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Abstract

We study the relation between the porous medium equation #, = A@™), m > 1,
and the eikonal equation v, = |Dv|?. Under quite general assumptions, we prove
that the pressure and the interface of the solution of the Cauchy problem for
the porous medium equation converge as m | 1 to the viscosity solution and
the interface of the Cauchy problem for the eikonal equation. We also address
the same questions for the case of the Dirichlet boundary value problem.

Introduction

In this paper we investigate the relation between the porous medium equation

0.1) u, = A@™), m>1,
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and the eikonal equation
0.2) v, = |Dvf?,

for appropriate initial and boundary data. Here Dv = (vxl, cee va) denote
the spatial gradient of v and A is the Laplace operator. The connection be
tween these equations is made apparent when we perform the change o
variables

0.3) v=——ym!

which transforms (0.1) into the «pressure» equation
0.4) v, = (m — v Av + |Dv*.

Letting now m | 1 we formally obtain (0.2).

Equation (0.1) arises naturally as a mathematical model in several areas o
applications (e.g. percolation of gas through porous media [33], radiative hea
transfer in ionized plasmas [34], thin liquid films spreading under gravity [12]
crowd-avoiding population spreading [26], etc.). Equation (0.2), which is
special case of a Hamilton-Jacobi equation, is of main interest in optimal cor.
trol theory [29], the theory of geometrical optics [29], where it describes th
propagation of wave fronts [23], etc.

As far as mathematical properties are concerned, (0.1) exhibits bot
parabolic and hyperbolic behavior. In particular, at all points where u > 0,
is smooth. Moreover, it is known ([9], [10]), that the solution u# of (0.1
depends continuously in appropriate norms on both the initial data and on »
Thus, as mi1, (0.1) can be regarded as a perturbation of the heat equatior
The hyperbolic behavior of (0.1) is manifested by the existence of a finit
speed of propagation and the development of interfaces. (For a detaile
discussion of the above as well as a complete list of references, see [37]). O
the other hand, (0.2) is a hyperbolic equation with only locally defined smoot
solutions but with globally defined weak solutions, namely the viscosity solt
tions [17]. A common method for approximating viscosity solutions is th
method of artificial viscosity [19], [35]. This method, however, does not giv
any information whatsoever about the interface of the hyperbolic problem. I
order to control the interface one needs to use approximations which exhib:
interface. In this context a natural question is whether (0.4) can be regarde
as a degenerate viscosity (or diffusion) approximation to (0.2).

In [5] D. G. Aronson and J. L. Vazquez explored the convergence, as m | 1
of the solutions of (0.4) to (0.2) in the case of the Cauchy problem in on
space dimension. They proved that not only the solutions but also the intes
faces of the solutions of (0.4) converge to the solution and the interfac
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respectively of (0.2), if the initial data are continuous, nonnegative and con-
verge locally uniformly. The proofs rely on estimates that are very particular
- to the one-dimensional setting.

In this paper we consider the convergence in N space dimensions with
general initial data both for the Cauchy problem in RY and for the Dirichlet
problem in a bounded domain O C RY. For the Cauchy problem we prove
that solutions of (0.4) converge to the unique viscosity solutions of (0.2) (Sec-
tion 1, Theorem 1). Moreover, we show that the positivity sets of solutions
of (0.4) converge (in the sense of sets) to the positivity sets of solutions of (0.2)
(Section 2, Theorem 2). The main point for the convergence of the solutions
is a new type estimates for the gradient. Gradient estimates are easy to obtain
in the case of the one space dimension but not obvious at all in higher dimen-
sions (cf. [1], [14], etc.). For the interfaces we also need some new informa-
tion. This follows from an important result of L. Caffarelli and A. Friedman
[13]. In the case of the Dirichlet problem we investigate the convergence of
the solutions. We show that the limit takes on natural boundary conditions,
thus giving rise to a boundary layer (Section 3, Theorem 3). Finally, the
Appendix is a short survey on (0.2). We examine the existence and uniqueness
of viscosity solutions under optimal initial conditions as well as some of their
properties (e.g. regularity, growth at infinity, interfaces etc.).

1. The Cauchy Problem

Let us consider the following two problems

(1) Upe = (m — Do, Av,, + |Dv,,|*> in RY x (0, T,,)
' U = Upo on RN x {t=0}

and

(1.2) {UFIDUIZ in R x (0, T)

v =1, on RYx {t=0}
with nonnegative initial data v,,q, v, € C(R"). Here T,, and T denote the maxi-
mal time of existence for equations (1.1) and (1.2) respectively.

Problem (1.2) has a unique viscosity solution defined in a time interval
" (0, T) if the initial data satisfy a quadratic growth condition of the form
(1.3) vo(¥) < alx|*+ b
with a, b > 0. Moreover if

(1.4) o = lim sup Uo(¥)

xow X2
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we have
(1.5) T=1/4a,

so that a global solution exists if and only if o = 0. On the other han
growth condition like (1.3) on v,,, ensures the existence of a unique c
tinuous weak solution of problem (1.1) ([11], [21]) for a time

T, > 1
™7 2IN(m - 1) + 2]«

(1.6)

Again v, is global in time if and only if o = 0. Observe that liminf 7,, >

m—1
Our first Theorem states the convergence of solutions of (1.1) to the o
of (1.2) as ml1.

Theorem 1. Assume that for m close to 1 we are given nonnegative ini
data v,,o€ C(RY) satisfying (1.3) uniformly in m and such that as m
Upo — U locally uniformly in RY. Let v,, and v be the solutions to proble
(1.1) and (1.2). Then v,,— v as m— 1 locally uniformly in RY x [0, T).

The proof of this result relies on obtaining gradient estimates in the ¢
where the solutions are uniformly bounded from below away from zero ¢
a series of delicate approximations which use the uniqueness and continu
dependence on the initial data of the solutions to problems (1.1) and (1.2).
begin with the gradient estimate. We state the result in a generality that
be also useful in Section 3, when dealing with problems in bounded domai
The proof is based on a variation of Bernstein’s trick ([22], [24], [29]).

Lemma 1.1. For m > 1 let v,, be a smooth solution of the equation
(Um); = (M — 1)Vyy AUy, + | Doy
in O, where O is an open subset of RN x (0, T]. Assume that
1.7 B = supv, =>infv, >2v>0
o o
with 8 and v independent of m. Then for every compact subset K of O «

Jor m — 1 sufficiently small depending on K, 3 and v, there exists a const
C = C(K, B, ) such that

(1.8) |Dv,| <C in K.

