be thought as a rotation followed by and expansion by 1 + v since

1+ ... —a
1+ 1+
[Y* — ¢(0)e,] = . - - | x=Mx.
1 . . .
Y « 1+8
1+y 77 147%

where M is a rotation in the e;, e, plane (by the definition of v) and a
quadratic term

1 Bx; —ax)?  y* "2l 2] <|ng;|2 2)
Y- Y*=| = (Dye)xx; — + 2le, + O 21 | x
|: 2 ( U‘P)xtxj (p(O) gD(O) ; Xi|€n P l I 2

with p L e, and |u| = 1. Hence
f w(X) — w(0) > qu(Y(X )) — u(Y(0))
= qu(Y(X)) — u(Y*(X)) + Iu(Y*(X)) — u(Y(0))
= ](u(Y(X)) — u(Y*(X)).

(Since the last term is zero, due to the fact that » is harmonic and Y* is a rigid
rotation plus a dilation of X). We now point out that, by the definition of
w, Vu must point in the direction of e, at Y(0). Hence

u(Y) —u(Y*)=Vuo (Y —Y*) + O(Y — Y*|)?

Bx —ax) | 7
0@ 00

1
= |Vu| [ED,-J«px,-xj - lez:i + O(|X|4)

and hence

1 .
— [u) — u(r) + 01X ) =

1 1
= |Vu(Y(0))| {7 <A¢ = 8%+ o+ (n =27 TO)» >0

A 2
A¢> C_L_ﬂ
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Remark.

1

if o' 7€ is superharmonic.

We now study a more flexible family of perturbations, namely, given a
solution u of our F. B. Problem and a function ¢ satisfying the properties of
Lemma 9, we want to consider v = v,, defined by

v(x) = sup u(y).
B o))

We start with the asymptotic behavior of v at the free boundary.

Lemma 10. Let u be a continuous function and

v(X)= sup u(Y).
B,oxyX)

with ¢ a positive C* function, and |Vo| < 1. Assume that
X, €007 (v), Y,€92" (u)
and that they are related by the fact that
Yy € 0B, (Xo)-

Then

(@) X, is a regular point for F(v).
(b) If near Yy, u™ (resp. u™) has the asymptotic behavior

ut(respu ) =al¥Y - Yo, vd)*" +0o(|Y — Yy|)
then
vt >l X = Xo, v+ Vo) ¥ + o(|X — X))

(resp. v~ < a{X — Xy, v + Vo) + o(| X — X,)))-

(¢) If F(u) is a Lipschitz graph, and |Ve| is small enough (depending on
the Lipschitz norm, N\, of F(u)), then F(v) is a Lipschitz graph with
Lipschitz norm

N <N+ Csup |Ve|.
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Proor. To prove (@), we notice that Q* (v) contains the set
0 = (|X - Yo|* < *(X)}.
The boundary of this set is a smooth (C?) surface, since
V(X — Yol? - 03(X)) = 2(X — Y, — ¢(X)Ve(X)) # 0

along the surface. Since this surface goes through X,, (@) is proven.
To prove (b) we use the fact that near X,

P(X) = o(Xo) + (X — X - Vo(Xo)) + o(|X — Xo|?).

Hence

V(X)) 2 ol X — X, v + V(X)) ¥ + o(|X — X))
and

0™ (X) € ol X — Xo, v + V(X)) ™ + 0o(| X — Xo))
respectively.

To prove (¢) it is enough to assume that Q* (x) is above the graph of a
smooth convex cone f(x), since the general case is a union of such sets. Then
if X, and Y, are as before, Y, — X, is by definition parallel to the inner unit
normal » to a supporting plane to F(u) at Y,,. About » we can say that it must
lie in a cone of apperture arctan \ around e, ; . On the other hand at X;,, F(v)
has the upper and lower envelopes the implicit surfaces

S = {|X - Yo> - ¢*(X) =0}
and
S, = {d(X, 1)* — ¢*(X) =0}

where 7 is the support plane to F(u) at Y. Both surfaces are smooth with unit
normal vector, 7, parallel to

Yy — Xo + ¢(Xo)Ve(Xo)
or to
v + Vo(Xy).
Therefore, the angle between 7 and e, ; is less than

arctan A + |Vo|.
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If | V| is small enough depending on \, more precisely |V¢|, a small multiple
of 1/(1 + \), the angle between 7 and e, . , is less than

arctan (\(1 + (¢ + N)|Ve))
i.e., F(v) is Lipschitz, with Lipschitz constant
N =M1 + (c + N)|Ve)).

