Homeomorphisms Preserving A_p

R. Johnson and C. J. Neugebauer

Introduction

In a recent paper, Benedetto, Heinig and Johnson [1] showed that if w is a monotone A_2 weight, w(1/x) is also an A_2 weight. Here A_2 denotes the set of weights satisfying the condition found by Muckenhoupt, defined in general by

$$w \in A_p$$
 iff $\sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \, dx\right) \left(\frac{1}{|Q|} \int_{Q} w^{1-p'} \, dx\right)^{p-1} < +\infty$,

1 , which was shown by Muckenhoupt [6] to characterize the weights w for which the Hardy-Littlewood maximal function

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} f(y) dy, \quad f \geqslant 0,$$

satisfies

$$\int Mf(x)^p w(x) dx \leqslant C^p \int f(x)^p w(x) dx.$$

Hunt, Muckenhoupt and Wheeden showed that A_p is the condition that characterizes weights for which the Hilbert transform

$$Hf(x) = \frac{1}{\pi} \lim_{\epsilon \to 0} \int_{|x-y| > \epsilon} \frac{f(y)}{x - y} dy$$

satisfies

$$\int |Hf(x)|^p w(x) \, dx \leqslant C^p \int |f(x)|^p w(x) \, dx$$

(see [4] for the proof). The Hilbert transform commutes with the unitary operator on $L^2(\mathbb{R})$,

$$Uf(x)=\frac{1}{x}f(1/x),$$

and this gives the result that for any $w \in A_2$, $w(1/x) \in A_2$. We have considered the more general question: which homeomorphisms of \mathbb{R} preserve the A_p class? We answer this question, (and its counterpart on \mathbb{R}^n) and apply it to determine the pointwise multipliers of A_p . In view of the close connection between A_p , reverse Hölder inequalities and $A_\infty = \bigcup_{p < \infty} A_p$, we also investigate the corresponding questions for these conditions, by means of a precise connection between reverse Hölder inequalities and A_∞ . We also have results for double weights $(u, v) \in A_p$ though not so complete.

1. Notation and Preliminary Results

In addition to the A_p -classes we define for 1 ,

$$A_p(w) = \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \right) \left(\frac{1}{|Q|} \int_{Q} w^{1-p'} \right)^{p-1}, \quad \frac{1}{p} + \frac{1}{p'} = 1.$$

We shall also need A_1 , the class of all w for which $Mw \le cw$ with

$$A_1(w) = \inf \{c: Mw \leqslant cw\}.$$

We let

$$A_{\infty} = \bigcup_{p < \infty} A_p,$$

and write

$$A_{\infty}(w) = \lim_{p \to \infty} A_p(w).$$

This limit exists since for $q \ge p$, $A_q(w) \le A_p(w)$. We say that $w \in RH_{p_0}$ (reserve Hölder) if

$$\left(\frac{1}{|Q|}\int_{Q}w^{p_0}\right)^{1/p_0}\leqslant \frac{C}{|Q|}\int_{Q}w,$$

and we abbreviate by $RH_{p_0}(w)$ the infimum of all such C. It is easily seen by Hölder's inequality that $A_p(w) \ge 1$ and $RH_p(w) \ge 1$.

We will repeatedly use some common properties of A_p , namely,

- (a) $w \in A_p$ if and only if $w^{1-p'} \in A_{p'}$,
- (b) $w \in A_p$ implies $w \in A_q$, $q \ge p$, and $w^{\alpha} \in A_p$, $0 \le \alpha \le 1$,
- (c) if $w_1, w_2 \in A_p$, then $w_1^{\alpha} w_2^{1-\alpha} \in A_p$, $0 \le \alpha \le 1$,
- (d) $w \in A_p$, $1 , if and only if there exists <math>u, v \in A_1$, so that $w = uv^{1-p}$,
- (e) $w \in A_p$ for some p if and only if $w \in RH_q$ for some q,
- (f) if $w \in A_p$, then $w^{\tau} \in A_p$ for some $\tau > 1$,
- (g) if $w \in A_p$, p > 1, then $w \in A_{p-\epsilon}$ for some $\epsilon > 0$.

An excellent reference is [4].

We will also use the close connection between A_p and BMO, i.e., the space of functions satisfying

$$\sup_{Q} \frac{1}{|Q|} \int_{Q} |f - f_{Q}| \, dx < \infty,$$

where

$$f_Q = \frac{1}{|Q|} \int_Q f.$$

The sup is a semi-norm on BMO which gives constants norm 0. The connection between the two classes is the following. For any $w \in A_p$, $\log w \in BMO$, and for any $u \in BMO$ and $1 , <math>e^{\lambda u} \in A_p$ for some $\lambda > 0$. This last result is not true for p = 1.

The classes RH_{p_0} and A_{∞} are closely related as the following theorem [12] shows.

Theorem 1.1. $w \in RH_{p_0}$ if and only if $w^{p_0} \in A_{\infty}$.

We postpone the simple proof till Section 3 where we need a quantitative version of this result.

As a first general composition type theorem we have

Theorem 1.2. Let $h: \mathbb{R} \to \mathbb{R}$ be arbitrary. Then the following statements are equivalent for $1 < p_0 < \infty$.

- (1) $w \in A_{\infty}$ implies $w \circ h \in A_{\infty}$,
- (2) $w \in RH_{p_0}$ implies $w \circ h \in RH_{p_0}$, (3) $w \in A_1$ implies $w \circ h \in \bigcap_{p>1} A_p$.

Either one of these statements implies, but is not implied by

(4) $w \in A_{p_0}$ implies $w \circ h \in A_{p_0}$.

PROOF. Theorem 1.1 implies (1) \Leftrightarrow (2). The implication (1) \Rightarrow (4) follows from the fact that $w \in A_{p_0}$ if and only if w and $w^{1-p_0'}$ are in A_{∞} , [4, p.408]. This also shows (1) \Rightarrow (3). For the proof of (3) \Rightarrow (1), let $w \in A_{\infty}$. Then there is $1 , and there are <math>u_1, u_2 \in A_1$ with $w = u_1 \cdot u_2^{1-p}$. Hence $w \circ h = u_1 \circ h \cdot (u_2 \circ h)^{1-p}$. Since $u_1 \circ h \in A_2$, there is $\tau > 1$ so that $(u_1 \circ h)^{\tau} \in A_2$ and $\tau'/(p'-1)+1 \geqslant 2$. We let $q = \tau'/(p'-1)+1$ and note that $(u_1 \circ h)^{\tau} \in A_q$ and $(u_2 \circ h) \in A_q$. We claim that $(u_1 \circ h) \in A_q$. To prove this, we note that

$$\frac{1}{|I|} \int_{I} u_{1} \circ h \cdot (u_{2} \circ h)^{1-p} \leq \left(\frac{1}{|I|} \int_{I} u_{1} \circ h^{\tau}\right)^{1/\tau} \left(\frac{1}{|I|} \int_{I} (u_{2} \circ h)^{\tau'(1-p)}\right)^{1/\tau'}$$

and

$$\begin{split} \frac{1}{|I|} \int_{I} (u_{1} \circ h)^{1-q'} (u_{2} \circ h)^{(1-p)(1-q')} & \leq \left(\frac{1}{|I|} \int_{I} (u_{1} \circ h)^{\tau(1-q')}\right)^{1/\tau} \\ & \cdot \left(\frac{1}{|I|} \int_{I} (u_{2} \circ h)^{\tau'(1-p)(1-q')}\right)^{1/\tau'}. \end{split}$$

Consequently,

$$\begin{split} \frac{1}{|I|} \int_{I} w \circ h \left(\frac{1}{|I|} \int_{I} (w \circ h)^{1-q'} \right)^{q-1} & \leq \left(\frac{1}{|I|} \int_{I} (u_{1} \circ h)^{\tau} \right) \\ & \cdot \left(\frac{1}{|I|} \int_{I} (u_{1} \circ h)^{\tau(1-q')} \right)^{(q-1)/\tau} \\ & \cdot \left(\frac{1}{|I|} \int_{I} (u_{2} \circ h)^{\tau'(1-p)} \right)^{1/\tau'} \\ & \cdot \left(\frac{1}{|I|} \int_{I} (u_{2} \circ h)^{\tau'(1-p)(1-q')} \right)^{(q-1)/\tau'} \end{split}$$

Since $\tau'(1-p)(1-q') = 1$ or $\tau'(1-p) = 1-q$ we see that

$$A_a(w \circ h) \leq A_a(u_1 \circ h^{\tau})^{1/\tau} A_{a'}(u_2 \circ h)^{(q-1)/\tau'}.$$

In order to complete the proof we need to give an example for $(4) \neq (1)$. We let h(x) = 1/x. Then, as observed in the introduction, (4) holds for $p_0 = 2$. However, h cannot preserve A_{∞} , since

$$w(x) = |x|^2 \in A_{\infty}$$
, but $w \circ h(x) = |x|^{-2} \notin A_{\infty}$.