If Dv.... is locally bounded. the above estimate holds down to t = 0. i.e.
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Proor. Let ¢ be a cut-off function supported in O such that: 0 < { <1 and
¢ =1 on K. We consider the function

1.9) Z = | Dvf* + v

where \ is a constant to be chosen later. Here for notational simplicity we have
dropped the subscript m from v,,. If Z has a maximum at some point (x,, #;)
such that {(xy, Zp) > 0, then at (x,, #,) we have
Z, =255, |Dul* + 2870, v, + W0, 20,
Z,, =285, Dol + 2820, v, + N0, =0, k=1,...,N,
Zy v, = Q55 + 288, 2 )IDV + 45, v, 0,
2 2 2 —
+ 28 (WOxn )" + 28703 Uy x, + MUy p, SO, k=1,...,N,
and
0<Z,—(m—-1)wAZ-2Dv-DZ.
Substituting in the last inequality and using the equation we obtain
0 < 2(m — 1)¢%|Dv|? Av — \|Dv|? — 2(m — Do(|D¢|? + ¢A¢)|Dvl?
+ 208, Dol? = 20m — Dog?oy, — 458, v, | Dol
- 8(m - l)g‘g‘xkvvxivxixk-

Applying the Cauchy-Schwartz inequality together with the elementary in-
equality

N 2 2
WP <N 3 [ o }

i,j=1 3x,~ 3xj
we get
\Dv|? < C¢| Dol + C|Dof? + (m — 1)3‘2<2|Dv|2Av - %(Avf)
where v is from (1.7) and C stands for a constant which depends only on

ID¢ |ws |AS)w» | $2lw and B from (1.7), and may change from line to line.
The last inequality can be transformed into

N
N Dv|? < C¢|Dv|® + C|Dv|* + (m — 1)7 ¢*|Dvl*

with all the functions evaluated at (x, 7). Let

(1.10) A= p.[mgx &2|Do)?) + 1]
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where u > 0 is to be chosen. Substituing in the above inequality we obt:
,L[mgx 2 Duf? + 1]|Dv{2 < C[%(m - })(mgx 2 Dof? + 1)1/2 + 1]
: <mgx 2| Dol + 1)1/2iDu|2.
Now, if |Dv|*(x,, t,) # 0, then
<,u - ﬂ;yl)—q>(max ¢2Do)? + )2 < C,

so that, if u > (m — 1)C/v, we have

2
(1.11) |Dv|* —~—(—”—1€—_——1—)—C—, for every (x,f) eK.

Y

On the other hand, if |Dv|2(x0, t,) = 0, then by the definitions of Z and (x,
we have

(1.12) £ D)IDVX(x, 1) < M\8
where
£2(x, 1)|Dv|*(%, f) = max £*|Dv|*
o
Using (1.10) and (1.12) we get

(1.13) |Dv|(x, 1) < —1——@%‘6— for every (x,1) €Kk,

provided that 1 — uB8 > 0. Choosing u such that y8 = 1/2, then form — 1.
ficiently small we have u > (m — 1)C/7, therefore the result follows in the «
where O is a subset of RY x (0, T). If O intersects the set RN x {0} the m
mum of Z may take place at #, = 0. In that case we obtain a local bound
|Dv| depending only on 8, \ and the sup of |Duv,,e| on KN (RN x {0}).

PROOF OF THEOREM.

Step 1. We assume that 0 < v < v,,,0(x) with v independent of m. It t
follows from known properties of the porous medium equation [1], [11] t.
for every m, v,(x,t) =%, v,€C°(RY x (0, T,,)) and the v,’s are loc
bounded in R" x [0, T,,) uniformly in m. Therefore we can apply Lemma
on any compact subset K of RY x (0, T') and obtain a bound for |Dv,,| o
that is uniform in m for m sufficiently close to 1. By [25] it follows that
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v,,’s are also locally Holder-continuous in ¢ with exponent 1/2 and coefficient
independent of m if m is again sufficiently close to 1. The family {v,,},,>1
is therefore relatively compact in C(K). By a standard diagonal process we
may extract a subsequence from every sequence m, — 1, which we again
denote by m,, for simplicity, such that the Um,’s converge locally uniformly in
RN x (0, T) to a function v e C(RN x (0, T)), which is locally Lipschitz con-
tinuous in x, Holder continuous with exponent 1/2 in ¢ and a viscosity solu-
tion of (0.2) (cf. [15], [17]).

If, moreover, Dv,,o € Lo (R™) uniformly in m, then the gradient estimates
hold in compact subsets of RY x [0, T,,) and the same argument implies that
the convergence v, — v holds locally uniformly in RN x [0, T'). Since v,,0 = v,
locally in RN we conclude that v € C(RY x [0, T')) takes on the initial value v,.
Therefore, in view of Theorem A.1 of the Appendix, v is the unique viscosity
solution of problem (1.2) and the whole family {v,,},,~; converges to v.

To prove that v is continuous down to ¢ = 0 and v(x, 0) = v,(x) for xe RN
in the case where we do not have a control on |Dv,,,| we proceed by approxi-
mation. Indeed, we approximate v,,, by sequences {vpg}, {Vmo,,} Such that:

(i) the functions vy, and v,, , are smooth in R™, and for fixed n the gra-
dients are locally bounded in R" uniformly in m.

(ii) for each fixed m we have the monotone convergence vyl v, and
Umo.n T Umo uniformly in m and x e R".

(Such approximations can be easily obtained by partition of unity and con-
volution with a smooth kernel).

We conclude as follows: For each fixed n, vy, and v, , converge along
subsequences to some functions vg and v, , respectively, which have gradients
locally bounded in R™ and converge, as n — 0, locally uniformly to v,. The
ordering properties of the porous medium equation imply that vy, = v,y 2 V. »
in R x [0, T,,) where v", and Um,n are the solutions of problem (1.1) in
RN x [0, T,,) with initial data v}, and Umo, » T€SPEcCtively. The argument above
then implies that for each fixed n, as ml1, vy —v" and v, , — v, locally
uniformly in RN x [0, T') where v”, v, are the unique viscosity solutions of prob-
lem (1.2) in RY x [0, T'] with initial data v} and Vo, » Tespectively. Moreover,

v" 2 limv, >limv, >v, in RYx][0,T).
mil mlil

Letting n — o and using the uniqueness result of Theorem A.1 we obtain

lim v" = lim v, = v

n— o n—o

where v € C(RN x [0, T]) is the unique viscosity solution of (1.2) in RY x [0, T).
The result follows.
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Step 2. The general case. Let
Uho = Umo + 1/n1.

If v}, is the solution of (0.1) in RN x [0, T,,), then the maximum princi
yields v,, < v, in RV x [0, T'). Using Step 1 and Theorem A.l we get

limv, <v

m—1

uniformly on compact subsets of RY x [0, T'). To conclude, we need to estab
the inequality

(1.14) lim v,, 2 v locally uniformly in RN x [0, T).

m-1
We first prove (1.14) in the case where the v,,,’s satisfy the inequalities
0<V<C and Av, > -C in R¥

where C is a constant independent of m.

Let vy, be the solution of (1.1) with initial data v, + 1/n. T
v eC(RN x [0, T,)), 0< v <C+1/n and AvY, > —C in RV x [0, 7
Using (1.1) we see that the function

1
wh = vn, + C(C + —n—>(m - )t

is a smooth solution of

Wi = |Dwp|? in RY x [0, T,,)
W = Upo on RN x {t=0].

It then follows that wj, > V,,, the solution of (1.2) with initial data v,
RN x [0, T,,). Now we let n — eo. The continuous dependence of the soluti
of the porous medium equation on the initial data ([11]) yields

Um(x, £) + CH(m — 1)t 2> v(x, t).

Letting m ! 1 and using Proposition A.10 we obtain (1.14).

