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Introduction

In a recent paper, Benedetto, Heinig and Johnson [1] showed that if wis a
monotone A, weight, w(1/x) is also an A4, weight. Here 4, denotes the set of
weights satisfying the condition found by Muckenhoupt, defined in general by

1 c VP!
weA, iff su wdx )| — | w'~? dx) < +oo,
’ p<|Q|J ><|Q| L

1< p< +o, which was shown by Muckenhoupt [6] to characterize the
weights w for which the Hardy-Littlewood maximal function

Mf(x) = sup jf(y)dy, f=0,

x |0

satisfies
j Mf(x)Pw(x) dx < CP j FOO)Pw(x) dx.

Hunt, Muckenhoupt and Wheeden showed that A4, is the condition that
characterizes weights for which the Hilbert transform

HfG) = - lim A
T es0 Jlx—y[>e X— Y

satisfies
j |Hf () |Pw(x) dx < CP j | F0O|Pw(x) dx
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250 R. JounsoN AND C.J. NEUGEBAUER

(see [4] for the proof). The Hilbert transform commutes with the unitary
operator on L%(R),

U =0/,

and this gives the result that for any w € 4,, w(1/x) € A,. We have considered
the more general question: which homeomorphisms of R preserve the 4,
class? We answer this question, (and its counterpart on [R”) and apply it to
determine the pointwise multipliers of 4,,. In view of the close connection be-
tween A,, reverse Holder inequalities and A, = U, <o A4,, we also investigate
the corresponding questions for these conditions, by means of a precise con-
nection between reverse Holder inequalities and A,,. We also have results for
double weights (u, v) € A, though not so complete.

1. Notation and Preliminary Results

In addition to the A,-classes we define for 1 <p < o,

P EY S S
P o \19] Jo 19| Jo p
<

We shall also need A4, the class of all w for which Mw

1
- = 1
p
cw with

A;(w) = inf {c: Mw < cw}.

We let

and write

Ax(W) = lim A,(w).

p—x

This limit exists since for g > p, A,(w) < A,(w). We say that weRHpo

(reserve Holder) if
1 1/po C J>
R R
<|Q| L 10l Jo

and we abbreviate by RHpo(w) the infimum of all such C. It is easily seen by
Hélder’s inequality that 4,(w) > 1 and RH,(w) > 1.
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We will repeatedly use some common properties of 4,, namely,

(@) we A, if and only if w'"? €A,

(b) we A, implies weA,, g >p, and w*eA,,0<a<],

(¢) if w;, w,€A4,, then wiw; “€A,, 0<a<l,

(d) weA,,1<p< o, if and only if there exists u, ve 4;, so that w = uv’ =2,
(e) we A, for some p if and only if we RH, for some g,

(f)if we Ap, then w e A, for some 7> 1,

(g) if weA,, p>1, then weA,_, for some e > 0.

An excellent reference is [4].
We will also use the close connection between A, and BMO, i.e., the space
of functions satisfying

sup

1
g7 Jo 1 Tal < =,

where

fo= 1—5—1 jof'

The sup is a semi-norm on BMO which gives constants norm 0. The connec-
tion between the two classes is the following. For any we A4, log w e BMO,
and foranyue BMOand 1 <p < o, eM e A p for some X > 0. This last result
is not true for p = 1.

The classes RH,,0 and A, are closely related as the following theorem [12]
shows.

Theorem 1.1. weRH‘,,0 if and only if wP°eA,.

We postpone the simple proof till Section 3 where we need a quantitative
version of this result.
As a first general composition type theorem we have

Theorem 1.2. Let h: R~ R be arbitrary. Then the following statements are
equivalent for 1 < py < .

(1) we A, implies wo he A,
2) we RH,,0 implies wo h €RH, ,
(3) we A, implies wo he (N A,.
p>1
Either one of these statements implies, but is not implied by

G)) weA,,O implies wo h eApo.
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Proor. Theorem 1.1 implies (1) <> (2). The implication (1) = (4) follows
from the fact that we A4, if and only if w and w' ~7% are in A, [4, p.408].
This also shows (1) = (3). For the proof of (3) = (1), let we A,,. Then there
is 1 <p< o, and there are u;, u, € A; with w=u, - u3?. Hence wo h =
u; 0 h-(u, © h)' =7, Since u, © h € A,, there is 7 > 1 so that (u; © h)" € A, and

7/(p' = 1)+ 122. We let g=7'/(p’' — 1) + 1 and note that (4, © h)" € 4,
and u, o he A,.. We claim that wo he 4,. To prove this, we note that

i fen e mor< (G f on) (g [ mre)”

and

|I| j(ul o h)l q(u o h)(l p(1-q) < ( |]| J(ul ° h)r(l q)) "

1 a-pa-g9 v
o — u, o h 7A-pP)Q-q .
<m L‘ . )
Consequently,

it fowen G forom =) < (i [ ow)
i s i J): S\qp ), ?