Remark. The main problem with which this paper is concerned is to find conditions on h so that (4) is equivalent with the other conditions of Theorem 1.2, and such a condition will have to be independent of p_0 .

2. Homeomorphisms Preserving A_p

We begin with several preliminary lemmas some of which are known [3] and are included here for the sake of completeness.

Lemma 2.1. Let $w \in A_{\infty}$ and assume that $w^{\epsilon} \in A_1$ for some $\epsilon > 0$. Then $w \in A_1$.

Proof. We may suppose that $\epsilon = p_0' - 1$, since we may decrease ϵ and increase p_0 by property (b) of Section 1. Then

$$\begin{split} \frac{1}{|I|} \int_{I} w \, dx &\leq A_{p_0}(w) \left| \left(\frac{1}{|I|} \int_{I} w^{-\epsilon} \right)^{1/\epsilon} \right| \\ &\leq A_{p_0}(w) \left(\frac{1}{|I|} \int_{I} w^{\epsilon} \right)^{1/\epsilon} \\ &\leq A_{p_0}(w) \left(A_1(w^{\epsilon}) \inf_{I} w^{\epsilon} \right)^{1/\epsilon} \\ &\leq A_{p_0}(w) A_1(w^{\epsilon})^{1/\epsilon} \inf_{I} w, \end{split}$$

where in the second inequality we used Hölder's inequality in the form

$$1 \leqslant \left(\frac{1}{|I|} \int_{I} \varphi\right) \left(\frac{1}{|I|} \int_{I} \frac{1}{\varphi}\right).$$

Our necessary and sufficient condition will involve the space $\bigcap_{p>1} A_p$. We will see that this space contains A_1 properly, and for this we need the simple

Lemma 2.2. If $w, w^{-1} \in A_1$, then w = 1, i.e., w is bounded above and below.

Proof.

$$\frac{1}{A_1\left(\frac{1}{w}\right)\inf_{I}\frac{1}{w}} \leqslant \frac{1}{\frac{1}{|I|}\int_{I}\frac{1}{w}} \leqslant \frac{1}{|I|}\int_{I}w \leqslant A_1(w)\inf_{I}w.$$

Thus

$$\sup_{I} w \leqslant A_{1} \left(\frac{1}{w}\right) A_{1}(w) \inf_{I} w$$

and the result follows.

Lemma 2.3. $A_1 \subseteq \bigcap_{p>1} A_p$.

PROOF. If equality held, then

$$\left\{w;w,w^{-1}\in\bigcap_{p>1}A_p\right\}=\{w;w,w^{-1}\in A_1\}=\{w;w\simeq 1\}.$$

However, by [4, p. 474],

$$\left\{w: w, w^{-1} \in \bigcap_{p>1} A_p\right\} = \left\{e^{\varphi}: \varphi \in \text{BMO-Closure } L^{\infty}\right\}$$

 $\supseteq \{e^{Hf}: f \text{ continuous of compact support}\}\$

by [10]. Then $e^{Hf} \simeq 1$, for each continuous f of compact support, and this is impossible.

Remark. An explicit example of

$$w \in \bigcap_{p>1} A_p \setminus A_1$$

is

$$w(t) = \left(\log \frac{1}{|t|}\right)^{-1}$$
, for $|t|$ close to 0.

This example was communicated to us by Rubio de Francia.

As we shall see now, Lemma 2.1 remains valid for $\bigcap_{p>1} A_p$.

Lemma 2.4. Let $w \in A_{p_0}$ for some $1 < p_0 < \infty$ and suppose that for some $\epsilon > 0$, $w^{\epsilon} \in \bigcap_{p>1} A_p$. Then $w \in \bigcap_{p>1} A_p$.

Proof. Since we may decrease ϵ and increase p_0 , we may suppose $\epsilon = p_0' - 1$. Then

$$\frac{1}{|I|} \int_I w \leqslant A_{p_0}(w) \left/ \left(\frac{1}{|I|} \int_I w^{-\epsilon} \right)^{1/\epsilon} \leqslant A_{p_0}(w) \left(\frac{1}{|I|} \int_I w^{\epsilon} \right)^{1/\epsilon} \cdot \right.$$

Fix 1 , and let

$$r = \frac{\epsilon}{p' - 1} + 1.$$

Since $w^{\epsilon} \in A_r$,

$$\frac{1}{|I|}\int_I w^{\epsilon} \left(\frac{1}{|I|}\int_I w^{\epsilon(1-r)}\right)^{r-1} \leq A_r(w^{\epsilon}),$$

and hence we have

$$\left(\frac{1}{|I|}\int_{I}w\right)\left(\frac{1}{|I|}\int_{I}w^{\epsilon(1-r')}\right)^{(r-1)/\epsilon}\leqslant A_{r}(w^{\epsilon})^{1/\epsilon}A_{p_{0}}(w).$$

Since $(r-1)/\epsilon = p-1$ and $\epsilon(1-r') = 1-p'$, $w \in A_p$ and $A_p(w) \leqslant A_r(w^{\epsilon})^{1/\epsilon}$

As we shall discuss further below, the case n = 1 is the most involved. We shall assume throughout unless otherwise noted, that $h: \mathbb{R} \to \mathbb{R}$ is a homeomorphism onto such that h, h^{-1} are locally absolutely continuous and, without loss of generality, that $h' \ge 0$.

Our next result implies a quantitative version of a result known qualitatively by the result of [4, p. 402] on comparability of measures.

Lemma 2.5. $(h^{-1})' \in RH_q$ if and only if $h' \in A_{q'}$ and $RH_q((h^{-1})') = A_{q'}(h')^{1/q'}$.

PROOF. If $(h^{-1})' \in RH_{a'}$ then for every interval J,

$$\left(\frac{1}{|I|}\int_{J}(h^{-1})'(t)^{q}\,dt\right)^{1/q} \leqslant RH_{q}((h^{-1})')\frac{1}{|J|}\int_{J}(h^{-1})'(t)\,dt,$$

where h(I) = J. Let

$$L = \frac{1}{|I|} \int_I h' \left(\frac{1}{|I|} \int_I h'^{(1-q)} \right)^{q'-1} \cdot$$

The first term of L is |J|/|I| and the second is, by the change of variables t = h(x),

$$\begin{split} \frac{1}{|I|} \int_{I} h'^{(1-q)}(x) \, dx &= \frac{1}{|I|} \int_{J} \frac{1}{h' \circ h^{-1}(t)^{q}} \, dt \\ &= \frac{|J|}{|I|} \left(\frac{1}{|J|} \int_{J} (h^{-1})'(t)^{q} \, dt \right) \leqslant \frac{|J|}{|I|} \, RH_{q}((h^{-1})')^{q}. \\ \left(\frac{1}{|J|} \int_{J} (h^{-1})'(t) \, dt \right)^{q} &= RH_{q}((h^{-1})')^{q} \left(\frac{|J|}{|I|} \right)^{1-q}. \end{split}$$

Consequently,

$$L \leq \left(\frac{|J|}{|I|}\right) R H_q((h^{-1})')^{q(q'-1)} \left(\frac{|J|}{|I|}\right)^{(1-q)(q'-1)}$$

and this gives

$$A_{q'}(h') \leq RH_q((h^{-1})')^{q'}.$$

Conversely, if $h' \in A_{q'}$, we write with the change of variables t = h(x)

$$\frac{\left(\frac{1}{|J|}\int_{J}(h^{-1})'(t)^{q}\,dt\right)^{1/q}}{\frac{1}{|J|}\int_{J}(h^{-1})'(t)\,dt}=\left(\frac{1}{|J|}\int_{J}h'(x)^{1-q}\,dx\right)^{1/q}\left(\frac{|I|}{|J|}\right)^{-1}.$$

Raise both sides to the $q^{\prime th}$ power and then

$$\left\{\frac{\left(\frac{1}{|J|}\int_{J}(h^{-1})'(t)^{q}dt\right)^{1/q}}{\frac{1}{|J|}\int_{J}(h^{-1})'(t)dt}\right\}^{q'} \leq \frac{|J|}{|I|}\left(\frac{1}{|I|}\int_{I}h'(x)^{1-q}dx\right)^{q'-1},$$

and thus $RH_q((h^{-1})')^{q'} \leq A_{q'}(h')$.