Next we prove (1.14) under only the assumption that v, is bounded.
8> 0. We can find functions %, ,,o bounded in W* “(R") uniformly in m :
such that g, Do = 0, Umo < Upmo» Umo = Vo in RY and Dy(x) > vp(x) — & in |
Then

limv,, >lim?,, > 7 locally uniformly in RN x [0, T).
miT mll
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Since v — & is a solution of (1.2) with data Vo — 6 < Py we have v — 6 < . Let-
ting 6 — 0 we conclude (1.14).

For the general unbounded case we truncate the initial data at height n. If
vy, and v" are the solutions of (1.1) and (1.2) with the truncated initial data,
the above and the maximum principle yield

lim v,, > lim vy, > v" locally uniformly in RN x [0, T).

m—1 m—1

Letting n — o we obtain v" — v. The result follows. [l

We continue with a remark concerning Lemma 1.1. In fact gradient estimates
can be obtained in a similar way for general classes of equations like for instance

1.15) ui — eF(x,t,u,Dut, D*u) + H(x, t,u*, Du) = 0

under suitable assumptions on F and H and provided that the family of
smooth solutions {u‘},., is locally bounded from above and below away
from zero uniformly in e. Such bounds allow to pass to the limit e = 0 and
thus obtain viscosity solutions of the limit problem

(1.16) u, + H(x, t,u, Du) = 0.

General equations of the form (1.15) have a certain usefulness. For instance,
in some numerical codes the approximation of shocks is improved with the
addition of some nonlinear artificial viscosity (so called numerical viscosity,
cf. [32]). The assumptions that one has to make on F and H are rather
cumbersome although quite general. We leave it to the reader to fill in the
details in particular applications. :

Our next remark deals with an alternative and simpler proof of the gradient
estimate of Lemma 1.1. Though it needs stronger assumpions on the initial
data, it can be of interest for some applications.

Lemma 1.2. Assume that for every m > 1 the continuous functions v,
satisfy 0 < Y < Upo < B and | Dv,,e| < M, where B8,y and M, are positive con-
stants. Then there exists a bound for |Dv,,| of the form

M,
. 20— <
(1.17) | Du,,(x, )| = /T for 0<t<T,
where
2y
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Proor. Let w,, = |Dvm|2. Using equation (1.1) we obtain

N 32
We— (m — )vAw — 2Dv - Dw = 2(m — DwAv — 2(m — o >} v
i,j=1 axiaxj

2(m -1
<20m— Dway — DYy
N
(m-1HN ,
<——21 w2
27

where we have dropped‘the m’s for simplicity and have used the inequa

N 2 2
@ <N 3 (——a 0 ) :

i,j=1 axiBXj

We compare w,, to the explicit solution

M,C 2y
W t) = 0 > b4 = -
= 0<I<C=Nm -1
of the problem
g Nm=1) .,
2y
w(0) = M,

The maximum principle implies that w,, < W, in RN x [0, C). If v, 8 and
do not depend on m, then C*1 o as m | 1. Thus we obtain a bound for |D
on bounded time intervals which is uniform in m for m close to 1. [

We conclude with a further remark about a sharper gradient estimate
solutions of (1.1) under the assumption that 0 < ¥ < v, < 8. Indeed a resul
Ph. Bénilan [8] implies that if u,, is a solution of (0.1)andm < 1+ (N —1)
then there exists a gradient bound of the form

(1.18) D)™~ 2 < Ct7 12
where C depends on § but not on m. If v,y = v > 0, we conclude that
|Dv,,|* < é;¢7 1

where ¢; depends on 8 and 7.

2. Convergence of Interfaces

In this section we prove that under the assumptions of Theorem 1 the interf
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of the solution of problem (1.1) converges to the interface of the solution of
(1.2) as m{ 1. The interfaces are described in terms of the functions

.1 S, (x) = inf {# > 0: v,,(x, 1) > 0},
and
2.2 S() = inf {# > 0: v(x, t) > 0},

The so-called retention property implies that v,,(x, £) > 0 for every ¢ > S,,(x).
On the other hand it is proved in [12] that, if v,,, has compact support, the
function §,, is Holder continuous in the open set

2.3) Ap =R\ 0,y (0),

where for m > 1and ¢ > 0, Q,,(¢) = {xe R™: v,,(x, t) > 0} . The above restric-
tion is essential in view of the fact that S,, is discontinuous at points of the
boundary of Q,,(0) whenever a positive waiting time occurs. This phenomenon
may appear even in one space dimension, (cf. [3], [4]). The restriction of com-
pact support in [13] is inessential. The interface to problem (1.2) has similar
properties as we show in the Appendix.

In view of these observations we prove the convergence of S, to S away
from the initial sets ©,,(0). More precisely, let

@4 A=RN / N closure< U 9,,,(0))

e>0 1<m<1l+e

The set A consists of points x € RY such that for some e > 0 and > 0 and all
1<m<1+ ¢, v, vanishes dentically on B(x, r), the open ball centered at x
with radius r.

Theorem 2. S,, converges to S as m 1 uniformly on compact subsets of A.

Proor. Let K be a compact subset of A and suppose that S,, does not con-
verge uniformly to S on K. Then there exist e > 0, x,, € K and m,, | 1 such that

2.5) |S,,,n(x,,) —S(x,)| =e.
Suppose first (upon passing to a subsequence if necessary) that we have
(2.6.0) Sm, (Xz) = S(x,) + €.

A contradiction follows then easily from the uniform convergence of v,, to v
on K and the continuity of S (see Appendix). In fact the definition of S,
(2.6.a) implies

U, (Xns S(X) + €) = 0,
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so that for any limit point ¥ of {x,} we have
v(X,S(X) +¢) =0,

against the definition of S.
Let us now discuss the case where, as m, 11,

(2.6.b) Sm, (Xn) < S(x,) — €.

This case is significantly more difficult. To exclude it, we need to use a precis
information about the growth of solutions and interfaces of (1.1) based on th
results of [13]. This information is summarized in the following lemmata.

Lemma 2.1. Lef K be a compact set where v, = 0,1 <m <1+ e<2. The
Sfor every compact set K' C K there exists a T > 0 depending only on K, K' bu,
not on m or e, such that for every me (1,1 + ¢)

v, =0 on K'x]0,1].

Lemma 2.2. Let0< 1< ty,x,€ RN and Ry > 0. There exist & = o(r, R_o) >
and R = R(r, ty, Ry) > 0 such that whenever v, (+,7) =0 on B(x,, Ry) an
Um < 8 0n B(xy, Ry) X [, t,], then v,,(s, ) = 0 on B(xy, R).

We postpone the proof of the lemmata to the end of the section and cor
tinue with the proof of Theorem 2. Let X be a limit point of {x,}. The prope:
ties of S (cf. Appendix) imply that there exists z, > S(¥) — ¢/2 and r > 0 suc
that v(e, fy) = 0 on B(X, r) and, since v, > 0 by (1.2),

v=0 on B(xr)x[0,1].

On the other hand, Lemma 2.1 yields the existence of a 7 = 7(X, r) < ¢, suc
that, for m, sufficiently close to 1,

Um, =0 on B<£,g—>x {r}.