@-1/7
J (ul o h)‘r(1~q’)>
I

‘<
(2 [emran)”
I
-/
< j (u2 o h)T'(l—P)(l-q')>(q D

Since 7(1 = p)(1 —g)=1or (1 — p) = 1 — g we see that

]

Aq(W ° h) SAq(ul ° hT)l/TAqr(uz o h)(Q—l)/'r’.

In order to complete the proof we need to give an example for (4) # (1).
We let A(x) = 1/x. Then, as observed in the introduction, (4) holds for p, = 2.
However, A cannot preserve A, , since

w(x) = |x|*€A,, but woh(x)=|x|"? ¢A,.
Remark. The main problem with which this paper is concerned is to find

conditions on 4 so that (4) is equivalent with the other conditions of Theorem
1.2, and such a condition will have to be independent of p,.
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2. Homeomorphisms Preserving A,

We begin with several preliminary lemmas some of which are known [3] and
are included here for the sake of completeness.

Lemma 2.1. Let we A, and assume that w®e A, for some ¢ > 0. Then
weA,.

ProorF. We may suppose that ¢ = py — 1, since we may decrease e and
increase p, by property (b) of Section 1. Then

i ras<anon| (5 L)
}II Iw x < po(w) |—”_ Iw
1 . 1/€
SA”*)“”’(W Lw >

< Apo(w)(Al(w‘) inf wf)l/f
I
< Apo(w)Al(w‘)Ve inf w,
I
where in the second inequality we used Holder’s inequality in the form

<)) G [2)

Our necessary and sufficient condition will involve the space N, ; 4,. We
will see that this space contains A4, properly, and for this we need the simple

Lemma 2.2. If w,w 'e€A,, then w= 1, i.e., w is bounded above and
below. '

PROOF.

1
< g——jwsAl(w)infw.
I 1

Thus
1 .
supw < A1<~—>A1(w) infw
I w I

and the result follows.
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Lemma 2.3. A4,¢ N A4,.

p>1

Proor. If equality held, then

iw: w,w le N Ap} ={ww,wled}={ww=1].
p>1

However, by [4, p. 474],

[w: w,w e N API = {e*: ¢ € BMO-Closure L™}
p>1

2 {e: f continuous of compact support}

by [10]. Then e = 1, for each continuous f of compact support, and this is
impossible.

Remark. An explicit example of
we () 4A,\4,
p>1
is
1

-1
w(t)=<logm~> > for |#| closeto O.

This example was communicated to us by Rubio de Francia.

As we shall see now, Lemma 2.1 remains valid for (1 4,.
p>1

Lemma 2.4, Let w eAIJO Sor some 1 < p, < o and suppose that for some
e>0, w'e () A, Then we () 4,.

p>1 p>1

Proor. Since we may decrease e and increase p,, we may suppose € = pg — 1.

Then
i < anon| (G o) <oy )
— | wg wll— | w < w)| — .
|| Jr Po 1| Jr Po 11| Jr

Fix 1 < p < o, and let

Since wfe A4,,

L we L wed =1 r-1<A w9
11 Jr \ ) Ui DA
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and hence we have

..1_ w L ws(l—r') (r—l)/e<A( e)l/eA (W)
HIRAANTIRE S AW, T

Since (r —1)/e=p—1land el —r)=1-p’, we A, and A,(w) < A, (w9)Ve
- Ap,(W).

As we shall discuss further below, the case n =1 is the most involved.
We shall assume throughout unless otherwise noted, that A:R— R is a
homeomorphism onto such that 4, 2~ ! are locally absolutely continuous and,
without loss of generality, that A’ > 0.

Our next result implies a quantitative version of a result known qualitatively
by the result of [4, p. 402] on comparability of measures.