An easy consequence is the following lemma.

Lemma 2.6. $(h^{-1})' \in A_{\infty}$ if and only if $h' \in A_{\infty}$.

PROOF. If $(h^{-1})' \in A_{\infty}$, then $(h^{-1})' \in RH_{p'}$, for some $1 < p' < \infty$, and hence $h' \in A_n \subset A_{\infty}$. The same argument gives the converse direction.

Below, and throughout the paper, we will use the notation Q
leq P to mean that Q is majorized by and expression depending on P only so that for P
leq T, Q
leq T. Now we are ready for one of the main theorems of the paper.

Theorem 2.7. Let $h: \mathbb{R} \to \mathbb{R}$ be a homeomorphism as above, and suppose $1 < p_0 < \infty$, $0 \le \alpha \le 1$. Then, for every $w \in A_{p_0}$, $w \circ h \cdot h'^{\alpha} \in A_{p_0}$ with $A_{p_0}(w \circ h \cdot h'^{\alpha}) \not\mid A_{p_0}(w)$ if and only if $h' \in \bigcap_{p>1} A_p$.

PROOF. Suppose first that $h' \in \bigcap_{p>1} A_p$. If the result holds for $\alpha=0$ and $\alpha=1$, it holds for $0<\alpha<1$ by property (c) of A_p -weights. For $\alpha=0$, we use Property (f) of A_p -weights. If $w \in A_{p_0}$, then there is $\tau>1$ so that $w^{\tau} \in A_{p_0}$. Let

$$L = \frac{1}{|I|} \int_{I} w \circ h \left(\frac{1}{|I|} \int_{I} (w \circ h)^{1-p'_{0}} \right)^{p_{0}-1}$$

and make the change of variables t = h(x), h(I) = J. The first term of the product can be estimated by

$$\frac{1}{|I|} \int_{I} w \circ h = \frac{1}{|I|} \int_{J} \frac{w(t)}{h' \circ h^{-1}(t)} dt$$

$$\leq \left(\frac{1}{|I|} \int_{J} w^{\tau}\right)^{1/\tau} \left(\frac{1}{|I|} \int_{J} \left(\frac{1}{h' \circ h^{-1}}\right)^{\tau'}\right)^{1/\tau'}.$$

We change back to the x-variable in the last integral and obtain

$$\frac{1}{|I|} \int_{I} w \circ h \leq \left(\frac{|J|}{|I|}\right)^{1/\tau} \left(\frac{1}{|J|} \int_{J} w^{\tau}\right)^{1/\tau} \left(\frac{1}{|I|} \int_{I} h'^{(1-\tau)}\right)^{1/\tau'} \\
\leq \left(\frac{1}{|J|} \int_{J} w^{\tau}\right)^{1/\tau} A_{\tau}(h')^{1/\tau}.$$

Similarly the second term in L is

$$\frac{1}{|I|} \int_{I} (w \circ h)^{1-p'_0} \leq \left(\frac{1}{|J|} \int_{J} w^{\tau(1-p'_0)}\right)^{1/\tau} A_{\tau}(h')^{1/\tau},$$

and hence

$$A_{p_0}(w \circ h) \leq A_{p_0}(w^{\tau})^{1/\tau} A_{\tau}(h')^{p_0/\tau}.$$

It is well-known [4, p. 397-9] that τ and $A_{p_0}(w^{\tau})$ depend only on $A_{p_0}(w)$; in fact, $A_{p_0}(w^{\tau}) \leqslant cA_{p_0}(w)$ once τ has been chosen to depend on $A_{p_0}(w)$.

The case $\alpha = 1$ is similar but requires more complicated indices. We call again

$$L = \left(\frac{1}{|I|} \int_I w \circ hh'\right) \left(\frac{1}{|I|} \int_I (w \circ hh')^{1-p_0'}\right)^{p_0-1},$$

and proceeding as above, estimate the first term by

$$\frac{1}{|I|} \int_{I} w \circ hh' = \frac{1}{|I|} \int_{J} w(t) dt$$

$$= \frac{1}{|I|} \int_{I} h' \left(\frac{1}{|J|} \int_{J} w \right)$$

$$\leq \frac{1}{|I|} \int_{I} h' \left(\frac{1}{|J|} \int_{J} w^{\tau} \right)^{1/\tau}.$$

The second term of the product is

$$\begin{split} \frac{1}{|I|} \int_{I} (w \circ hh')^{1-p_0} & \leq \left(\frac{1}{|I|} \int_{J} w^{\tau(1-p_0')}\right)^{1/\tau} \left(\frac{1}{|I|} \int_{J} (h' \circ h^{-1})^{-\tau'p_0'}\right)^{1/\tau'} \\ & = \left(\frac{|J|}{|I|}\right)^{1/\tau} \left(\frac{1}{|J|} \int_{J} w^{\tau(1-p_0')}\right)^{1/\tau} \left(\frac{1}{|I|} \int_{I} h'^{(1-\tau'p_0')}\right)^{1/\tau'}. \end{split}$$

Hence

$$L \leq A_{p_0}(w^\tau)^{1/\tau} \left(\frac{1}{|I|} \int_I h' \right)^{1+(p_0-1)/\tau} \left(\frac{1}{|I|} \int_I h'^{(1-\tau'p'_0)} \right)^{(p_0-1)/\tau'}.$$

Since $h' \in \bigcap_{p>1} A_p$, we have $h' \in A_{p'}$, $p' = \tau' p'_0$. We note that

$$p-1=\frac{1}{\tau'p'_0-1}=\frac{(\tau-1)(p_0-1)}{p_0+\tau-1}$$

and

$$\frac{p_0}{p} = \frac{p_0(p'-1)}{p'} = \frac{\tau + p_0 - 1}{\tau},$$

and this allows us to write

$$\begin{split} L & \leq A_{p_0} (w^\tau)^{1/\tau} \bigg\{ \frac{1}{|I|} \int_I h' \bigg(\frac{1}{|I|} \int_I h'^{(1-p')} \bigg)^{\frac{p_0 - \tau}{\tau'(\tau + p_0 - 1)}} \bigg\}^{(\tau + p_0 - 1)/\tau} \\ & \leq A_{p_0} (w^\tau)^{1/\tau} \cdot A_{p_0} (h')^{p_0/p} \end{split}$$

which completes the proof for $\alpha = 1$.