An important corollary is our next lemma.

Lemma 11. Let u be a solution of our F. B. Problem and both ¢ and v = v,
be the functions of Lemmas 9 and 10 (i.e. ¢ satisfies the hypothesis of both
lemmas). Then

(@) v is subharmonic in Q% (v) and Q~ (v).
(b) Every point of F(v) is regular.
(c) At every point of F(v), v satisfies the asymptotic inequality

VX)) 2 B(X — Xy, v) T —adX — Xy, v) ™ + 0(| X — Xp|)

=G .
1- Ve 1+ |Vel

with

4. Main Harnack

In this section we develop the basis of our iteration technique. First, two
preliminary lemmas:

Lemma 12. Let 0 < u; < u, be harmonic functions in B, (0). Let ¢ < \/8 and
assume that on B, _.(0)

ve(X) = sup u;(Y) < u(X)
B,C0)
and further
u,(0) — v.(0) = geu,(0).
Then, for some C = C(\), = p(\) > 0, we have in B4,

Uy (X) — V1 4+ yoye(X) = Coert (0).
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Proor. For any |v| <1
WX) = u(X) — u; (X + ev)

is harmonic and positive in B, _.. By Harnack’s inequality in B, /4
w(X) = Cw(0) = Coeu,(0).

Also, both

c
V0] < 50 <5 10

on B3)‘/4 . It follows that

Uy(X) — u; (X + (1 + op)er) = w(X) + u (X + ev) — u (X + (1 + ap)ew)

> oeu,(0) — C)’\“’ tt(0)

> Coeu, (0)

if p is chosen small. []

Lemma 13. Lef 0 <\ < 1/8, then there exists a 6 and a p. > 0, (p(N), 6(N\))
and a C? family of functions ¢, (0 < t < 1) defined in B,\B,,(0, 3/4), such
that

@ I<e<l+nn

(ii) pAp > C|Vol|?

(iii) ¢ = 1 outside of B3

(V) ¢lp >1+06tn

v) |Ve| < Ctp.

Proor. It is not hard to construct a smooth function v, in B;\B,,»(0, 3/4)

such that

0<yp<1

Yo=0 outside B,/ 5(0)

|Vyo| < CAYy, for some C large
\llolsm =>v>0.

Then ¢, = 1 + tuyy is our desired function, provided that  is small enough. [

Now, a comparison theorem:
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Lemma 14. Let u, < u, be two solutions of our free-boundary problem in
B, C R"*! with F, = F(u,) a Lipschitz free boundary through the origin.
Assume further that

V(%) = sup u; () < U,(x)

€

UE<0r%> <1 - ae)u2<0,%>

3
B)\<0, Z) C Q% (uy).

in B _,, that

and that

Then, for e small enough, there exists a 8, depending only on \ and the various
constants C, such that on B,,,

Va+sae®) = sup  u(») <u(x).
B(l + 6a)e(x)

Proor. We construct a continuous family of subsolutions 7,, such that
Uy < Uy, Ty By, 2 Va+8e> and for which the comparison lemma (Lemma 7),
applies. More precisely

U,(x) = sup u;(y) + Coew, = v,(x) + Coew,
€0gr (x)

for a small constant C > 0, with w, a continuous function in
Q = By,10 — By2(0,3/4)
defined by
Aw,=0 in Q7(v)N2=Q,

Wila@ + wpnB,,,5) =0
Wielap, ,,0,3/4) = 142(0,3/4).

Let us check that 7, satisfies the hypothesis of Lemma 7 in @ with respect to
U=1u,:

(i) comparison in By, — 2% (vp) is clear. In Q; we compare the boundary
values of 9, and u, thanks to Lemma 12

(ii) follows from our hypothesis and Lemma 12, provided that u = p(\) is
kept small (we should really replace ¢ by any smaller €', to ensure the
validity of (ii) along dB,, but that is a minor detail)
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(iii) follows from part (a) of Lemma 10
(iv) is by constrution.

It only remains to check the fact that v, are indeed subsolutions.
The subharmonicity in % and @~ follows from Lemma 9. About the
asymptotic behavior, we write

U, = v, + Coew,.