Lemma 2.5. (k™'Y € RH, if and only if h' € Ay and RH,((h™"))= A, (h)" .
Proor. If (A7 € RH, then for every interval J,

1/
<|I| Oy 1)’(t)"a’t> q<RH () j(h Y@ at,

/]

L._Ljvh(ij‘hr(l—q))q,_l
1) Jr \ 11| )i

The first term of L is |J|/|I| and the second is, by the change of variables
t = h(x),

1 1 1
AV a-a L I S
|I| Jvlh (X)dx |I| J‘_] h/ ° h-—l(t)q dt

M <| 7 j - ‘)(t)th> V1 p qa-1yy.

where h(I) = J. Let

il Iy
< j(h 1)(r>dt> — RH,((h~ 1))"( '”)H
17| |7
Consequently,
)iy (2L
L<{— |RH,((h 99 _—
<|1| () 1]

and this gives

A (W) < RH (A7)
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Conversely, if h' € A,,, we write with the change of variables ¢ = A(x)

( ! j(h“)'(t)‘fdt)l/q
D )
J

1
7 | @y o

Raise both sides to the g"” power and then

(i Jrora) |

(2 )(t)"dt> i

IJI <ﬂ<ijh'(x)l"qu>q 1,
|| Jr

=
(B~ Y@ dt
1 j
and thus RH, ((h~"))? < A, (h).
An easy consequence is the following lemma.

Lemma 2.6. (™'Y €A, ifand only if W' € A,.

ProOF. If (h™') € Aw, then (2 ~') € RH,,, for some 1 < p’ < «, and hence
h'e A, C A,. The same argument gives the converse direction.
Below, and throughout the paper, we will use the notation Q < Pto mean that
Q is majorized by and expressién depending on P only so that for P< 7, Q< T.
Now we are ready for one of the main theorems of the paper.

Theorem 2.7. Let h: R— R be a homeomorphism as above, and suppose
l<py<owo, 0<a<l. Then, for every weApo, woh-h'® eApo with
Ay (woh- h*) < Ap (W) if and only if h' € NA4,.

p>1

Proor. Suppose first that #’ €N, ; 4,,. If the result holds fora = Oand & = 1,
it holds for 0 < « < 1 by property (c) of A,-weights. For « = 0, we use Property
(f) of A,-weights. If w eApo, then there is 7 > 1 so that w’eAI,o Let

L= el forem o)
S i I} Jr

and make the change of variables ¢ = h(x), A(I) = J. The first term of the
product can be estimated by

P R e
17| R R0)

<|1| f’”)( arl, (ﬁ))
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We change back to the x-variable in the last integral and obtain

o< () G L) G )™
< <ﬁ L w’> Ay

Similarly the second term in L is
l 1 1 (1 0) /7 v
- o h -Py < |- (1 - p§ A hl T’
7] L(W ) \<|J| Lw ) )

Apo(w o h) < APO(WT)I/TAT(h,)pO/T‘

and hence

It is well-known [4, p. 397-9] that 7 and A po(w’) depend only on Apo(w); in
fact, Apo(w’) < cApo(w) once 7 has been chosen to depend on Apo(w).
The case « = 1 is similar but requires more complicated indices. We call again

o (I;l jw hh)(m j(‘”hh’)‘ ”°>p°—1,

and proceeding as above, estimate the first term by

1 1
IIIJW hh' = i w(t)dt

JJ

1 1
STRe
] Jr \|J| Js
d 1/7
s._l_ h’<.1_J‘wT> .
[ Jr \ | Js

The second term of the product is

/r /7
j(wohhl)l Pb 1 J‘ T(I_Pb)>l _1_ (hl.'dfh—l)—‘r'p'o>
I I 1| Js
' T /7
) G L) G o)
|17 |71 ¥
Hence

1 1+(po—-1)/7 1 L, (po—-1)/7
L<A, (w’)‘/’< ] jh’ TITLh’“‘*Po’ :
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Since #' € ﬂlAp, we have h'€ A,., p' = 7'p,. We note that
p>

I _ =@
7Py — 1 Do+ 7—1

p-1=

and

Po _ PP’ —1) _ 7tp—1

p p T

and this allows us to write

pPo—T
1 1 \TG+po-1 )THPo-D/7
L SA WT l/r{ jhl< j\hl(l —p)> }
O L\ s

SAPO(WT)I/T'Apo(h’)pO/p

which completes the proof for o = 1. -
Now we suppose that for a fixed « and p,, and any w eAI,O, woh-h'™ eApo
with A4 po(w oh-h'%)< Apo(w). We will first show, using extrapolation, that

there is 7 > 0 so that 4”7 € () A,. Since wo h - h""eApo, by [6]
p>1

[ MfPow o hh'* < C [ f7ow o b
where C = C, A, (w©° hh'®)PPo+D 2], The substitution ¢ = A(x) gives

w(t)

h/oh—l(t)l-oz dt.

dr < cjf(h‘l(t»m . ()

jMf”(h—l(f)) W o h I

Let g(t) =fo h=Y(¢t)/h’' o h= (1) 9’70, Then f(x) = h'(x) ~9"Pog o h(x).
The sublinear operator