Now we suppose that for a fixed α and p_0 , and any $w \in A_{p_0}$, $w \circ h \cdot h'^{\alpha} \in A_{p_0}$ with $A_{p_0}(w \circ h \cdot h'^{\alpha}) \not\mid A_{p_0}(w)$. We will first show, using extrapolation, that there is $\eta > 0$ so that $h'^{\eta} \in \bigcap_{p>1} A_p$. Since $w \circ h \cdot h'^{\alpha} \in A_{p_0}$, by [6]

$$\int Mf^{p_0}w \circ hh'^{\alpha} \leqslant C \int f^{p_0}w \circ hh'^{\alpha}$$

where $C = C_{p_0} A_{p_0} (w \circ hh'^{\alpha})^{p(p'_0 + 1)}$ [2]. The substitution t = h(x) gives

$$\int Mf^{p_0}(h^{-1}(t))\frac{w(t)}{h'\circ h^{-1}(t)^{1-\alpha}}dt \leq C\int f(h^{-1}(t))^{p_0}\frac{w(t)}{h'\circ h^{-1}(t)^{1-\alpha}}dt.$$

Let $g(t) = f \circ h^{-1}(t)/h' \circ h^{-1}(t)^{(1-\alpha)/p_0}$. Then $f(x) = h'(x)^{(1-\alpha)/p_0}g \circ h(x)$. The sublinear operator

$$Tg(t) = \frac{M(h'^{(1-\alpha)/p_0}g \circ h)(h^{-1}(t))}{h' \circ h^{-1}(t)^{(1-\alpha)/p_0}}$$

satisfies

$$\int Tg^{p_0}w \leqslant C \int g^{p_0}w, \qquad w \in A_{p_0} \quad \text{and} \quad C \nmid A_{p_0}(w).$$

We can now apply the extrapolation theorem [4, p. 448] and obtain

$$\int Tg^p w \leqslant C \int g^p w,$$

 $w \in A_p$, $1 with <math>C \nmid A_p(w)$. We undo the change of variables and get

$$\int M(h'^{(1-\alpha)/p_0}g \circ h)^p w \circ h \cdot h'^{1-(1-\alpha)p/p_0} \leq C \int g \circ h^p w \circ hh'$$

$$= C \int (g \circ h \cdot h'^{(1-\alpha)/p_0})^p w \circ h \cdot h'^{1-(1-\alpha)p/p_0},$$

which in terms of $f = g \circ hh'^{(1-\alpha)/p_0}$ says

$$\int Mf^p w \circ h \cdot h'^{1-(1-\alpha)p/p_0} \leq C \int f^p w \circ h h'^{1-(1-\alpha)p/p_0}$$

guaranteeing that $w \circ h \cdot h'^{1-(1-\alpha)p/p_0} \in A_p$. We choose w=1 and restrict $1 , and then <math>h'^{\alpha} \in A_p$, $1 , if <math>\alpha > 0$, while if $\alpha = 0$, we can restrict 1 some <math>0 < g < 1 and conclude $h'^{1-g/2} \in \bigcap_{p>1} A_p$, and this completes the proof of the claim that $h''' \in \bigcap_{p>1} A_p$ for some $\eta > 0$.

To conclude that $h' \in \bigcap_{p>1} A_p$, we want to apply Lemma 2.4 which requires us to show that $h' \in A_{\infty}$. To do this, we first show that h preserves BMO. If $u \in BMO$, then $e^{\lambda u} \in A_{p_0}$ for some $\lambda > 0$, and thus by hypothesis, $e^{\lambda u \circ h} h'^{\alpha} \in A_{p_0}$. Hence $\lambda u \circ h + \alpha \log h' \in BMO$. Since $h'' \in \bigcap_{p>1} A_p$, $\log h' \in BMO$ and thus $u \circ h \in BMO$. By [5], $(h^{-1})' \in A_{\infty}$ and hence by Lemma 2.6, $h' \in A_{\infty}$.

The situation for $p_0 = 1$ is different depending on whether $\alpha = 0$ or $0 < \alpha < 1$.

Theorem 2.8. Let $h: \mathbb{R} \to \mathbb{R}$ be a homeomorphism as before and suppose that $0 < \alpha \le 1$. Then for every $w \in A_1$, $w \circ h \cdot h'^{\alpha} \in A_1$, with $A_1(w \circ h \cdot h'^{\alpha}) \nmid A_1(w)$ if and only if $h' \in A_1$.

Theorem 2.9. Let $h: \mathbb{R} \to \mathbb{R}$ be a homeomorphism as before. Then for every $w \in A_1$, $w \circ h \in A_1$ with $A_1(w \circ h) \not\mid A_1(w)$ if and only if $h' \in \bigcap_{p>1} A_p$.

We begin with the proof of Theorem 2.9 since it requires the least change from the proof of Theorem 2.7. If $h' \in \bigcap_{p>1} A_p$ and $w \in A_1$, we first choose $\tau > 1$ so that $w^{\tau} \in A_1$. The argument gave

$$\frac{1}{|I|}\int_I w\circ h \leqslant \left(\frac{1}{|J|}\int_J w^\tau\right)^{1/\tau} A_\tau(h')^{1/\tau}.$$

Since $w^{\tau} \in A_1$, this can be estimated by

$$\frac{1}{|I|}\int_I w\circ h\leqslant \left(\inf_J w^\tau\right)^{1/\tau}A_\tau(h')^{1/\tau}=A_\tau(h')^{1/\tau}\inf_I w\circ h.$$

Conversely, if for every $w \in A_1$, $w \circ h \in A_1$, with $A_1(w \circ h) \leq A_1(w)$, we apply the factorization theorem [4, p. 434] to show that the conditions of Theorem 2.7 hold with, e.g., $p_0 = 2$. For $w \in A_2$, $w = u_1/u_2$, for $u_1, u_2 \in A_1$

with $A_1(u_i) \not\mid A_2(w)$. Since $w \circ h = u_1 \circ h/u_2 \circ h$, we see that $w \circ h \in A_2$ and $A_2(w \circ h) \prec A_2(w)$, and Theorem 2.7 gives the result.

The proof of Theorem 2.8 is easy with all the tools now available to us. We only need to show that, if $h' \in A_1$, then $w \circ h \cdot h' \in A_1$ (property (c) of A_p -weights and Theorem 2.9 show then $w \circ hh'^{\alpha} \in A_1$).

If $h' \in A_1$ and h(I) = J,

$$\frac{1}{|I|} \int_{I} w \circ hh' = \frac{1}{|I|} \int_{J} w = \frac{|J|}{|I|} \left(\frac{1}{|J|} \int_{J} w \right)$$

$$\leq A_{1}(h') \inf_{I} h' A_{1}(w) \inf_{I} w \circ h$$

$$\leq A_{1}(h') A_{1}(w) \inf_{I} w \circ hh'.$$

Conversely, suppose

$$A_1(w \circ h \cdot h'^{\alpha}) \not\setminus A_1(w), \quad 0 < \alpha \leq 1.$$

The choice w = 1 shows that $h'^{\alpha} \in A_1$. The factorization theorem again shows that $h' \in \bigcap_{p>1} A_p$ because

$$w \circ h = \frac{u_1 \circ h \cdot h'^{\alpha}}{u_2 \circ h \cdot h'^{\alpha}}.$$

By Lemma 2.1, $h' \in A_1$.

Remarks. 1. The extension to n-dimensions presents no real difficulties. If a homeomorphism preserves A_p , it must also preserve BMO and then h and h^{-1} are quasi-conformal by [9]. We will therefore assume that h is smooth when stating the next result. We denote by J_h the Jacobian of h.

Theorem 2.10. Let h be a smooth quasi-conformal homeomorphism, h: $\mathbb{R}^n \to \mathbb{R}^n$.

- (a) If $1 < p_0 < \infty$, $0 \le \alpha \le 1$, then $A_{p_0}(w \circ h|J_h|^{\alpha}) \nmid A_{p_0}(w)$ if and only if $|J_h| \in \bigcap_{p>1} A_p.$ (b) $A_1(w \circ h) \leq A_1(w)$ if and only if $|J_h| \in \bigcap_{p>1} A_p$.
- (c) $A_1(w \circ h|J_h|^{\alpha}) \ \ A_1(w)$, $0 < \alpha \le 1$, if and only if $|J_h| \in A_1$.
- 2. The fundamental estimate of Theorem 2.7 contains a sufficient condition for a homeomorphism to preserve a single weight $w \in A_{p_0}$ since it says

$$A_{p_0}(w \circ h) \leq C A_{p_0}(w^{\tau})^{1/\tau} A_{\tau}(h')^{p_0/\tau}.$$

It can also be applied to the local A_n -classes $A_{p,\Omega}$ [4, p. 438].

3. Theorems 2.7, 2.8, 2.9 contain generalizations of themselves allowing negative powers of h', because if $h' \in \bigcap_{p>1} A_p$ and $w \in A_{p_0}$, then $w^{1-p_0'} \in A_{p_0'}$, and hence $(w \circ h)^{1-p'_0}h'^{\alpha} \in A_{p'_0}$, $0 \le \alpha \le 1$. We use duality again and see that $w\circ h\cdot h'^{\alpha(1-p_0)}\in A_{p_0}. \text{ Thus } \tilde{w}\circ h\cdot h'^{\beta}\in A_{p_0} \text{ for } 1-p_0\leqslant \beta\leqslant 1.$

The mapping $T_h w(x) = w \circ h(x)$, where $h: \mathbb{R} \to \mathbb{R}$ is a homeomorphism as before, is not an onto map from $A_{p_0} \rightarrow A_{p_0}$ in general, but it is possible to determine precisely when it is onto.