From Lemma 11, v, satisfies the asymptotic inequality (c) with

B G< “ )
1 - flv¢at| ~ 1+ 5|V¢at|

Since outside B, /5, |Vo| = 0 the right inequality is satisfied by v, and hence
by ¥, since w, is positive. Inside B,,3 Q" (v,), we notice that by Dahlberg’s
theorem (Lemma 1) (w,/v,) > C, provided that ex and hence €|Ve|, is kept
small to make sure that the F(v,) are uniformly Lipschitz domains (see Lemma
10(c)). Therefore, from the asymptotic development of Lemma 11(c), we may
say that

(v, + Coew)™ = B(X — Xo, v) T + 0(|X — Xp|)

with B > (1 + Coe)B8. Therefore, to complete the proof of the theorem, we
must prove that, for p in the definition of ¢, small enough,

B2 G(o).

From the properties of G(s), s~ €G(s) is decreasing. Hence

-c
“ () 1 + €|Vey,| 1 + ¢|Ve,|

or

1+ CelV
Gla) < (1 +Ce|V¢.,,|)G< : >< €lV¢al

1 + E|V‘Potl 1 - elvsoatl

1+ C6|V¢ot| B .
1 —€|Vey,| 1+ Ce

Since |V, < Cut, the proof is complete for p small. [J

5. Intermediate Cones

In this section we state an auxiliary lemma about cones in R”.
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We denote by af(e, f) the angle between the vectors e and £, and by I'(4, e)
the cone of axis e and apperture 6, i.e.

T',e) = {r:a(r,e) < 0}.

Lemma 16. Let 0<0,< 6 < 7/2 and let

T'(, e C r<% »> = H().
For 1eT'(0/2,e), let

T 0

E@7) = 2 <(¥(T, ) + E)

and for p small, define
. [8
o) = llsin 3 + 5@ -

Finally, let
S " = U B (D) (T) .

7€I'(6/2,€)
Then, 30, & such that
I'6,e)cT@,2)CS,
and
-0

71__/2_—0 2 Q(by, u) > 0.

Proor. Wereduce it to a problem in the plane through stereographic projec-
tion. We first restrict ourselves to the sphere, and then project using » as the
north pole. By symmetry, the lemma reduces to the following question in the
plane (changing slightly 6, 6,, )

Let Dy(e) be a disc in R of radius 6 > 6, > 0. Assume that D, C D, , the unit
disc. For 0 < \g <X < \; < 1, for any 7€ D,y4(e), define
E(r) = (1= [|7] + (1 =MD
(note that E(7) > 0, since Dy C D;) and p(7) = (1 = N)f + pE(7) O < p < 1).
Then
S.,= U B,u(7) D D5(@) D Dyle)

T€D, 4(e)
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with

6-96
19 = O, 09, Ao, ) > 0.

The proof is an elementary computation. [

6. The Basic Iteration
We are now ready to prove our basic iterative lemmas.

Lemma 17. Let u be a weak solution of our F. B. Problem on B;. Assume
that, for some 0 < 6, < 0 < w/2, u is monotonically increasing for any direc-
tion TeT'(0,e,). Then, 3u < 1, (w(6,)) and e a unit vector such that, for

6— /2 =p@ - /2),
the cone
I'@,e) D I'®,e,)

and, on B, ,,, u is monotonically increasing for any direction 7€ T'(8, e).

Proor. We first point out that B, ,,n é,o(‘%e,,) is all contained in @* by the
monotonicity of #. Let » be the direction of Vu at %e,, . Then for any 7€ I'(0, e,),
we have that on By (3€,), D4 is harmonic and nonnegative, and

3
D’“(Ze"> = (Vu, 1) = |Vu|{v, 7).
From Lemma 4 and Harnack’s inequality applied to both D,u and u in

3
B1/4sin oo(Zen)’ we get

DTuIBl/4sin90(3en/4) > C(sup |Vu|){7,») > supD u > C<B su%e o u)(v, 7).
1/8sin g\~ 1

Let 7 be a small vector in I'(6/2, e,), and let #(x) = u(x — 7). We now apply
the main Harnack-type Lemma 14 with