MU~ /70g o h)(h~(0)
h'oh™ l(t)(l — a)/po

Tg(t) =
satisfies
J TgPw < ng”w, weA, and Cc- Ap W).
We can now apply the extrapolation theorem [4, p. 448] and obtain
I Tg?w < CJg”w,

weA,, 1 <p< o with C < A,(w). We undo the change of variables and
get
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jM(h'“-WPog o h)yPwo b - 't~ (=ewp/po cjg o hPw o hh'

= Cj (g oh- h/(l —u)/Po)Pw oh- h'l - _“)P/Po’
which in terms of f= g o hh' ~®/P0 gays
JMwa oh-h't-A-p/po < ij"w o hp't— A -@p/po

guaranteeing that wo k- h"'~4~®PPoe 4 We choose w =1 and restrict
1 <p<p,, and then h'* € A,, 1 < p < p,, if @ > 0, while if @ = 0, we can
restrict 1 < p < gpo/2 some 0 < g < 1 and conclude 4" ~¥*e,,, A,, and
this completes the proof of the claim that " €N, , 4, for some 5 > 0.

To conclude that #'e€,,,; A,, we want to apply Lemma 2.4 which re-
quires us to show that 4’ € A,. To do this, we first show that A preserves
BMO. If u e BMO, then ¢* €A, for some X > 0, and thus by hypothesis,

e™ "h'“eA, . Hence \u o h + alog k' € BMO. Since k" €, Ap, logh’

€ BMO and thus u o he BMO. By [5], () € A,, and hence by Lemma 2.6,
h'eA,.

The situation for p, =1 is different depending on whether o =0 or
O<ax<l.

Theorem 2.8. Let h: R — R be a homeomorphism as before and suppose that
0< o< 1. Then for every weA,, wo h-h'*€A,, with Aj(wo h-h'%)<
A,(w) if and only if '€ A,.

Theorem 2.9. Let h: R — R be a homeomorphism as before. Then for every
weA,, wo he A, with Aj(wo h)<{ A;(w) if and only if h’ €N

p>1

We begin with the proof of Theorem 2.9 since it requires the least change
from the proof of Theorem 2.7. If h’€(,, , 4, and we A4, we first choose
7> 1 so that w"e A;. The argument gave

! J woh< <LJ' wT>I/TA ()"
1| Jr NV ! '
Since w™e A4, this can be estimated by
1 j wohg (inf w’)“’A,(h’)V’ = A, (h)Y"inf w o .
7] Jr J I
Conversely, if for every we A;, wo heA,, with A;(wo h)<{ A;(w), we

apply the factorization theorem [4, p. 434] to show that the conditions of
Theorem 2.7 hold with, e.g., p, = 2. For we A,, w = u;/u,, for u;,u, € A,
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with Al(uj){ A, (w). Since w o h = u; o h/u, o h, we see that w o he A, and
A,(w o h){ A,(w), and Theorem 2.7 gives the result.

The proof of Theorem 2.8 is easy with all the tools now available to us.
We only need to show that, if A’ € A, then wo h - h' € A, (property (c) of
A,-weights and Theorem 2.9 show then w o hh'* € A,).

If e A, and h(I) = J,

1 . 1 _ |J| 1
] LW”’” ‘WLW‘ 1] <WLW>

<A (h)infh'A;(w)infw o h
I I
< A;(h)A;(W)infw o hh'.
I

Conversely, suppose
Aiwo h-h*)<{ A (w), 0<acxl.

The choice w = 1 shows that 2’* € A, . The factorization theorem again shows
that ' e, ; A, because

uloh'hla

wo,h=—_—_u20h-h'°"

By Lemma 2.1, ' € A,.

Remarks. 1. The extension to n-dimensions presents no real difficulties. If
a homeomorphism preserves A,, it must also preserve BMO and then 4 and
h~ 1! are quasi-conformal by [9]. We will therefore assume that 4 is smooth
when stating the next result. We denote by J, the Jacobian of 4.

Theorem 2.10. Let h be a smooth quasi-conformal homeomorphism, h: R" — R".

@ If1<py< o, 0<ag], then A, (wo h|J, | < Ap (W) if and only if
[l N Ap.
p>1
(B) A;(w o k)< A, (W) if and only if |J| € N A4,.
p>1

(©) A;(wo h|J,|%)3 A;(W), 0< <1, if and only if |J,| € A;.

2. The fundamental estimate of Theorem 2.7 contains a sufficient condi-
tion for a homeomorphism to preserve a single weight w (EAp0 since it says

Ap (Wo h) < CA, (W))/"A ().