Theorem 2.11. Let $1 \leq p_0 < \infty$. Then $T_h: A_{p_0} \to A_{p_0}$ is onto with

$$A_{p_0}(T_hw) \not \mid A_{p_0}(w), \qquad A_{p_0}(T_h^{-1}w) \not \mid A_{p_2}(w)$$

if and only if $\log h' \in BMO$ -closure L^{∞} .

PROOF. For the the necessity, if $T_h: A_{p_0} \to A_{p_0}$ is onto, T_h^{-1} is defined and $T_h^{-1} = T_{h^{-1}}$. It follows from Theorems 2.7 and 2.9 that h' and $(h^{-1})'$ are in $\bigcap_{p>1} A_p$. This implies that

$$\frac{1}{h'}\in\bigcap_{p>1}A_p,$$

for, if we fix $1 < p_1 < \infty$ and apply Theorem 2.7 to $h' \in \bigcap_{p>1} A_p$ and $(h^{-1})' \in A_{p_1}$ we obtain

$$(h^{-1})' \circ h(x) = \frac{1}{h'(x)} \in A_{p_1}.$$

By [4, p. 474] $\log h' \in BMO$ -closure L^{∞} .

For the sufficiency, if we suppose that $\log h' \in BMO$ -closure L^{∞} , then $h' \in \bigcap_{p>1} A_p$ and $h' \in \bigcap_{q<\infty} RH_q$. Then by Lemma 2.5, $(h^{-1})' \in \bigcap_{p>1} A_p$. By Theorem 2.7 $T_{h^{-1}} : A_{p_0} \to A_{p_0}$ and thus T_h is onto.

Remark. The situation for A_p contrasts with that for BMO, since Jones shows in [5] that whenever T_h is bounded on BMO, it is onto, because of the result we gave here as Lemma 2.6.

We can also characterize the pointwise multipliers of A_{p_0} .

Theorem 2.12. Let $1 < p_0 < \infty$, and let $\varphi : \mathbb{R} \to \mathbb{R}_+$. Then for every $w \in A_{p_0}$, $w \cdot \varphi \in A_{p_0}$ with $A_{p_0}(w\varphi) \nmid A_{p_0}(w)$ if and only if $\log \varphi \in BMO$ -closure L^{∞} .

Proof. For the necessity, note that $\varphi^n \in A_{p_0}$, $n = 1, 2, \ldots$, and thus $\varphi \in A_{(p_0-1)/n+1}$ by [4, p. 394] and so $\varphi \in \bigcap_{n \ge 1} A_p$.

Next, we claim

$$\frac{1}{\varphi} \in \bigcap_{p>1} A_p.$$

If $w \in A_{p_0'}$, then $w^{1-p_0} \in A_{p_0}$ and hence $w^{1-p_0} \phi^n \in A_{p_0}$, $n=1,2,\ldots$. Thus $w \cdot \varphi^{n(1-p_0')} \in A_{p_0'}$ from which we get by taking w=1, $\varphi^{-1} \in A_{1+1/n}$ or $\varphi^{-1} \in \bigcap_{p>1} A_p$. Again by [4, p. 474], $\log \varphi \in \text{BMO-closure } L^{\infty}$.

For the sufficiency, suppose $\log \varphi \in BMO$ -closure L^{∞} . We define

$$h(x) = \int_0^x \varphi.$$

Then $h: \mathbb{R} \to \mathbb{R}$ is an increasing homeomorphism with $h' = \varphi$. Our first claim is that h is onto \mathbb{R} , i.e., $\int_0^x \varphi \to \infty$ as $x \to \infty$. The condition on φ implies that $\varphi \in A_2$ and hence, if

$$\varphi(E)=\int_{E}\varphi,$$

for any $E \subseteq I$,

$$\varphi(I) \leqslant c \left(\frac{|I|}{|E|}\right)^2 \varphi(E),$$

with c independent of E, I. Apply this to $I_n = [0, 2^n]$ and $J = [2^{n-1}, 2^n]$ and note that

$$\varphi(I_n) = \varphi(I_{n-1}) + \varphi(J).$$

Since

$$\varphi(I_{n-1}) \leqslant \varphi(I_n) \leqslant 4c\varphi(J),$$

we see that

$$\varphi(I_n) \geqslant \left(1 + \frac{1}{4c}\right) \varphi(I_{n-1}),$$

and iterating

$$\varphi(I_n) \geqslant \left(1 + \frac{1}{4c}\right)^n \varphi(I_0),$$

and our claim is proved.

Since our hypothesis is that $\log \varphi \in \text{BMO-closure } L^{\infty}$, by Theorem 2.12, T_h is onto A_{p_0} for any $1 \leq p_0 < \infty$, and thus by Theorem 2.7, $(h^{-1})' \in \bigcap_{p>1} A_p$. For a given $w \in A_{p_0}$, we write $w\varphi = [w \circ h^{-1} \circ h]h'$ which is in A_{p_0} because $w \circ h^{-1} \in A_{p_0}$. One checks that $A_{p_0}(w\varphi) \not A_{p_0}(w)$.

Remark. The multiplier problem for BMO is known [11] but quite different.

The pointwise multipliers of A_1 require a slightly different approach. For $1 < r < \infty$, let $A_{1,r}$ be the class of all $f: \mathbb{R} \to \mathbb{R}_+$ for which $f^r \in A_1$.

Lemma 2.13.
$$f \in \bigcap_{r < \infty} A_{1,r}$$
 if and only if $f \in A_1$ and $1/f \in \bigcap_{p > 1} A_p$.

PROOF. For the necessity simply observe that $f \in A_1$ and

$$\frac{1}{|I|} \int_I f^{-1} \left(\frac{1}{|I|} \int_I f^{p'-1} \right)^{p-1} \leqslant \frac{C}{|I|} \int_I \frac{1}{f} \cdot \inf_I f \leqslant C \sup_I \frac{1}{f} \cdot \inf_I f \leqslant C.$$

For the converse,

$$\frac{1}{|I|} \int_{I} f \leqslant C \inf_{I} f,$$

and since

$$1 \leqslant \frac{1}{|I|} \int_{I} f\left(\frac{1}{|I|} \int_{I} \frac{1}{f}\right),$$

we see that

$$C\sup_{I}\frac{1}{f}\leqslant \frac{1}{|I|}\int_{I}\frac{1}{f}\cdot$$

Since for 1 ,

$$\frac{1}{|I|}\int_{I}\frac{1}{f}\left(\frac{1}{|I|}\int_{I}f^{p'-1}\right)^{p-1}\leqslant C_{p}<\infty,$$

we get

$$\left(\frac{1}{|I|}\int_I f^{p'-1}\right)^{p-1} \leqslant C\inf_I f \quad \text{or} \quad f^{p'-1} \in A_1.$$

Theorem 2.14. Let $\varphi: \mathbb{R} \to \mathbb{R}_+$. Then $w \in A_1$ implies $w \cdot \varphi \in A_1$ with $A_1(w\varphi) \neq A_1(w)$ if and only if $\varphi \in \bigcap_{r < \infty} A_{1,r}$.

PROOF. If $w\varphi \in A_1$ for $w \in A_1$, then $\varphi \in A_1$ by taking w=1. Let $1 < p_0 < 2$ and $w \in A_{p_0}$. Then $w=u \cdot v^{1-p_0}$, $u,v \in A_1$, and $A_1(u)$, $A_1(v) \nmid A_{p_0}(w)$ as well as

$$A_{p_0}(w) \leq A_1(u)A_1(v)^{p_0-1}$$

[4, p. 434]. Thus

$$w \cdot \varphi^{2-p_0} = u \cdot \varphi \cdot (v \cdot \varphi)^{1-p_0}$$

and $w \cdot \varphi^{2-p_0} \in A_{p_0}$ with $A_{p_0}(w \cdot \varphi^{2-p_0}) \setminus A_{p_0}(w)$. Therefore, by Theorem 2.12, $\log \varphi$ is in the closure of L^{∞} in BMO which implies that $1/\varphi \in \bigcap_{p>1} A_p$. Hence $\varphi \in \bigcap_{r>\infty} A_{1,r}$ by Lemma 2.13.