Finally, in view of Theorem 1 and the above there exists n, such that for n > r
Un, <8 on B, 7 X [0, 4],

where 6 = 6(r, r) is given by Lemma 2.2. Since all the assumptions of Lemm
2.2 are satisfied, we obtain

vmn(" t()) =0 on E&T’T)y

where 7’ = r'(r, ty, r). This contradicts (2.6.5). [
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We continue with a discussion of the convergence in the complement of the
set A. Firstly, for every X € 2(0) we have vy(x) > 0 and v,,,¢(x) > 0 for m near
1 and x near X. Therefore S(x) = S, (x) = 0; i.e., S,, — S locally uniformly in
Q(0). In the case where Q,,(0) C 2(0) for all m near 1, then 4 D RV\ Q(0).
So the only place where the convergence may fail is the boundary of Q(0). It
is easy to construct examples with waiting times where this happens. Finally,
we cannot expect convergence on the set

B = lim sup ©,,(0) \ 2(0).
mil

In fact for each x € B there exists a subsequence m, | 1 such that Um,,o(x) >0
and S,,,n(x) = 0. However, S(x) > 0. In particular, it may happen that
Q,,(0) = RN for every m > 1 so that B = RV\ Q(0) and the only convergence
that we get is the trivial convergence on 2(0).

We next formulate the convergence of the interfaces in terms of the positivity
sets Q,,,(¢) and Q(¢). Since the proof of this result is only a variation of the proof
of Theorem 2 we leave it up to the reader to fill in the details.

Theorem 2'. Under the assumptions of Theorem 1 we have

@) Iimlinf Q,.(t) D Q@)
mil

@ii) lim sup Q,,(¢) C Q) U(RN\ A4).
mi1

As explained above an inclusion of the type

lim sup Q,,(¢) C Q(¢)
mil

cannot be true in general. It may happen e.g. that Q,,(f) = R for everym > 1,
t > 0, while Q(¢) is bounded.

We conclude with the proof of the lemmata.

Proor oF LEMMA 2.1. Without any loss of generality we may assume that
K = B(0,R,) and K’ = B(0, R) with R < R,.

We proceed by constructing a barrier function V: B(0, R;) X [0, 7] = R for
an appropriate choice of 7. It is given by the formula

Q.7 V(r,t) = Na* + a(r — R - 0)]*

whara » — lvl ot —mavle M D~ D1 A~ P and )X~ N Wa rhnnca 7 )
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(i) Whenever V' > 0, V satisfies
(2.8) V,2(m—- 1)VAV + |DV|?

@ii) V(r,7) =0 for r<R.

(iii) V(R,t) =2 A for te[0,7], where A is the L*-bound of v, o
K x [0, T — €], which in view of the proof of Theorem 1, is indeper
dent of m.

If all the above are satisfied, setting

m—1 1/(m-1) m—1 1/(m—-1)
U= <~____ > ’ u N < vm>
m m

we have U, > AU™, u, = Au™ in B(0, R;) X (0, 7] and U > u on the parabol
boundary of B(0, R,) X (0, 7]. By the standard comparison principle for tt
porous medium equation, it follows that U > u throughout B(0, R;) X [0, 7
hence, in particular, v(x, 7) < V(|x|, 7) = 0 if |x| < R and thus the result.

We conclude by establishing (i), (ii) and (iii) above. We begin by observir
that V> 0 if and only if

2.9 r2R+0-at
To satisfy (ii) it suffices to have
(2.10) ar< 6
For (iii) we need
NMa*t+aR, - R+6)] >4
which requires

A

. > = .
(2.11) \a R —(R+0)

Finally, V satisfies (2.8), whenever V > 0, if and only if

<L

)\[(m—l)(N—l)mr—r_R_a—+l]

For the latter to be satisfied, in view of (2.9) and (2.10), it suffices to ha

1

2.12) N TFNO-R/RY)

To conclude we choose A so that the inequality holds in (2.12). Then for a su
ficiently large and 7 sufficiently small (2.10) and (2.11) can be achieved. |
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For the proof of Lemma 2.2 we need the following result.
Lemma 2.3 [13]. For any > 0 and m > 1 there exist positive constants 1, ¢

depending only on m, N and 1 such that the following is true: Let t,> T,
R>0,0<a<q. If

(2.13) Um(s,2)=0 on B(x;R) x,eRN
and
cR?
(2.14) V(x, 2y + 0)dx < )
B(xy, R)
then
(2.15) Um(e, 2o +0) =0 on B(xy, R/6),

where fB(xo, R Um(X, ) dx denotes the average of v,,(+, s) over the ball B(x,, R).

A careful scrutiny of the proof shows that the constants do not depend on
m in the range 1 < m < 2.

Proor or LEMMA 2.2. Let 5, c be the constants which correspond to 7 via
Lemma 2.3, let M be so large that ¢ = (¢, — 7)/M < 4 and let § > 0 be such
that 6 < c 6 *-DR2/5. For every i = 1,..., M, we then have

. C -
:f U (X, 7 + i0)dx < — 672" DRZ.
B(xy,6~(~DRy) g

Using Lemma 2.3 and arguing inductively we obtain

Um(s,2)=0 on B(xp,6 MRy). O

3. The Initial-Boundary Value Problem

Here we focus our attention to the initial-boundary value problems

Upe = (m = Vv, Av,, + |Dv,,[*> in O x (0, T}
3.1) U =0 on 90 x [0, T]

U = Upyg on O X {t=0}
and

v,=|Dv* in Ox(0,T]
3.2) v=20 on 00 x [0, T]
V= a on OX {t=0}.
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Problem (3.2) does not have a globally defined viscosity solution which is c
tinuous up to the boundary. There exists, however, a minimal viscosity sc
tion v (the value function of the underlying control problem) which assur
some natural boundary conditions, not necessarily zero ([27]). We begin
discussing this minimal viscosity solution. To make some of the formu
clearer, we will occasionally refer to their form when O is convex. To this e
for x,y € O and ¢ > 0 we define

(3.3) L y,0) = infU —}lssllds: E0) = x, (1) = y, &s) €@ for se[0,
0

If O is convex, then it is easy to see that

[x— >

(B.49) Lx,y,1) = py

In order to have a viscosity solution of (3.2) which is continuous up to
boundary, one needs certain compatibility conditions which restrict the c.
of allowed initial data and the time of existence [29]. In particular, to h
a viscosity solution v e C(O x [0, T]) of the problem

v, =|Dv]* in Ox(0,T]
3.5) v=20 on 40 x (0, T1
v =1 on OX{t=0]}

we need to assume

3.6) o(x, 1) = ¢(y,5) — L(x,y,t —s) for all x,ye€d0, t>s>0
’ (x, 1) = vy(y) — L(x, 7, 1) forall xe€d0, t>0 and ye(
Next we define
(3.7 u(x, 1) = sup (vy(») — L(x,»,1)}.
yeO

Arguments similar to the ones of [29, Chapter 11] yield that v is a visco
solution of v, = |[Dv|> in O X (0, ©). More precisely, (cf. [29]) v is
minimum element of the set of Lipschitz-continuous solutions of

v,— |Dv]*=0 in O X (0, ),
(3.8) v>=0 on 40 x (0, ),
v=y, on OX{t=0}.