It can also be applied to the local A,-classes A, q[4, p. 438].
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3. Theorems 2.7, 2.8, 2.9 contain generalizations of themselves allowing
negative powers of /', because if A’ €, ; A, and we A4, , then w' ~?oe 4, ,
and hence (w © h)! ~Pop’ eApb , 0 € a < 1. We use duality again and see that
wo h.ped-po €A, . Thus woh- h'BeApo for 1 —p,<B<1.

The mapping T, w(x) = w o h(x), where h: R— R is a homeomorphism as
before, is not an onto map from Apo —>Apo in general, but it is possible to
determine precisely when it is onto.

Theorem 2.11. Let 1 < py < . Then T): A, — A, is onto with
Apo(Th W) { Apo(w)’ Apo(Th_ lw) { Apz(w)
if and only if log h' e BMO-closure L*.

Proor. For the the necessity, if T,,:AI,o A4 - is onto, T} ! is defined and

T, ! = T,-:. It follows from Theorems 2.7 and 2.9 that 4’ and (A~ ') are in
N,>1Ap- This implies that

1
—€ A,
h' pOl P

for, if we fix 1 <p; < and apply Theorem 2.7 to h'eN
Yy €A, we obtain

A, and

p>1

1

-1y _
™Y ohx) = —h’(x) €A, .
By [4, p. 474] log ' e BMO-closure L*.

For the sufficiency, if we suppose that log#’ € BMO-closure L*, then
h'eN,, A, and k' €N, RH,. Then by Lemma 2.5, (¢~ ') €N, 4,.
By Theorem 2.7 T;-1: A, — A, and thus T}, is onto.

Remark. The situation for 4, contrasts with that for BMO, since Jones
shows in [5] that whenever T}, is bounded on BMO, it is onto, because of the
result we gave here as Lemma 2.6.

We can also characterize the pointwise multipliers of Apo.

Theorem 2.12. Let 1 < p, < o, and let ¢: R— R, . Then for every w €Ay,
w-o eApo with Apo(mpH Apo(w) if and only if log ¢ € BMO-closure L*.

Proor. For the necessity, note that ¢"€Ad,, n=1,2,..., and thus
Po

¢€A ~nm+1 by [4, p. 394] and s0 o € ﬂlAp.
p>
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Next, we claim

1
—e N A4,.

¢ p>1

If we Ay, , then w! "™eA, and hence w!"”¢"€A, ,n=1,2,... . Thus
w-o" PP e, from which we get by taking w=1, ¢~ '€A4;,1/n or
o ! eﬂp>1Ap. Again by [4, p. 474], log ¢ € BMO-closure L*.

For the sufficiency, suppose log ¢ € BMO-closure L*. We define

h(x) = j:¢.

Then A: R — R is an increasing homeomorphism with A’ = ¢. Our first claim
is that 4 is onto R, i.e., j(’)‘ ¢ — o« as x— . The condition on ¢ implies that
¢ € A, and hence, if

0E)= [ o,

for any E<S I,

o) <c < llEn ) o(E),

with ¢ independent of E, I. Apply this to I, = [0,2"] and J = [2"~!,2"] and
note that

e(l) = oI, 1) + o(J).
Since
e, _1) < o(I) < 4cp(J),

we see that

1
90(1,,) 2 <1 + ZE)‘P(In—l)’

and iterating

n
olLy) > (1 " 4%) oo,
and our claim is proved.

Since our hypothesis is that log ¢ € BMO-closure L, by Theorem 2.12, T},
isonto 4, for any 1 < p, < %, and thus by Theorem 2.7, (A~ )’ eﬂp> B
For a glven w eAp , we write wo = [w o A~ ! o h)h’ which is in Ay because
woh~ eA . One checks that 4, (w«p){ Ay, (W).
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Remark. The multiplier problem for BMO is known [11] but quite different.

The pointwise multipliers of A, require a slightly different approach. For
1 <r<ow,let A, be the class of all f: R— R, for which f"€A4,.

r<o

Lemma 2.13. fe (" A, ,if and only if fe A, and 1/fe () A,.
p>1
Proor. For the necessity simply observe that fe A; and
1 _1<1 j p,_1>"“ c (1 . 1,
— — <— | =-inff<Csup—-inff<C.
7] Lf 1| If I Jrf If Ipf If

For the converse,

1
— < Cinff,
7| .Lf I %
and since
1 1 1
1<— — 1\ =)
7] Lf ( 7] jf)
we see that
1 1 1
Csup—<— | —
TS )T

Since for 1 < p < oo,

L ) e
1| Jrf\ | s R

we get
1 p—1 p-1 . p—1
_|I| If an;ff or f €A,.