For the converse we use the technique of Theorem 2.12 and let

$$h(x)=\int_0^x\varphi.$$

Then, as shown there, $h: \mathbb{R} \to \mathbb{R}$ is a homeomorphism onto and $(h^{-1})' \in \bigcap_{p>1} A_p$ $h' \in A_1$. For $w \in A_1$, write $w \cdot \varphi = w \circ h^{-1} \circ h \cdot h'$, and, since $v = w \circ h^{-1} \in A_1$, by Theorem 2.9, we see that $v \circ h \cdot h' \in A_1$ by applying Theorem 2.8.

3. Homeomorphisms Preserving A_{∞} and RH_{p_0}

We shall see that the homeomorphisms preserving A_{∞} and RH_{p_0} will be the same as those preserving A_{p_0} under the condition $h' \in \bigcap_{p>1} A_p$, but the pointwise multiplier condition is different. We begin with some preliminary results, including a proof of Theorem 1.1 that gives the constants we need.

Lemma 3.1. Let $1 < p_0 < \infty$. Then

$$\frac{A_{\infty}(w^{p_0})^{1/p_0}}{A_{\infty}(w)} \leqslant RH_{p_0}(w) \leqslant A_{\infty}(w^{p_0})^{1/p_0}.$$

PROOF. For the first inequality simply note that

$$\frac{1}{|I|} \int_{I} w^{p_0} \leqslant RH_{p_0}(w)^{p_0} \left(\frac{1}{|I|} \int_{I} w\right)^{p_0},$$

and hence for $q < \infty$,

$$\frac{1}{|I|} \int_{I} w^{p_0} \left(\frac{1}{|I|} \int_{I} w^{p_0(1-q')} \right)^{q-1}$$

$$\leq RH_{p_0}(w)^{p_0} \left\{ \frac{1}{|I|} \int_I w \left(\frac{1}{|I|} \int_I w^{p_0(1-q')} \right)^{(q-1)/p_0} \right\}^{p_0}.$$

Thus

$$A_q(w^{p_0}) \leq RH_{p_0}(w)^{p_0} \cdot A_{\frac{p_0+q-1}{p_0}}(w)^{p_0}$$

Let $q \uparrow \infty$.

The second inequality can be obtained as follows

$$\frac{\left(\frac{1}{|I|}\int_{I}w^{p_0}\right)^{1/p_0}}{\frac{1}{|I|}\int_{I}w} = \frac{\left\{\frac{1}{|I|}\int_{I}w^{p_0}\left(\frac{1}{|I|}\int_{I}w^{p_0(1-q')}\right)^{q-1}\right\}^{1/p_0}}{\frac{1}{|I|}\int_{I}w\left\{\frac{1}{|I|}\int_{I}w^{p_0(1-q')}\right\}^{(q-1)/p_0}} \leqslant A_q(w^{p_0})^{1/p_0}$$

since the denominator is $\geqslant 1$. Hence

$$RH_{p_0}(w) \leqslant A_q(w^{p_0})^{1/p_0}$$

Let $q \uparrow \infty$.

Remark. We shall see below in Theorem 3.4 that the quantity $RH_{p_0}(w)$ is not as convenient as $RH_{p_0}(w) \cdot A_{\infty}(w) \equiv \overline{RH}_{p_0}(w)$.

Lemma 3.2. Let $1 < p_0 < \infty$. Then

$$\max \, \{A_\infty(w), A_\infty(w^{1-p_0'})^{p_0-1}\} \leq A_{p_0}(w) \leq A_\infty(w) A_\infty(w^{1-p_0'})^{p_0-1}.$$

PROOF. The first inequality is easy since both terms on the left are $\leq A_{p_0}(w)$. For the second inequality simply note that

$$\begin{split} \frac{1}{|I|} \int_{I} w \left(\frac{1}{|I|} \int_{I} w^{1-p_0'} \right)^{p_0-1} &= \frac{1}{|I|} \int_{I} w \left(\frac{1}{|I|} \int_{I} w^{1-q_0'} \right)^{q-1} \\ &\cdot \left\{ \frac{1}{|I|} \int_{I} w^{1-p_0'} \left(\frac{1}{|I|} \int_{I} w^{1-q_0'} \right)^{(1-q)/(p_0-1)} \right\}^{p_0-1} \end{split}$$

Using

$$1 \leqslant \left(\frac{1}{|I|} \int_{I} \varphi\right) \left(\frac{1}{|I|} \int_{I} \frac{1}{\varphi}\right),$$

the expression in { } is

$$\leq \frac{1}{|I|} \int_{I} w^{1-p_0'} \left(\frac{1}{|I|} \int_{I} w^{q'-1} \right)^{(q-1)/(p_0-1)}$$

$$= \left(\frac{1}{|I|} \int_{I} w^{(1-p_0')(q'-1)/(1-p_0')} \right)^{(q-1)/(p_0-1)} \left(\frac{1}{|I|} \int_{I} w^{1-p_0'} \right) .$$

If

$$r-1=\frac{q-1}{p_0-1},$$

one checks that

$$r'-1=\frac{p_0-1}{q-1}=\frac{q'-1}{p'_0-1}$$

Hence for $q < \infty$,

$$A_{p_0}(w) \leq A_q(w) \{A_{1+(q-1)/(p_0-1)}(w^{1-p_0'})\}^{p_0-1}$$
.

Let $q \uparrow \infty$.

Lemma 3.3.

- (i) $A_{\infty}(w^{1-q'})^{q-1} \searrow \sigma(w)$ as $q \nearrow \infty$ and
- (ii) $\sigma(w) \leqslant A_{\infty}(w)$.

Proof. (i) For $p < \infty$ and $q_1 > q_2$ we have

$$\left(\frac{1}{|I|}\int_{I}w^{1-q_{1}'}\right)^{q_{1}-1}\leqslant\left(\frac{1}{|I|}\int_{I}w^{1-q_{2}'}\right)^{q_{2}-1},$$

so that

$$A_p(w^{1-q'_1})^{q_1-1} \leq A_p(w^{1-q'_2})^{q_2-1}$$
.

Let $p \to \infty$ and (i) follows. To prove (ii), let $\lambda < \sigma(w)$. We claim that for $q < \infty$, $\lambda \le A_q(w)$. Fix q, and note that

$$\lambda < A_{\infty}(w^{1-q'})^{q-1} \leqslant A_p(w^{1-q'})^{q-1},$$

for any $p < \infty$. Since

$$\begin{split} \left(\frac{1}{|I|} \int_{I} w^{1-q'}\right)^{q-1} & \left(\frac{1}{|I|} \int_{I} w^{(1-q')(1-p')}\right)^{(p-1)(q-1)} \\ & \leq \left(\frac{1}{|I|} \int_{I} w^{1-q'}\right)^{q-1} & \left(\frac{1}{|I|} \int_{I} w\right), \end{split}$$

if, (p-1)(q-1) > 1, the claim and hence (ii) follows.

Theorem 3.4. Let $1 < p_0 < \infty$. Then the following statements are equivalent for a homeomorphism h as in section 2.

- (1) $h' \in \bigcap_{p>1} A_p$.
- (2) $w \in A_{\infty}$ implies $w \circ h \in A_{\infty}$ with $A_{\infty}(w \circ h) \setminus A_{\infty}(w)$.
- (3) $w \in RH_{p_0}$ implies $w \circ h \in RH_{p_0}$ with $\overline{RH}_{p_0}(w \circ h) \not\mid \overline{RH}_{p_0}(w)$.
- (4) $w \in A_{p_0}$ implies $w \circ h \in A_{p_0}$ with $A_{p_0}(w \circ h) \nmid A_{p_0}(w)$.