Uy (x) = u(x)
Uy (x) = u(x)
. 6
€= |7|sin—

2
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and o defined as

g= C<% —~ <a(‘r, v) + g—)) ~ Ccos <Ot(7, v) + %)

(C to be chosen). Then, the only nontrivial hypothesis is that

Ue<0’%> <d- 0'6)112(0’%-)-

Let YeB.(X), uy(Y)=u(Y - 1) =uX - 7—- (X - Y)) = u(X — 7) with
a(7, 7)< 0/2

(since |7 — 7| = | X — Y| < |7|sin6/2). Also

since, 7€6/2 < w/4. It follows that

inf D;u;C[ sup u}o},?)
B, ,5(/4ey) B, 4(3/4e;)

= C(sup u)|7| cos a(», 7)

def
= oe(sup u).

(Here we chose C in the definition of ¢). Hence
u(X - 7) S u(X) — D;u(X) > (1 — su(X)

and the hypotheses of the Harnack lemma (Lemma 14) are satisfied.
It follows that on B, ,,

sup  u(y — 7) < ux).
B(l + 87)e (X)

Recalling that € = |7|sin6/2, ¢ = C(x/2 — (a7, v) + 6/2)), we get, for any 7
in I'(6/2, e,), that
. 0
(1 + d0)e = |1I<sm—2—>(l + 6CE(7))

(in the notation of Lemma 16) and for 6, < 6 < w/2 we get

9
(1 + 60)e > |7 sin <% + [;LE(T)>’ p= 507"-
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The statement above then translates into saying, for any Z of the form
Z=Y -7 (for YEB sino2+ iy X)) =X - (Y- X)—7=X—17, with 7
in S, (of Lemma 16), we have

u(Z) < u(X).

That is, u is monotone for any direction 7 in §,, and in particular in the
intermediate cone I'(9, &).
The proof of the lemma is now complete.

ProOF OF THEOREM 1. To prove Theorem 1, we repeat inductively Lemma
17, (notice that if u is a solution of our F. B. Problem; #(AX)/\ is also a solu-
tion in the corresponding domain). We get that if u# is a weak solution as in
Theorem 1, then on B, _«, u is monotone in a cone of directions

T (0, ex)
with
I-‘(6k+ 1> €k + 1) o 1—‘(eks ek)
and
T/2 = Ok 41 _
w2 =8, =pu<l.

It follows that 7/2 — 6, < b* and hence the fact that the free boundary is C**®
at the origin for some a(b) > 0. (Note: the first step in the inductive process,
i.e. the free boundary being Lipschitz implies # to be monotone in a cone of
directions, follows from Lemma 5). [

7. A Generalization

In this last section, we show how to treat the case in which X and » dependence
is introduced in the free-boundary relation and how the restriction on G at
infinity are unnecessary. That is, we now consider weak solutions to the free-
boundary problem

u =G, ,X,»)
in the same sense as before, i.e. whenever X, has a tangent ball from Q* or @~
Uu=p(X—-Xp, vyt —a{X - Xp,v)"
with '
B = G(a, Xg, v)



158 Luis A. CAFFARELLI

(v given by the radial direction of the tangent ball at X,) and assume that

(a) log G is Lipschitz continuous on X and » for bounded values of u,,
(b) for u,” in a compact interval [0, M], G is strictly monotone in #, and
s~ €G(s, X, v) is decreasing in s, (C = C(M)).

Then we have

Theorem 2. Same geometric situation as in Theorem 1, u and G satisfying
now the conditions above, the same conclusion as in Theorem 1 holds.

In order to prove Theorem 2, we must do two things. First, to show that
u is Lipschitz continuous, eliminating the need to impose conditions at infinity
on G. Second, to verify that the dependence in X and » introduce controllable
perturbations in our argument. The first step is achieved by the following
monotonicity formula, due to Alt, Friedman and myself.

Lemma 18. (See [A-C-F]). Let u be a continuous function in B, u(0) = 0.
Assume that on {u>0}, Au>0 and on {u <0}, Au<0. Then, (p, o are
radial and spherical coordinates in R")

2 -2
IB (Vu+)pdpdojB’(Vu Yo dp do

gr) = . 4

is an increasing function of r.

Remark. g is shown to be finite from the continuity of # by an approxima-
tion of say, u*, by a smooth function and the fact that

1
VutP < (VutY +utAu’ =EA(u+)2

and

1

de.

pdpdo =

By integrating by parts, this allows us to control g(r) for say, r < 1/2, by
(supp, u))*.