Theorem 2.14. Let o:R— R, . Then w e A, implies w - ¢ € A; with A,;(wyp)
{ Ai(w) if and only if p€ () A;,,.

r<ceo

Proor. If wpe A, for we A,, then pe A, by taking w=1.Let 1 < p, <2
and weApo. Then w=u-v'"7, u,veA,, and A,(u), A,(v)< Apo(w) as
well as

Ap (W) < A, (WA ()
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[4, p. 434]. Thus
w,‘ol.—po= u.‘p.(v.¢)l_po

and w-p*> ™eA, with 4, XUE P2 P4 A4, , (). Therefore, by Theorem
2.12, logpisin the closure of L” in BMO Wthh implies that 1/p €N
Hence p €N, ,A4;,, by Lemma 2.13.

For the converse we use the technique of Theorem 2.12 and let

h(x) = j"<p.

Then, as shown there, : R — R is a homeomorphism onto and (2~ 1)’ e ps14
h'eA,. For weA,, write w-o=woh~loh-h’, and, since v = w0h"

€ A,, by Theorem 2.9, we see that v o - h' € A; by applying Theorem 2.8.

p>1

3. Homeomorphisms Preserving A, and RH,,

We shall see that the homeomorphisms preserving A, and RHpo will be the
same as those preserving A Po under the condition 2’ €N p>1 A, but the point-
wise multiplier condition is different. We begin with some preliminary results,
including a proof of Theorem 1.1 that gives the constants we need.
Lemma 3.1. Let 1 < p,< . Then

A (wPo)l/Po

1/
dly S RER 00 <A

Proor. For the first inequality simply note that

_I_J‘ wP° < RH (w)po< ! J\ >po’
1] Jr ]

and hence for g < «,

g-1
j < j po(l—q')>
1 1]
Po{ 1 1 ol —a) (g — 1)/poY) pPo
< RH, (W) f (——Jw - )
7] 1] Jr

A,W") < RH, (WP - Apy +q-1(W)"

by

Thus

Let g1 oo.
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The second inequality can be obtained as follows

1 1/po 1 1 ga-1Y)1/po
_j wre {_J wPo(_J‘ wPol—4a)
III I |I| I lll I < Aq(wm)l/ﬁo

_.I_J' w - LJ\ w{_l_j‘ wpo(l-tl’)} @=D7po
|I| I 1I| I |I| I

since the denominator is >1. Hence

RH, (W) < Ag(W™)/™,
Let g1 co.

Remark. We shall see below in Theorem 3.4 that the quantity RHpo(w) is
not as convenient as RH, (W) - A,(W) = R_H—po(w).

Lemma 3.2. Let 1< p,< . Then

max {Ao(W), Ae(W' "7} "1} < A, (W) < Au(WAL(W! P90~

Proor. The first inequality is easy since both terms on the left are <A4 po(w).
For the second inequality simply note that

1 1 AL 1 l_q,>q-1
7] LW<|I| Lw > =T LN )Y
1 , 1 , A-g9/W@o—-1)Ypo-1
'{WJ W“’"‘(ﬂ W) }
I \ I

(L)

the expression in { } is

1 . p,< 1 o 1>(q-1)/(po—1)
S| w ol— | w'"
i L 1| L
1 @-1)/(o-1) 1
= __j w(l -pb)(q’—l)/(l—pb)> <_I wl—pb .
7| Jr 1| Jr

Using

If
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one checks that

Po—-1_4qg' -1
g-1 po-1

r—-1=
Hence for g < oo,

Ap, (W) SA WAL+ - 1/(p, - p(w! ~Po)}Po=1,

Let gt 0.

Lemma 3.3.

1) AW~ 9" 1N g(w) as g ~ © and
() o(w) < AL(w).

Proor. (i) For p < « and q; > g, we have

<_1- IS B A
1 Jr <\l ’

Ap(w! =BT L A, (T,

so that

Let p— « and (i) follows. To prove (ii), let A < o(w). We claim that for
q < o, A< A,(w). Fix g, and note that

A< AW YT A, W)

for any p < . Since

1 a-1/ 1 @-D@-1
— | w7 — | wa-aa-»
7] Jr Il Jr
1 ACARYAS )
<l— | wi e — 1 w)
<|I| jf > <|1| L

if, (p — 1)(g — 1) > 1, the claim and hence (ii) follows.

Theorem 3.4. Let 1 < p, < oo. Then the following statements are equivalent
for a homeomorphism h as in section 2.