Moreover, on 30 X (0, ©) v = ¢, where & is the minimum element of the
of functions ¢ € C([00 X (0, )] U[O x {t = 0}]) satisfying (3.6) and ¢
on 90 X [0, o).
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In the case when O is convex and ¢ = 0, (3.4) and (3.6) yield
1
3.9 < H 2.
3.9 vo(%) < Ve dist (x, 00)

Then v defined by (3.7) satisfies v =0 on dO X [0, T'] and it is the unique
viscosity solution of (3.2) in O X (0, T'). The maximal time T for which such
a solution exists is given by

dist (x, 80)?

3.10 T* = inf
G.10) ™ 4000

We remark that this is precisely the waiting time T for the interface of the
Cauchy problem in R (cf. Proposition A.15. See also (1.5)). In general we
say that v is the minimal viscosity solution to (3.2).

The relation between (3.1) and (3.2) in the interior of O X [0, T] is the same as
the one of (1.1) and (1.2). At the boundary, however, boundary layers appear.
This is due to the fact that although we are forcing Dirichlet data on (3.1),
the solution of (3.2) takes on natural boundary values as explained above.

Theorem. 3. Assume that v,y — v, uniformly on O as m 1 and let v be the
viscosity solution of (3.2) in O x [0, «) given by (3.7) above. Then, as ml 1,
v,, — v locally uniformly in O X [0, «).

PRrROOF.

Step 1. We begin by assuming that v, > 0 in O. We may also assume that
the v,,0’s are Lipschitz continuous with gradients bounded uniformly in m;
the general case follows by approximating v,,, from above and below by
Lipschitz-continuous functions much as in Theorem 1. Let B(0, R) be a ball
strictly included in O, and let B(0, R;) C O for some R; > R. Since v,,y = v,
uniformly on B(0, R,) as m{1 and v, > 0 in O, there exist my, = my(R,) and
v > 0 such that

min v,,,>v>0 for m<mg.
B(O,R))

We claim that for every T > 0 there exist m; = m;(T) > 1and 8 = B(R,R;) >0
such that for m < m,

(3.11) v,=8 on B(0,R)x][0,T].
Indeed we consider the similarity solutions

1
2[INm - 1)+ 2] (t+ 1)

V,,,(X, ta, T) — (02(1‘ + T)2/(N(m— H+2) _ |x|2)+
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of v,=(m—-1NvAv+|Dv]* in RY¥x(0,), where a,7>0. We
choose a and 7 so that for m near 1 we have

supp V,,,(+,t) CB(O,R,) for te]0,T]

B(0, R) C supp Vy,(+,0)
V,,<v on B(,R,) x {t=0}.

But then
U=V, on ({x] =Ry} x [0, TDU((|x] SR} x (£ =0)),
therefore
v,=2V, on B(,R;) x[0,T].

We conclude by observing that there exists a constant 8§ > 0, independen
m, such that

1 1

: V > 2 2/(N(m—1)+2)_R2 > .
min Ve 2 Nm-1+2 T+79 " ) =8

Using Lemma 1.1 and the results fo [25], we obtain that, along subseque:
ml1, v, — 0> 0locally uniformly in O X [0, ), where 7 is a viscosity solu
of (3.8). Since the function v given by (3.7) is the minimal viscosity solu
of (3.8), we immediately have 0 > v.

For the other inequality, v > U, we use several approximations. To this ¢
let O? be the §-neighborhood of O defined by

(3.12) 0% = {xe RN: dist (x, O) < 8}.

We extend v,,,9, Vg to be zero in O°\ O and we denote by 9, D, their ex
sions respectively. Let v2, be the minimal viscosity solution of

in 0% x (0, )

(3.13) vd = on 80°% x (0, )
l_)?n=~m0+6 on Oﬁx{t=0},
and define the function w: 0%?2 x [0, ©) > R

G.14) w=vd%p, = (vh),

where * denotes the standard convolution with a smooth kernel p,.
immediate that, for o < oy = oy(8), w satisfies

w2m-DwAaw-(@m-1)C,w in OX(0,7T)
W2 Uy on OX {t=0}
w>0 on 90 X (0, ),
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where C, is such that Aw < C, on O X [0, T]. Next for u > 0 we define

et —1
zZ= e"’w(x, ——~—> .
"

A simple calculation shows that, for o < o(6), z satisfies
z,— (m — 1)zAz — |Dz|* > (p — (m — 1)C,e")z.

For any T > 0 choose m; so small that (m — 1)C,e” < 1 for m < m;. Then
there exists u = u(a, m,) such that u > (m — 1)C,e*”. Using the standard com-
parison argument for the porous medium equation we obtain

ut

U < e"’(l_)‘,s,,)a<x, _e__) in Ox|[0,T].
"

Now we let m! 1 keeping u, a, 6 fixed and we get

nt

(3.15) D< e"'(y“)a<x, hl
In

> in Ox|[0,T],

where v® is the minimal viscosity solution of

vl =|Dv’)* in O°x[0, )
VP =5 on 0% x [0, x),
=17

Sending u — 0, o — 0 and 6 — 0 we obtain the following sequence of inequalities
in O %[0, T]

The result follows.

Step 2. We next consider the general case where v, > 0 in O. The main pro-
blem here is that, since we cannot bound the v,,’s from below away from zero,
we are unable to obtain local Lipschitz estimates. To circumvent this difficulty
(i.e. the apparent lack of estimates), we will employ some of the recent ideas
of H. Ishii [27] and G. Barles and B. Perthame [7]. To this end, we define
the functions
vx(x, ) = liminf v,(y,s)
ml1
0,9~ &, 1)

and

v¥(x,2) = limsup v,(y,s).
mil
0,5~k
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It is known ([7]) that v, is a lower-semicontinuous viscosity solution of

Vi, — |Dvx[*>0 in O X (0, )

(3.16) {max(v*,— |Dvs|?, 04 —¥) 20 on [dO X (0, )] U[O x {t= 0]}

and v* is an upper semicontinuous viscosity solution of

vi— |Dv**<0 in O X (0, )

3.17) {min(v;“—- |Dv*|%, v* —¥) <0 on [d0 X (0, )] U[O X {t =0}

where ¥: [00 X (0, ©)]U[O x {¢t =0}]— R is given by

(3.18) y= [0 on 90 x (0, )

v, on OXx {t=0]}.
Our goal is to show that

v¥*=v,=v in O X (0, ).
Since, by definition, v« < v*, we only have to show that
(3.19) v<vy and v*<v in O X (0, x).

We begin with the right-hand side of (3.19), which is more or less immedie
Indeed, let vg > 0 be such that v,,,, v, < v§ and v§ — v, as n — o uniforr
on O. If v, and v" are the solutions of (3.1) and (3.2) with initial datum
then the first part of this proof yields

limovy, = v”

uniformly on compact subsets of O X (0, «).
ml1

By the maximum principle we have that v,, < v, on O X [0, «). Moreov
it follows from the formulae that v" — v uniformly on O X (0, ) as n —
Combining all the above we obtain v* < v in O X (0, ).