Lemma 19. (Corollary to Lemma 18). Let u be a weak solution as in Theo-
rem 2. Then u is Lipschitz continuous in (say) B, ,,.

Proor. It is enough to prove that |u(X)| < Cd(X, F).
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From Lemma 18 and from the remark following it,

g < C(sup Iul>4
Bl

for any r < 1/2 and taking as origin any point X, on FNB,,,. We consider
two cases:

(@ ulg_ =0or,
(b) u|, - is never zero.

In Case (@) let Xe ™, u(X) = g, d(X, F) = p, and X, €dB,(X)NFNB,,,.
Then by Harnack’s inequality, u|, 200 > Co and hence
p.

u|Bp(X) >h

where 4 is the auxiliary radially symmetric harmonic function on B,(X) —
Bp,z().( ) with values A| a8,00 =0 and A 98,00 = Co. Since h has linear
behaviour

h=CZ(X- X, v
)

near X, and

U= a(X = Xo, 1)+ — B(X = Xop vy~ + 0(|X — Xo))
= G(O, Xo, V)(X_ XQ, V> * + 0'(]X—‘ Xol)

we get

C—<G0,X,,»)<C,

o
o
or

d< Cp

and Case (a) is complete.
Case (b) (we only prove it for # ™). We proceed as in Case (¢) and we obtain
at X, the estimate

UuX) =X — Xp, )t + (X — Xp, )~ + 0(| X — Xo|)
with

a
°|a
N
R

and
o= G(B’ XO’ V)'
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We now bring into play the monotonicity formula by pointing out that
g(0") = Ca?p.

(Indeed, in any non-tangential domain, |[{(X — X,, »)| > 8, Vu converges to
av (resp. Bv)). Therefore,

0?62 < Cltt]bugs
and
a = G(B, Xy, v).

Since G is monotone in 3, and

G(laX(), V) 2 ko > 0
BG(69 XO: V) > ILOB'
Therefore,
B<Cluliep,<C
and hence

a<C.
It follows that ¢/p < Ca < C and Case (b) is also proven.

To complete the proof of the theorem, we only need to prove

Lemma 20. Let o, be the one parameter family of functions constructed in
the proof of Lemma 14. There exists a 6 > 0, depending only on \ and the
various constants C such that if

|log (@, X, ») — log (o, Y, »)| < 60| X — Y|
Sfor any o < |Vu|,. for any veS,, then v, is still a subsolution of our

generalized free boundary problem.

Proor. We estimate once more the coefficients in the asymptotic inequality
(c) of Lemma 11, satisfied by v, at X, in F(v). For that, we go back to Lemma
10, and with the notation there employed, we now have that v satisfies there
the assymptotic inequality

VX)) 2 alX — X )T — B(X — X, )™ + o(| X — Xp|)

with

i o )
——— 2G| ———— Y,
1 — Ce| Ve, <l + Ce| V| 0 Yo
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where
(@ Y€ an,(Xo)

Y, — X,

———- and
| Yo — Xo

(b) Vo =

(c) v is parallel to » + eVep,,.
It follows that

| Yo — Xo| < Ce
and
[v = vl < €|Ve|.

Therefore

o
1 —log 1 + Ce|V >logGl ——— Y,,
0g6 og EI qaat‘ og <l + CE|V%| 0 V>

* | » X0, V> — foe — Ce|Vop,,|

=1 T AT
o8 G< 1 + Ce|Ve,

= log G(a, Xy, v) — Ce|Ve,,| — Chae.
But log 8 > log 8 + Coe (8 and B being bounded). The proof of the lemma is

complete.

PROOF OF THEOREM 2. To prove Theorem 2, we now want to apply the
equivalent of Lemma 17 inductively. We want, therefore, to make sure that
the hypothesis of the Harnack type Lemma 14 (now Lemma 20) holds. This
follows from the fact that after a first Lipschitz expansion,

#X) = —)1\—u()\X),

the Lipschitz norm of log G in X becomes as small as we wish, (= 0) and that
after a k™ expansion, |log| A S 92~ " and o, can be chosen > 2"

Remark. Only a Holder condition in X and » is necessary, but this requires
a more careful argument.
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