(1) ke N 4,.

p>1
(2) we A, implies w o h€ A, With Ay(w o h)<{ A(w).
(3) weRH,_ implies w o he RH, with RH, (w © h){ RH, (W).
(4) we A, implies wo heA, with A, (wo k)< Ay W).
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Proor. We will be brief. First (1) = (4) is Theorem 2.7. The equivalence (2)
= (3)is Lemma 3.1. The implication (2) = (4) follows from Lemma 3.2. There
remains (4) = (2). Since (4) = (1) by Theorem 2.7. A,(w © h)< A,(W), p < .
Let we A,. By Lemma 3.3 we can choose p, so that A, (w! ~P0)Po~1 < 24_ (w).
Then A, (w © h) S A, (Wo h) 3 A, (W), and A, (W) < Ax(WAL(w! ~70)0 1
by Lemma 3.2. Hence A, (w © h){ A (w).
We come now to the pointwise multipliers of A4, and RH,,O.

Theorem 3.5. Let 1 < p, < . Then the following statements are equivalent
Sfor o:R—R, .
(1) " €A, n=1,2,....

() ¢€ ) RH,.

r<o
() we A, implies w-p€A,.
4) we RHPO implies w- ¢ € RHpo.

Proor. From Lemma 3.1 we get (1) < (2). It is clear that (3) = (1). The
implication (1) = (3) can be seen as follows. Let we A,,. Then for some
Do <, weA), . Hencethereis 7> 1sothat w e A, CAp,, p > p,. Since by
(1) ¢” € A, We can choose p > p, so that ¢” €A4,. An easy application of
Holder’s inequality shows that

A, (W) < A, (W) A, (077

Hence w: ¢ € A,. Since (4) implies gD"GRHpo CA,, n=1,2,..., we get
(4) = (1). We complete the proof by showing (3) = (4). If « > 0, then from
(3), we A, implies w- p*“€ A, since (3) = (1). Let weRHpo. Then, by
Lemma 3.1,

RH, (W- ¢)”° < A (W*9™) <
sience w”° e A,,.
Remark. If ¢ = P(x) is a polynomial, then (1) is satisfied, and hence a

polynomial is a pointwise multiplier of 4, and RH,,O. However, it is clear that
this is not the case for APo‘

4. Homeomorphisms Preserving Double Weights
The argument presented in Theorem 2.7 for single weights is not applicable

to double weights (u, v) € A, since it is no longer true that there is 7 > 1 with
(u”,v") € A,. In fact the existence of such a 7> 1 takes us back to the single
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weight case [7]. For the study of the homeomorphisms which preserve
(4, v) e A, we need the following extrapolation theorem.

Theorem 4.1. Let 1<p,< o, and let v:R, > R, be nondecreasing.

Assume that T is a sublinear operator so that for every (u, v) eApo,

YAy, (U, V)

u{x: |Tfx)| >y} < 70

I£155.

Then, if 1 <p<p,, and (u,v)€A,,

CP
{x:|Tfx)| >y} sF 1£15,0

where
C < cpoA, (U, V)[V(A,(u, v) P~ Do~ Dy|1/P0,

We use the notation

e T ) G A K

We will not prove this theorem since the proof is the same as in [8] by
keeping track of the constants involved. In the applications that follow,
Y(t) = ct'/Pe.

As before we shall assume that #: R — R is a homeomorphism onto so that
h, h~! are locally absolutely continuous and 4’ > 0.

Theorem4.2. 1<p<ow,1-p<a<l.Ifh'€A,, then forevery (u,v)€A,,
woh-h"*voh-h"*)eA, with A,uoh-h"*,voh-h"*)<CA,u,v), C
independent of «a.

Proor. Let

L = LJ‘ uoh hlu<_1_j (U o h)l—p’ h/a(l—p’)>p_l.
(R 1T Jr

Let t = h(x), h(I) = J. Then

O] u(t)
WL” PR =0 lJlj FD o 1)

and

= ! _r ! |
1T Jroe k=T p=@ =D "Il ] )y o@P T (0 o k(1)@ D
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Hence

L< (ﬂ)p . - 1 5y A4,u, v),

||/ infA'@ =) .infp'@+P-D

sincel —a>20,a+p—120. Since A’ € A4,, i.e.,

(., Wl ,
] j SO

the proof is complete.

Remark. We do not know whether or not the converse of Theorem 4.2 is
true (except for o = 1 as we will see). From Theorem 2.7, however, the A -
norm inequality does imply that 4’ €N p>14p> if 0 € o < 1. If we change the
problem somewhat, we obtain a necessary and sufficient condition.

Theorem 4.3. Let 1<p,< o, 1 —-p,<a. Then for every (u, VEA,

(uoh-h',voh- h"")eA with A, (uOh W,voh-h"*)<CA, (u )] zf
and only if

LJ\ h' g Cinf(h')a/p0+l/p6,
1] Jr 1

C independent of I.