To obtain the left-hand side of (3.19) we have to work a bit harder. |
begin by regularizing tl}e v4’s using the inf-convolutions introduced by J.
Lasry and P.-L. Lions [28]. For a > 0, let O, = {x € O: dist (x,00) > a} ¢
consider the functions

(320 Vxa(X, 1) = inf {v*(y,s) +

[x —y[* + It—sq
v, s)€0 x (0, )

2a0

It turns out (cf. P.-L. Lions and P. E. Souganidis [31]) that for each o >
Vs, i @ Lipschitz continuous viscosity solution of w, — |Dw|*> > 0in O, X (c,
and v«, | v as al 0. Next we consider the minimal viscosity solution of
problem
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w,— |[Dw|*=0 in O, X (&, ®)
w=20 on 00, X (a, ©)
w=v%, on O, X {t=a},

where v}, € C(0,), Viasoa = 0 and v, Tvs,(+,?) as n— . The definition
of w (given at the beginning of this section) yields

(3.21) Uso =W in O, X (o, ).
Let (x, 7)€ O, X (o, ). Since

w(x, t) = sup {vi, (), @) = L{x,y,t - o)},
yeo,

the properties of vy, and (3.21) yield

Vs (X, 1) 2 Uao (x5, 1) = V3 (X, 0) — L(x,y,t —a) forall yeO,.
Upon letting n — c we obtain

Ve (X, ) 2 Uso (X, 1) 2 Vs (X, ) = L(x,y,t —a) forall yeO,.

To conclude, we need to examine the behaviour of v, (x, @) as « 0. Since
Vg, 2 0, (3.21) yields '

2 2
-y +la-s
Vs (X, @) = inf {v*(y, 0) + Jx = | | ’ % .
(r,9)€0 x[0,x) o4

Using the lower semicontinuity of vs(+, 0) we then see that

lHm vy, (8, &) 2 v« (x, 0).
=10

Combining all the above we get

(3.22) vs(x, 1) 2 vx(x,0) — L(x,y,£) forall yeO.

Finally, it follows from (3.16) and the definition of v« (cf. [7]) tha
v+(s,0)=v, on O.

This together with (3.22) yields

Ux(x, 1) 2 sup {v()) — Lx, », D)}
yeO

= v(x, 1);



296 P.L. Lions, P.E. SouGcaNIDIs AND J. L. VAzQUEz
APPENDIX

We consider the questions of existence and uniqueness as well as o
qualitative properties of viscosity solutions of v, = |Dv|?* defined in a ¢
O,= RN x (0, T) for some T > 0. The uniqueness results we obtain gener:
the results of [16] and [18], in the sense that they allow more general in
data. Some of the properties of the viscosity solutions we are intereste
here are growth at infinity, reguralizing effects, domain of dependence, ir
face, etc. Several of the results presented have also appeared in similar f
in ([6], [16], [18]1, [29], [30], etc.); for this reason a lot of proofs are ra
sketchy.

We recall here for the reader’s convenience the definition of viscosity solui
A continuous function # defined in a domain @ C RV *! is called a viscc
solution of equation v, — |[Dv|*> = 0 if for any function ¢ € C'(Q) we }
@, — |De|* <0 at all points P, = (x,, t,) €2 at which v — ¢ attains a |
maximum and ¢, — |D<p|2 > 0 where v — ¢ attains a local minimum. We r
the interested reader to the references at the end of this paper, especially
and [17], for the theory of viscosity solutions.

1. Growth at Infinity and Initial Trace

Proposition A.1. Let v be a viscosity solution of (0.2) defined in Q.
every (x;, 1), (X3, 1) € @ with 0 < i, <t, < T we have

|, — X2|2

A.l v(xy, 1) S V(X 1) + — -
(A1) (1 1) S 000 1) + 2
Therefore, if te (0, T), then

. v(x, 1) 1
A2 lim su <—
B2 Mow 7 S WT-0
and
(A.3) limint 2% 0 5 _ 1

R T

Proor. We begin assuming that v is bounded below. Let C,6 >0
define the function ¢ € C*(RY x [t,, T)) by

w2
o(x, 1) = v(x,, 2;) — -Zg:—:{i—g - Ct+ 1.
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If we fix C > 0 and choose § small enough, it is immediate that ¢(e, #;) <
v(x,t;) on RY. We want to prove that v>¢ in @ = RV x [t,,1,]. In fact
if v — ¢ attains a minimum in Q at a point (¥,7), then, by the definition
of the viscosity solution, we must have ¢, — |D¢|*> >0 at (%, 7). However,

— |D¢|* = —C < 0in Q. Therefore the minimum of v — ¢ either is attained
at r = ¢, and then v > ¢ in Q or it is approached as |x| = . But v is bounded
from below and ¢ = — as |x| = oo, therefore the latter cannot happen. Let-
ting first 610 and then Cl0 we obtain (A.1), from which (A.2) and (A.3)
follow easily.

If v is not bounded from below we have to suitably modify our test function
¢. To simplify notation we assume that #; = v(x;,#;) x; =0 and |x,| < 1.
We consider the rectangle R = {(x, #): |x| <2,0<?<t,} and we define the
function

2

t+6>-—C(t+l)

d(x, 1) = —— ‘//(
where C and 6 are positive constants and ¥ € C*(R*) satisfies (0) = 0, ¥'(s) > 1
fors>0, Y(s) =sfor0<s<s, =1/(t, + 8) and —(1/4)y¥(s) < v(x, t) for every
|x| =2, 0<t<t and s=4/t+ 6. With these assumptions ¢ satisfies
— |D¢|* < —C < 0in R. Repeating the argument of the first part of the proof,
we see that the minimum of v — ¢ is attained either at =0 or at |x| =
It follows from the properties of y that v — ¢ >0 for |x] =2, 0<t<t,.
Moreover, choosing & very small for fixed C > 0 we have v(x, 0) = ¢(x, 0).
Therefore v > ¢ in R and, in particular,

_ b |-"z|2
V(x, ) 2 d(xy, 1) = —C(f, + 1) ‘P f+ PRy

The properties of ¢ imply, however, that

¥ |x2l2 _ |x2|2 ,
t,+ 6 L +96

hence letting first 61 0 and then C{0 we conclude. [

Next we turn our attention to the question of the initial trace of viscosity
solutions of (0.2). Since v, > 0, the family {v(e, ?)}, is nondecreasing as 710
([17]). Therefore the initial trace

vo(+) = lim (s, 7)
tlo

exists. The following proposition is immediate.
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Proposition A.2. Every viscosity solution of (0.2) in Q has an initial tr
Vo, Which is an upper semicontinuous function vy: RN - { —0} UR satisfy

1%
A4 i Do) .
(A-4) P kP Sar

2. Existence of Solutions

It follows from Proposition A.1 that for every viscosity solution v we h
(A.5) vzy on Qg

where v is given by the Lax-Oleinik formula

2
(A.6) v(x,f) = sup {Uo(y) - —"‘—4—”—}
yERN t

In fact, as we will see below, this last formula provides with the unique sc
tion of the Cauchy problem (1.2) in RN x [0, T), where T depends on

1i|n|1 sup vo(x)|x| ~2.
X|— o

The Lax-Oleinik formula has been studied rather extensively at least in
case where v, is bounded ([6], [29], [30]). Next, in a series of propositions
summarize the properties of (A.6) under assumption (A.4). The proofs ¢
lot of these propositions are slight modifications of the ones for bounde
therefore we omit them.

Proposition A.3. For every function vy: RYN = RU { —o0} such that
(A.7) —0 #vy(X) <AX|*+ B in RY

for some A, B > 0, the Lax-Oleinik formula (A.6) provides with a continu
viscosity solution of (1.2) in Q, where the maximal T (blow-up time) is gi
by

(A.8) T=1/4cx
with
(A.9) a= lilrr|x sup {vo(¥)|x| ~2}.

