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Operators
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Introduction

The purpose of this paper is to derive norm inequalities for potentials of the
form

7@ = [ fOKEx ) dy,  xeR,

when K is a kernel which satisfies estimates like those that hold for the Green
function associated with the degenerate elliptic equations studied in [3] and
[4]. Thus, for 0 < r < o, xe R”, and a nonnegative function a(r, x) to be
specified, we assume that

a(lx—yI,X),

@ K, »| < C =
|x — |

and, in some cases, that there exists ¢;, 0 < ¢, < 1, such that

|y - 2| >*° a(|x — y|, %)
lx — | lx = »|"

(ii) |K(x,y) — K(x,2)| < C<
if
=2l < -l
y—-2 2 Y.
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It will be convenient to think of a(r, x) as a function of the ball B = B(r, x)
with radius r and center x, and to write

a(B) = a(B(r, x)) = a(r, x).
We then require that there is a constant C > 0 such that
(iii) a(B,) < Ca(B,) if B,CB,, and

(iv) there exist p, d > 0 so that if /B denotes the ball concentric with B whose
radius is ¢ times that of B, then

C™'t*a(B) € a(tB) < Ct™a(B), t>1.

Conditions (iii) and (iv) can be weakened in some of our results: see the
comments later in this section. We also remark that the results which require
condition (ii), which is a first-order smoothness condition, have analogues
which reflect any higher order smoothness that K may have.

The simplest examples of such kernels are the classical fractional integral
kernels K(x, y) = 1/|x — y|" ™%, @ > 0. In this case, a(r, x) = r* and (ii) holds
with ¢, = 1. A more typical example is

n+ao

() a(r,x) = B

where w is a weight function, i.e., a nonnegative locally integrable function
on R", and w(B) = IB w(x)dx. In this case, estimate (i) becomes
|x — y|*

K(x,y)| < C— - S
KN < C LBl =)

Such kernels with o = 2 arise naturally if we consider a bounded domain Q
and a divergence form differential operator

a a
L= - %; _5;’ (aij(x) a—Xj>

whose coefficient matrix A(x) = (a;;(x)) satisfies
o w)IE? < CAWE E) < aw)|E?, EeR™

Here, (-, ») denotes the usual dot product in R” and 0 < ¢; < ¢, < 0. In [4],
estimates are derived for the Green function G(x, y) associated with such an
operator. If w is suitably restricted (see the comments later in this section),
these estimates imply that in the interior of Q, G(x, y) satisfies (i) and (ii) for
some ¢, > 0, with a(B) given by (*) and a = 2.
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If 0 < p < o and v is a weight function, let

L= {f: 171 = (J [/ @I700x) dx) 7 < o0,

We also consider the Hardy space H? defined as follows. Let 8 denote the
Schwartz class of rapidly decreasing functions on R”, and let 8’ denote the
class of tempered distributions. For 0 < p < oo,

HY = {fe8 | flgp =N <l

where

N()X) = Ny (f)(x) = sup |(f* )]

forpes, jne,, ¢dx # 0, ¢,(x) =t~ "¢(x/t). By [10], the finiteness of | N(f)|,»
is independent of ¢ if v satisfies the doubling condition v(2B) < cv(B). We
write v € D, for such v.

Incase I <p< o and veAd,, ie., if

1 1 v g\
W Bvdx l—B—| Bv dx <c

for all balls B, it is well-known that H% = L with equivalence of norms. This
identification is also valid for certain other v’s (see [1] and [11]) and is import-
ant for some of our results. We mention here that the class §, , of Schwartz
functions whose Fourier transforms have compact support not containing the
origin is dense in all the spaces L” and H?¥ which we will consider. Note that
all the moments of an fe€ 8, o; in particular, In?" fdx =0 for such f.

In order to state our main results, we now introduce several conditions on
a pair of weight functions u and v. Let X, denote the characteristic function
of aset EC R". For 0 < p, g < o, we consider the following kinds of condi-
tions:

0] a(B)u(B)"? < cu(B)''”

for all balls B;
1 1/s U(B)
1y a(B)"<—— j u‘a’x) <c
|B| Jg |B|

for some s > 1 and all balls B;

(2) " Ea(BIc))\kXBk " Lf{ S CI[ E)‘kXBk " Lg

for all sequences {A\.}, N, > 0, and all balls B,.
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Note that (2) is stronger than (1) since it reduces to (1) in the case of a single
ball. Also note that (1) with s = 1 is the same as (1) with g = p; thus, (1)
represents a strengthening of (1) in case g = p. Some other relations between
these conditions are given in Theorems 5 and 6, and an alternate form of (1)’
is given in Lemma 6.5.