Proor. The sufficiency can be handled as in Theorem 5.

1 J
I—ITLuoh- " |lI|l UIfu(t)dt

L 1 _r 1 .
|I| I (U ° h)pb_l * hlt!(pb—l) - |I| |J| 7 v(t)pi)_l(h’ o h—l(t))u(Pb—l)+l

Hence

| | po 1
’ ra < D —
A, (uOh h'svoh-h*)<A,(u,v)- (m inf ()" P01
I

since a + py — 1 =2 0.
For the necessity we note first that [6]

j uoh-h'< ———(-’—l [ FPxX)v 0 h(x) - h"(x) dx.
{Mf> y} yrpe
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We change variables ¢ = A(x) and get

v(?)

ooy

CA, (u,v)
ju(t) dt < —i:v,,—— [f[h ~ Iy
{t: Mflh—- 1] >y}

If we set

foh™l()
[h" o h- () F-7’

g(t) =
then f(x) = h'(x)* ~*’P°g o h(x), and

CA, (u,v)
u(t)dt < ———;—"50—— jg”"v.

{t: M(h'Q ~ )/Pog o h)[h ~ 1(2)] > ¥}
The hypothesis of Theorem 4.1 are satisfied with
Y(t) = ct!/Pe
and
Tg(t) = M(h'“~"P°g o B)[A™ (1))
Hence for 1 < p <p, and (u,v)€A4,,
CP
ul{x: |Tgx)| >y} <5 l&l2.
with
C = cpoA,(u, V)[V(Ap(u, v)® =~ D@0~ Dyj/po,
We let now u = v = 1 so that A,(u, v) = 1. With # = h(x) we get
h'(x)dt < f—: f (g © A)P(x) - h'(x) dx,
{x: M(h'A - 2)/Pog o h)(x) >y}

where C is an absolute constant independent of p. Since

goh(X):ZI(I—_fE%O(—x)—,

the above is

P
h'(x)dx < -f—,, jf P(X)h!(x)! L~ P70 gy,

I
{e: Mf (x) >y}
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We test this inequality with f= x A", where v will be chosen later. Since

IC zx:Mf(x)zL h"’s—y}
17| Jz

we obtain

|71* J —a-
h'(x)dx < C* pP+1-(0-cdp/po
J‘I () U‘Ihry)p I

We choose v so that

-« 1
p, (p—Dy=

1
Y=vyp+1-
o Do

- [1—& 1}
-p—1lorvy=p -—-
Do p

Hence

1

— \w<er|P | p)-e

|I|L i Ul )
We let now pl1. Then

1
inf h/l -1 -a)/po :
I

<V[ 10 = @)/po— l/p]p’)p/p’ — sup h'@-/pPo-1
1 I

Hence

ij h' < Cinf h'*/Po* 1770,
17| Jx I

Corollary 4.4. Let 1< p,< . Then for every (u, v)eApo, (uoh-n',
voh-h') eApo with Apo(u oh-hyvoh-h')< CApo(u, v) if and only if
h'eA,.

As in the single weight case we ask when T,(u,v) = (o h-h',vo h-h'®
takes A, onto A, .

Theorem 4.5. Let 1 <p, <o and a>1—p,. Then T: A, — A, is onto
with A, (Ty(u,v)), and A, (Ty '(u,v)) both <CA, (u,v) if and only if
h'=1.

Proor. First assume that T, is onto. Then, if (u, v) eApo, there is (i, D) eAJ,,o
with (o h-h',D0 h-h'*) = (u,v). Hence

at)=uoh 1(t)- =uoh”l(t)- (A7 Y)()

h' o h=1(¢)
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and
() =voh () (™ 1y*().

Hence T;, ! = T),-1, and Theorem 4.3 gives the two inequalities

_1_‘[ h' s Cinfh'u/p°+1/pb,
17} Jr 1

L J\ (h - 1)1 s Cinf (h - l)ra/po + 1/p{).

|71 Js J
If h(I) = J, the second inequality can be rewritten as

Csup hnx/po+ 1/pg < L \[ h'.
I |7l Jr
This together with the first inequality shows that
Csup b’ <infh’
I I

(note a/py + 1/pg since o > 1 — py), and A’ = 1.
Conversely, if ' = 1, then there are constants 0 < ¢; < A’ < ¢, < 0, and so

1 C o 1
— | ¥ <-2CY<Cinfh", y=—+—-
1| L cr T Po Do

Similarly

1 ,
_J (h—l)l < Cinf(h—l)la/po+ l/po.
| Jr 1

Hence T, is onto.
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