In particular, v exists for all time if and only if vy(x) < o(|x|?). Moreover,
every t€(0,T), v(e, t) = vy(*) and
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L. (D) 1 ) v(x, 1) 16"
A.10 1 f—2> —— < .
(A.10) e 4 ord lmsup—r ST g

Let &, be the set of functions vy: RN — { =0} UR such that

—o0 % vy(x) < A|x|> + B for some A,B>0
and

lim sup v,(x)|x| ~* < a.
|x] =0
For te€(0,1/4c) and B = a(l — 4at)™?, let L. F,— T be the nonlinear
operator defined by the Lax-Oleinik formula.

Proposition A.4. Leta >0, te(0,1/4c), 8 = a/(1 — dat) and s € (0, 1/40).
For any vy e &, we have

Ls(LIUO) = Lg + s(vo)

i.e. L, has the semigroup property.

We have remarked in Proposition A.2 that a viscosity solution can only
take on upper-semicontinuous initial data. On the other hand, we have not
discussed yet about whether L,v, assumes the initial datum v,. The next pro-
position addresses this question and gives more precise information.

Proposition A.5. Let v, be an upper-semicontinuous function in §, for some
o and let v given by (A.6). Then v takes on the initial value v,. More precisely.

(A.11) limsup v(x, ) < vy(x;)
o @, 1)~ (x;,0)

If vy(x;) > —oo, then

(A.12) liminf  wv(x, ) = vo(x)).
x, 1= (x;,0)
lx—x,| =0¢1/2)

Proor. We only prove (A.11). For every € > 0 there exists a 6 > 0 such that
if |x — x,| < 6 then

Uo(x) < Uo(xl) + €.

If |x — x| <8/2 and |y — x| < 8/2, then for ¢ > 0 we have
x — yP?

a7 < Vo(xg) + €.

vo(¥) —
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On the other hand, if |x — x;| < §/2 and |y — x| > §/2, then

Ix -y
4

)

Vo () —
uniformly in y as £10. [

Corollary. Ifv, €T, the L,v, converges as t 10 to the upper semicontinu
envelope of v, i.e. the minimal of the upper semicontinuous functi
w: RN > { —o0} UR which are larger than v,.

3. Regularity properties of the Lax-Oleinik Formula

Proposition A.6. Let vye T, for some o> 0. Then for every 7> 0, 1
Lipschitz continuous uniformly on compact subsets of RN x (r, T). If (
Uo(®) < (a|x| + b)? in RN, then for almost every xe RN and t € (0, 1/4c)

(alx| + b)’

@13 = DS G

On the other hand, if v, is bounded from above by M, then

M- M-
(A.14) v = |Dof? < t v < tvo(X) )

The proofs are easy consequences of (A.6). Another regularity type qu
tion is related to the optimality of the bounds (A.10).

Proposition A.7. For every te€(0,T), we have (o = 1/4T)

. v(x, 1) a 1
A.15 I - _ :
(A.15) P TR T 14 aT-1)

Proor. The inequality < was proved in Proposition A.2. For the convei
assume that for some ¢, € (0, ') we have

: u(x, ty) o
limsup———=0o; < ——-
x|~ e |x|2 T - dat,

Then the solution with initial value v(s, ¢;) exists for a time

fo L 1-dat,
27 4q, 4o
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By the semigroup property the original solution would then exist for a time

1
tt+t,>—=T,
! 27 4

which is a contradiction. [

As far as lower bounds are concerned we have the following result.

Proposition A.8. Let 8 e€[—, ) be defined by

(A.16) 8 = liminf 2%
= [X]

For every te (0, T) we have

.o U 1) B
A.17 lim inf > .
(A.17) e P T 1-a8

The equality is false in general.

Proor. If B = —o, (A.17) reduces to (A.10). If 8 € (— =, 0), then for every
€ > 0 there exists a B, € R such that vy(x) = (8 — €)|x|* — B.. We compare
v(x, t) to the explicit solution

|x*

¢(X,t)= _Be' At + 1

with 7= —1/(8 — €) and B — € # 0. Using the Lax-Oleinik formula we con-
clude that v > ¢ in Q;, hence as e > 0 we obtain the inequality > in (A.18).
To show that equality does not hold in general we consider a v, defined as
follows: Let B(y,,r,) be a sequence of balls such that r,— 0 and y, — o
where v, is negative, continuous and v(,)|y,| > = —. Outside these balls
vy = 0. Therefore 8 = —. If (x, 1) e RY x (0, ) we have v(x, ) =0 if x ¢
U, B(Yn, 1w). If x € B(y,, 1,), then there exists y = y(x) such that v,(y) = 0 and
|y — x| =r,. Hence
2 2
o) 3 0p0) — s

Therefore,

tim 250 _o. 0O

e X
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We conclude the presentation of regularity-related properties of the L
Oleinik formula with a result concerning their semiconvexity. Since th
properties are an immediate consequence of the formula, we again omit
proof.

Proposition A.9. (1) Let xe RY, |x| = 1. Then

v 1
i _— > -
@ ox*”~ 2t
(i) If for every x e RY, |x| = 1, 8*v,/0x> > —« then for every t >0,

v a

w7 1w al

(2) If Avy = —« then for t > 0,

Na

Av(x, 1) > —— :
v, 1) N + 2at

All the above inequalities should be interpreted in the sense of distributio

4. Uniqueness and continuous dependence

We begin with a proposition concerning the domain of dependence of
Lax-Oleinik formula. The proof of this result is based on the gradi
estimates from Proposition A.6 and the proofs of M. G. Crandall and
Newcomb [20] and P. E. Souganidis [36] concerning viscosity solutions on
boundary. See [5] for N = 1. Since it is a long exercise, we omit it.

Proposition A.10. Lef vy, vy, be two initial data in RY such that
Vo1 (%), V2 (%) < (alx| + b)?
Sfor every x € RN and some constants a,b > 0. Let t € (0, 1/4a?). Then

010, ) — v,(0, 1) < sup {vg,(¥) — V2 ()}

yeI0

b A
= N: < — _— ] = T\ = 172
I, {yeﬂ? |y|\a[exp<l_)\> 1] N\ = 2at }

where
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ifa,b>0 and
Iy={yeRN:|y| <\4bt)
ifa=0and b>0.

Corollary. If v} — v, locally uniformly in RY, then v" — v locally uniformly
in RN x [0, T).

Next we prove the uniqueness of viscosity solutions of (A.7) with upper-
semicontinuous initial datum vy: RY = RU { — oo }. This implies that the viscosity
solution of (A.7) is given by the Lax-Oleinik formula, therefore it enjoys all
the regularity presented above.

Theorem A.1.  The viscosity soiution of (1.2) in Q. with upper-semicontinuous
initial datum v,: RY > RU { —o0} is unique.