PROOF. We will be brief. First (1) \Rightarrow (4) is Theorem 2.7. The equivalence (2) \Rightarrow (3) is Lemma 3.1. The implication (2) \Rightarrow (4) follows from Lemma 3.2. There remains (4) \Rightarrow (2). Since (4) \Rightarrow (1) by Theorem 2.7. $A_p(w \circ h) \not A_p(w)$, $p < \infty$. Let $w \in A_{\infty}$. By Lemma 3.3 we can choose p_0 so that $A_{\infty}(w^{1-p_0})^{p_0-1} \leq 2A_{\infty}(w)$. Then $A_{\infty}(w \circ h) \leq A_{p_0}(w \circ h) \not A_{p_0}(w)$, and $A_{p_0}(w) \leq A_{\infty}(w)A_{\infty}(w^{1-p_0})^{p_0-1}$ by Lemma 3.2. Hence $A_{\infty}(w \circ h) \not A_{\infty}(w)$.

We come now to the pointwise multipliers of A_{∞} and RH_{p_0} .

Theorem 3.5. Let $1 < p_0 < \infty$. Then the following statements are equivalent for $\varphi: \mathbb{R} \to \mathbb{R}_+$.

- (1) $\varphi^n \in A_\infty$, $n = 1, 2, \ldots$
- (2) $\varphi \in \bigcap_{r < \infty} RH_r$.
- (3) $w \in A_{\infty}$ implies $w \cdot \varphi \in A_{\infty}$.
- (4) $w \in RH_{p_0}$ implies $w \cdot \varphi \in RH_{p_0}$.

PROOF. From Lemma 3.1 we get (1) \Leftrightarrow (2). It is clear that (3) \Rightarrow (1). The implication (1) \Rightarrow (3) can be seen as follows. Let $w \in A_{\infty}$. Then for some $p_0 < \infty$, $w \in A_{p_0}$. Hence there is $\tau > 1$ so that $w^{\tau} \in A_{p_0} \subset A_p$, $p \geqslant p_0$. Since by (1) $\varphi^{\tau'} \in A_{\infty}$, we can choose $p \geqslant p_0$ so that $\varphi^{\tau'} \in A_p$. An easy application of Hölder's inequality shows that

$$A_p(w\varphi) \leqslant A_p(w^{\tau})^{1/\tau} A_p(\varphi^{\tau'})^{1/\tau'}.$$

Hence $w \cdot \varphi \in A_{\infty}$. Since (4) implies $\varphi^n \in RH_{p_0} \subset A_{\infty}$, $n = 1, 2, \ldots$, we get (4) \Rightarrow (1). We complete the proof by showing (3) \Rightarrow (4). If $\alpha > 0$, then from (3), $w \in A_{\infty}$ implies $w \cdot \varphi^{\alpha} \in A_{\infty}$, since (3) \Rightarrow (1). Let $w \in RH_{p_0}$. Then, by Lemma 3.1,

$$RH_{p_0}(w\cdot\varphi)^{p_0}\leqslant A_{\infty}(w^{p_0}\varphi^{p_0})<\infty$$

sience $w^{p_0} \in A_{\infty}$.

Remark. If $\varphi = P(x)$ is a polynomial, then (1) is satisfied, and hence a polynomial is a pointwise multiplier of A_{∞} and RH_{p_0} . However, it is clear that this is not the case for A_{p_0} .

4. Homeomorphisms Preserving Double Weights

The argument presented in Theorem 2.7 for single weights is not applicable to double weights $(u, v) \in A_p$ since it is no longer true that there is $\tau > 1$ with $(u^{\tau}, v^{\tau}) \in A_p$. In fact the existence of such a $\tau > 1$ takes us back to the single

weight case [7]. For the study of the homeomorphisms which preserve $(u, v) \in A_p$ we need the following extrapolation theorem.

Theorem 4.1. Let $1 < p_0 < \infty$, and let $\gamma: \mathbb{R}_+ \to \mathbb{R}_+$ be nondecreasing. Assume that T is a sublinear operator so that for every $(u, v) \in A_{p_0}$,

$$u\{x: |Tf(x)| > y\} \le \frac{\gamma(A_{p_0}(u, v))^{p_0}}{y^{p_0}} \|f\|_{p_0, v}^{p_0}.$$

Then, if $1 , and <math>(u, v) \in A_p$,

$$u\{x: |Tf(x)| > y\} \le \frac{C^p}{y^p} ||f||_{p,v}^p.$$

where

$$C \leq cp_0 A_n(u, v) [\gamma(A_n(u, v)^{(p'-1)(p_0-1)})]^{1/p_0}.$$

We use the notation

$$A_p(u,v) = \max\left\{1, \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} u\right) \left(\frac{1}{|Q|} \int_{Q} v^{1-p'}\right)^{p-1}\right\}.$$

We will not prove this theorem since the proof is the same as in [8] by keeping track of the constants involved. In the applications that follow, $\gamma(t) = ct^{1/p_0}$.

As before we shall assume that $h: \mathbb{R} \to \mathbb{R}$ is a homeomorphism onto so that h, h^{-1} are locally absolutely continuous and $h' \ge 0$.

Theorem 4.2. $1 . If <math>h' \in A_1$, then for every $(u, v) \in A_p$, $(u \circ h \cdot h'^{\alpha}, v \circ h \cdot h'^{\alpha}) \in A_p$ with $A_p(u \circ h \cdot h'^{\alpha}, v \circ h \cdot h'^{\alpha}) \leqslant CA_p(u, v)$, C independent of α .

PROOF. Let

$$L=\frac{1}{|I|}\int_I u\circ h\cdot h'^{\alpha}\left(\frac{1}{|I|}\int_I (v\circ h)^{1-p'}\cdot h'^{\alpha(1-p')}\right)^{p-1}.$$

Let t = h(x), h(I) = J. Then

$$\frac{1}{|I|}\int_{I}u\circ h\cdot h'^{\alpha}=\frac{|J|}{|I|}\frac{1}{|J|}\int_{J}\frac{u(t)}{h'^{(1-\alpha)}\circ h^{-1}(t)},$$

and

$$\frac{1}{|I|} \int_{I} \frac{1}{v \circ h'^{p'-1} \cdot h'^{\alpha(p'-1)}} = \frac{|J|}{|I|} \frac{1}{|J|} \int_{J} \frac{1}{v(t)^{p'-1} \cdot (h' \circ h^{-1}(t))^{\alpha(p'-1)+1}} \cdot$$

Hence

$$L \leqslant \left(\frac{|J|}{|I|}\right)^p \frac{1}{\inf h'^{(1-\alpha)} \cdot \inf h'^{(\alpha+p-1)}} A_p(u,v),$$

since $1 - \alpha \ge 0$, $\alpha + p - 1 \ge 0$. Since $h' \in A_1$, i.e.,

$$\frac{1}{|I|}\int_I h' = \frac{|J|}{|I|} \leqslant C\inf_I h',$$

the proof is complete.

Remark. We do not know whether or not the converse of Theorem 4.2 is true (except for $\alpha = 1$ as we will see). From Theorem 2.7, however, the A_{n-1} norm inequality does imply that $h' \in \bigcap_{p>1} A_p$, if $0 \le \alpha \le 1$. If we change the problem somewhat, we obtain a necessary and sufficient condition.

and only if

$$\frac{1}{|I|}\int_I h' \leqslant C\inf_I (h')^{\alpha/p_0+1/p'_0},$$

C independent of I.

PROOF. The sufficiency can be handled as in Theorem 5.

$$\frac{1}{|I|} \int_{I} u \circ h \cdot h' = \frac{|J|}{|I|} \frac{1}{|J|} \int_{J} u(t) dt$$

$$\frac{1}{|I|} \int_{I} \frac{1}{(v \circ h)^{p'_0 - 1} \cdot h'^{\alpha(p'_0 - 1)}} = \frac{|J|}{|I|} \frac{1}{|J|} \int_{J} \frac{1}{v(t)^{p'_0 - 1} (h' \circ h^{-1}(t))^{\alpha(p'_0 - 1) + 1}}.$$

Hence

$$A_{p_0}(u\circ h\cdot h',v\circ h\cdot h'^{\alpha})\leqslant A_p(u,v)\cdot \left(\frac{|J|}{|I|}\right)^{p_0}\frac{1}{\inf\limits_I(h')^{\alpha+p_0-1}},$$

since $\alpha + p_0 - 1 \ge 0$.