Proor. If v(x, t) = L,(v5)(x), in view of (A.S), we only have to show that
v < v. We argue as follows: Since v is defined in Q, for every f€[0, T) we
have

lim su v, 1) :
Mo X2 S HT-1)

Let vy, € C(RY, R) be such that v,, > v, and

1
lim sup UT;l(;C) = o
|x] =
4<T - ——)
n
Then v, = L,(v,,) exists for a time T, = T — 1/n. Moreover, for t€(0, T,),
lim sup onx ) 1

S B

Mow  |X 1

: g 4<T———t>
n

If v,, = v,*p., where * denotes the standard convolution, then for ¢ > e we
have

(Vs = |Dv, % p, > |Dv,|*.
Let w_,: RY x [0, T,, — €] be defined by

Wpe(X, 1) = v, (X, t + €) + €t.
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The sup of v — w,, in RY x [0, #,) with ¢, < t, — ¢ cannot be taken ir
interior of RY x [0, t,). Therefore, either it is approached as |x| = « or
taken at # = 0. In either case, it is negative. It then follows that

v<w, in RVxI[0,T,— €.
Letting € — 0 yields
v<v, in RYx[0,T,).

Sending n —> oo and using the continuous dependence of the Lax-Oleinik !
tions on the initial data in local norms we conclude. [

5. Free Boundaries

In the case of solutions which are bounded from either above or belo
makes sense to consider the boundary of the sets where the largest or smx
values are attained. Let us consider first the case of an upper-semicontin
initial datum v,: RN = RU { — 0 } which is bounded from above by a con.
M. Let

(A.18) D, =D, (vy
= {(xe RM:vy(x) = M}.

This is a closed, possibly empty, set. It is immediate from v, > 0 that if x ¢
then for every ¢ > 0, v(x, t) = M. Therefore the set D . is invariant in time
so is its boundary. On the contrary, if v, is bounded from below by a con
which without any loss of generality we may assume to be zero, then th

(A.19) Qo = {(xeRY: v(x) > 0}
is not necessarily open or closed. We define:

Q= {(x,)eRY x [0, T): v(x, t) > 0}
Q) = (xeRY: (x, ) e Q)

I' = boundary of @ in RY x [0, T)
I'(t) = (xeRY: (x,t)eT'}.

(A.20)

I is called the free boundary of v. Since v, > 0, the following result is immex
Proposition A.11. For every t, > t, in (0, T), Qy C Q(t,) C Q(t,).

Next we examine the behavior of v on Q.
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Proposition A.12. Let t€(0, T). For almost every x € Q) \ Q, there exists
a point y = y(x) € Q, such that

Xy is a subdifferential of v at x.

For all points xe Ut)\ Qy, — X 7

Proor. Since v(x, t) > 0 there exist y, € R" such that

|X - yn|2
vO(yn) 4t Tv(xa t)'
It follows that vy(y,) > 0, i.e. ¥, €%, and
(A.21) ¥ = al> < 410y(3,) < 4t + €)(|y,] + B

Since 4#(« + €) < 1if € is small enough, |y,| < C and, upon passing to a subse-
quence, we may assume that y, — y. The upper semicontinuity of v, yields
y€Q, and

2
x p—
(A22) vmn=%m—i]ﬂ’
Next let e RY with |A| small. Then
x+h—y? x -y
v(x + h, 1) — v(x, 1) 2 v(y) - LA b v(y) — b=l
4¢ 4t
1 Lk
2 —_ . —_— —_—_.
aF N B

Since —Duw is the local velocity of propagation of the solutions of (0.2), this
result controls the speed with which the interface moves. In fact the interface
consists of a stationary part I', a union of vertical segments {(x,7):0 < ? < ¢}
with x € 89, fixed, and the moving interface

T'i={x)elx ¢Q,}.

Proposition A.13. The moving interface 'y can be described by a Lipschitz
continuous function t= S(x) for xe RN\ Q,. More precisely, for every
(X, %) €T, there is a conical region K = {(x,1): |x — X| < h, |x — X| < c|t — ]}
with 0 < ¢ < dist (¥, Q)(2f) ™! and h small depending on c, %, such that

K, ={(x,)eK:t>t}CQ and K- ={(x,t)eK:t<t}

i< dicinint with Q
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Proor. We only prove the result concerning K, . The result about K
follows in a similar way. To this end, let (x,#)€ K, and set x — X =z a1
t — f = 7. If there exists a y € Q, with the properties described in Propositic
A.12 (since v(X, f) = 0 this is not necessarily the case) we have

lx -y

v(x, ) 2 v(¥) — a7

_E=yP -y
4t 4t

R A e | S ) R T L
4t 4t 2t 4t

==w;g|0f;ﬂ7_2bo>_mkﬁ

where 0 =X — y/|¥ — y|. Therefore if z/7<d(%, Dy)/2f < |X — y|/2t ai
0 < |z| < k with & small we have v(x, t) > 0.

If such a y does not exist we select a sequence of points x, €Q,, x, = X, 1
find y, € Qy, construct a cone K,, with vertex (x,, 7) and let n — o to obta
K_ . We define

(A.23) S(x) =sup {t = 0:v(x,t) =0]}.

The Lipschitz continuity of S at (¥, f) follows from the fact for every x su
that |x — X| < h then (x,#) eI, implies t — < Clx — x|. O

Corollary. Let xeQ,\ Q. If d(x) = dist (x, Q,), then

d(x) c(x))
(A'24) _Et_‘ < |DU| < —'T

where c(r) is a continuous function of r.

Proor. Take y € as in (A.22). We have |x — y| = d(x) and, from (A.2.

|‘<|x|+b6k
s l—k ?

We conclude. [

k = (4t(a + €))2.

The above proof also shows that at every point x where S is differentiab
we have |DS| < 1/c for any ¢ as in Proposition A.13. Therefore
d(x)

(A.25) |DS|- = =< 1.
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In other words, (2¢) ~'d(x) is a lower bound for the velocity with which Q,
grows. Thus if dist (Q,, Q) = d > 0 then for every 7> 0 small enough Q,, ,
contains an e-neighborhood of Q,, if € < d7/2¢. In fact Q, moves with speed
bounded from above. More precisely, we have:

Proposition A.14. If 7> 0 is small enough, then for every X € 0Qy, , there
exists C = C(|X|) such that

(A.26) dist (¥, Q7) < %

Moreover, if v, is bounded from above, the bound on (A.26) is independent
of X and

C
(A.27) dist (T, ,» Q) < 2—:-

Proor. Let r = dist (¥, 2;) and ¢ be an upper bound on v in B(x, 2r) (which
should be separated from Q,). The function

Vi, )=clct—t)+|x—x|-n*

is a supersolution of (1.2). The result follows. [

We conclude by characterizing the existence of a stationary interface I'y. A
careful look at the Lax-Oleinik formula yields the following proposition.

Proposition A.15. Let x€Q,. Then v(x,t) = 0 for t € [0, t*] if and only if
the quantity

_ Uo()) -
(A.28) Y(x) = yiurgvglx — 7

is finite. The starting time t* is given by 1/4v.

6. Generalizations

All the above can be easily generalized to the Cauchy problems

v,=|Dvf’ in RYx(0,T7)
v=1,(x) on R¥x {t=0]},

(A.29) {

with p > 1. The formula for viscosity solutions of (A.29) is



308 P.L. Lions, P. E. SougaNiDIs AND J. L. VAzZQUEZz

|x _ ylp/(p— )
(A.30) v(x) = sup [vo(y) -G, *—tv(;:v—-]

for C,=(p— l)p~7/»~ D,
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