For the necessity we note first that [6]

$$\int_{\{Mf>y\}} u \circ h \cdot h' \leqslant \frac{CA_{p_0}(u,v)}{y^{p_0}} \int f^{p_0}(x)v \circ h(x) \cdot h'^{\alpha}(x) dx.$$

We change variables t = h(x) and get

If we set

$$g(t) = \frac{f \circ h^{-1}(t)}{[h' \circ h^{-1}(t)]^{(1-\alpha)/p_0}},$$

then $f(x) = h'(x)^{(1-\alpha)/p_0} g \circ h(x)$, and

The hypothesis of Theorem 4.1 are satisfied with

$$\gamma(t) = ct^{1/p_0}$$

and

$$Tg(t) = M(h'^{(1-\alpha)/p_0}g \circ h)[h^{-1}(t)].$$

Hence for $1 and <math>(u, v) \in A_p$,

$$u\{x: |Tg(x)| > y\} \le \frac{C^p}{y^p} \|g\|_{p,v}^p$$

with

$$C = cp_0 A_p(u, v) [\gamma (A_p(u, v)^{(p'-1)(p_0-1)})]^{1/p_0}.$$

We let now u = v = 1 so that $A_p(u, v) = 1$. With t = h(x) we get

$$\int_{\{x: M(h'^{(1-\alpha)/p_0}g \circ h)(x) > y\}} h'(x) dt \leqslant \frac{C^p}{y^p} \int (g \circ h)^p(x) \cdot h'(x) dx,$$

where C is an absolute constant independent of p. Since

$$g \circ h(x) = \frac{f(x)}{h'^{(1-\alpha)/p_0}(x)},$$

the above is

$$\int_{I} h'(x) dx \leq \frac{C^{p}}{y^{p}} \int f^{p}(x)h'(x)^{1-(1-\alpha)p/p_{0}} dx.$$
{x: Mf(x) > y}

We test this inequality with $f = \chi_r h^{r\gamma}$, where γ will be chosen later. Since

$$I \subset \left\{ x : Mf(x) \geqslant \frac{1}{|I|} \int_{I} h^{\prime \gamma} \equiv y \right\}$$

we obtain

$$\int_I h'(x)\,dx \le C^p \frac{|I|^p}{\left(\int_I h'^\gamma\right)^p} \int_I h'^{\gamma p+1-(1-\alpha)p/p_0}.$$

We choose γ so that

$$\gamma = \gamma p + 1 - \frac{1-\alpha}{p_0}p$$
, $(p-1)\gamma = \frac{1-\alpha}{p_0} \cdot p - 1$ or $\gamma = p' \left[\frac{1-\alpha}{p_0} - \frac{1}{p} \right]$.

Hence

$$\frac{1}{|I|}\int_I h' \leqslant C^p |I|^{p-1} \Big(\int_I h'^{\gamma}\Big)^{1-p}.$$

We let now $p \downarrow 1$. Then

$$\left(\int_{I} h'^{[(1-\alpha)/p_0-1/p]p'}\right)^{p/p'} \to \sup_{I} h'^{(1-\alpha)/p_0-1} = \frac{1}{\inf_{I} h'^{1-(1-\alpha)/p_0}}.$$

Hence

$$\frac{1}{|I|}\int_I h' \leqslant C\inf_I h'^{\alpha/p_0+1/p'_0}.$$

Corollary 4.4. Let $1 < p_0 < \infty$. Then for every $(u, v) \in A_{p_0}$, $(u \circ h \cdot h',$ $v \circ h \cdot h' \in A_{p_0}$ with $A_{p_0}(u \circ h \cdot h, v \circ h \cdot h') \leqslant CA_{p_0}(u, v)$ if and only if $h' \in A_1$.

As in the single weight case we ask when $T_h(u, v) = (u \circ h \cdot h', v \circ h \cdot h'^{\alpha})$ takes A_{p_0} onto A_{p_0} .

Theorem 4.5. Let $1 < p_0 < \infty$ and $\alpha > 1 - p_0$. Then $T_h: A_{p_0} \to A_{p_0}$ is onto with $A_{p_0}(T_h(u,v))$, and $A_{p_0}(T_h^{-1}(u,v))$ both $\leq CA_{p_0}(u,v)$ if and only if $h' \simeq 1$.

PROOF. First assume that T_h is onto. Then, if $(u, v) \in A_{p_0}$, there is $(\bar{u}, \bar{v}) \in A_{p_0}$ with $(\bar{u} \circ h \cdot h', \bar{v} \circ h \cdot h'^{\alpha}) = (u, v)$. Hence

$$\bar{u}(t) = u \circ h^{-1}(t) \cdot \frac{1}{h' \circ h^{-1}(t)} = u \circ h^{-1}(t) \cdot (h^{-1})'(t)$$

and

$$\bar{v}(t) = v \circ h^{-1}(t) \cdot (h^{-1})^{\prime \alpha}(t).$$

Hence $T_h^{-1} = T_{h^{-1}}$, and Theorem 4.3 gives the two inequalities

$$\frac{1}{|I|}\int_I h' \leqslant C\inf_I h'^{\alpha/p_0+1/p'_0},$$

$$\frac{1}{|J|} \int_J (h^{-1})' \leq C \inf_J (h^{-1})'^{\alpha/p_0 + 1/p_0'}.$$

If h(I) = J, the second inequality can be rewritten as

$$C\sup_{I}h'^{\alpha/p_0+1/p'_0}\leqslant \frac{1}{|I|}\int_{I}h'.$$

This together with the first inequality shows that

$$C \sup_{I} h' \leqslant \inf_{I} h'$$

(note $\alpha/p_0 + 1/p_0'$ since $\alpha > 1 - p_0$), and $h' \approx 1$.

Conversely, if $h' \approx 1$, then there are constants $0 < c_1 \le h' \le c_2 < \infty$, and so

$$\frac{1}{|I|} \int_I h' \leq \frac{C_2}{C_1^{\gamma}} C_1^{\gamma} \leq C \inf_I h'^{\gamma}, \qquad \gamma = \frac{\alpha}{p_0} + \frac{1}{p_0'}.$$

Similarly

$$\frac{1}{|I|} \int_{I} (h^{-1})' \leq C \inf_{I} (h^{-1})'^{\alpha/p_0 + 1/p'_0}.$$

Hence T_h is onto.

References

- [1] Benedetto, J. J., Heinig H. P. and Johnson, R. Fourier inequalities with A_p -weights, to appear.
- [2] Carbery, A., Chang, S. Y. A. and Garnett, J. Weights and L log L, Pac. J. Math. 120 (1985), 33-45.
- [3] Dyn'kin, E. M. and Osilenker, B. P. Weighted estimates of singular integrals and their applications, *Journal Soviet Math.* 30 (1985), 2094-2154.
- [4] García-Cuerva, J. and Rubio de Francia, J. L. Weighted norm inequalities and related topics, *North Holland Math. Studies*, vol. 116, North Holland, Amsterdam, 1985.
- [5] Jones, P. W. Homeomorphisms of the line which preserve BMO, Arkiv Mat. 21(1983), 229-231.

- [6] Muckenhoupt, B. Weighted norm inequalities for the Hardy maximal function, *Trans. Amer. Math. Soc.* 165 (1972), 207-226.
- [7] Neugebauer, C. J. Inserting A_p -weights, *Proc. Amer. Math. Soc.* 87(1983), 644-648.
- [8] —, A double weight extrapolation theorem, *Proc. Amer. Math. Soc.* 93(1985), 451-455.
- [9] Reimann, M. Functions of bounded mean oscillation and quasiconformal mappings, Comm. Math. Helv. 49(1974), 260-276.
- [10] Sarason, D. Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
- [11] Stegenga, D. Bounded Toeplitz operators on H^1 and applications of the duality between H^1 and the functions of bounded mean oscillation, *Amer. J. Math.* 98(1976), 543-589.
- [12] Strömberg, J. O. and Wheeden, R. L. Fractional integrals on weighted H^p and L^p spaces, *Trans. Amer. Math. Soc.* **287**(1985), 293-321.

R. Johnson*
Department of Mathematics
University of Maryland
College Park, Maryland 20742

C. J. Neugebauer**
Department of Mathematics
Purdue University
West Lafayette, Indiana 47907

^{*} Author supported in part by NSF Grant DMS-86-01311.

^{**} The paper was written while on sabbatical leave at the University of Maryland.