We shall also use the condition

A3) IZMXep, 2 < ct®| IMXg lpps 1> 1
This is related to the doubling condition: in fact, if v € D,, by which we mean
v(tB) < ct"v(B), t>1,

then (3) holds with 6 = no and 1 < p < o (see [12]). Moreover, as shown in
[10], if ve A,N D, then (3) holds with

nfr—p
= - > .
6 p<r—1>(a 1) + n, rzp

It is clear by considering a single term that (3) implies that v € D, .
The principal results to be proved are as follows.

Theorem 1. Let (i)-(iv) hold for a kernel K(x,y). Let 0 < p, q < o, u and
v satisfy (2), and v satisfy (3) for some 6 <n+¢,. Then if fe$§, ,, the
operator defined by

/) = [ fOK, ) dy

satisfies |Tf | .« < c| f] gz With ¢ independent of f.
Without assuming the smoothness condition (i), we have

Theorem 2. Let (i), (iii) and (iv) hold for a kernel K(x,y). Let 1 < p < oo,
u and v satisfy (2), and ve A,. Then if Tf is defined as above,

| Tf o <l flps forall fels.

Theorem 2 turns out to be a corollary of Theorem 1 and the fact that
HY =17 if veA,. We can use Theorem 1 to derive results of the L7, L% type
when v ¢ 4, provided Hf = L%, although we need the smoothness condition
(ii) in this case. The next theorem is an example of such a result. It includes
the power weights v(x) = |x|‘3 forn(p — 1) < B < n(p — 1) + ¢,p; the range of
B for which |x|® €A, is —n < B < n(p— 1). More general theorems of this
type can also be derived.
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Theorem 3. Let (i)-(iv) hold for a kernel K(x,y). Let 1 < p< ©0,0< g < o,
u and v satisfy (2), |x| v e A, for some e with 0 < e < ¢, and |x| ""Pve A,.
If S is defined by

Sf(x) = Jmnf NIK(x, y) — K(x, 0)] dy

then | Sf | < ¢ f| p for all fe LZ.
Moreover, the zntegral defining Sf converges absolutely a.e. Of course,

Sf=Tf if [fdy = 0.

The next three theorems are intended to help understand condition (2) and
show its relation to (1) and (1)’. For 1 < p < oo, p’is defined by 1/p + 1/p’ = 1.

Theorem 4. Let (iii) hold, v e D, and

Mf(x) = sup

(B) J | fO)|u(y)dy.

If 1< p, g < o, then (2) holds if and only if |Mf lle llflqu

Theorem 5. Let (iii) and (iv) hold, 1 <p < g < »,ueD,andve A,. Then
(1) implies (2).

Theorem 6. Let (iii) and (iv) hold, 1 < p < « and ve A,. Then (1)’ implies
(2) with g = p.

By combining Theorems 2, 5 and 6, we see that if (i), (iii) and (iv) hold,
ueD,, 1 <p< e and ved,, then |Tf |4 < | S|, provided either

, (@ p< g < and (1) holds, or
(b) p = q and (1)’ holds.

Theorems 1-6 are proved in §1-6 respectively. Some of the methods of the
proofs are related to those in [2], [6] and [12]. We also use results about H%
from [1] and [10], such as theorems stating when H% and L% can be ident-
ified, the atomic decomposition, and the fact thatif ve D, (= U, , D,), then
I.fl He is equivalent to the LY norm of the «grand» maximal function f* of
f defined in [5].

In addition to the notation already introduced, we write v e A, if v € 4, for
some p, and v e RD, (reserve doubling), » > 0, if

v(tB) = ct’v(B), t>1,

for some ¢ > 0 independent of ¢ and B. We will use the same letter ¢ to denote
different constants, and we often write [ f for [g, f(x)dx.



316 P.S. CHaNILLO, J. O. STROMBERG AND R.L. WHEEDEN

Finally, we make a few comments on two points raised earlier. First, it is not
hard to see from the estimates derived in [4] that the Green function mentioned
above satisfies (i) and (ii), for some ¢, > 0 and a(r, x) = r"*2/w(B(r, x)), pro-
vided w e A, N RD, for some » > 2. Furthermore, in this case, (iii) and (iv) hold
if weA;,,/,,or more generally, if we D, for some o < 1 + 2/n. Second, some
of our results can be proved under weaker conditions than those listed in (i)-
(iv). Generally speaking, we only use the full force of condition (iii) as well
as of the first inequality in condition (iv) when we prove Theorems 5 and 6.
Elsewhere we can weaken these by requiring only that a(r, x) < ca(s, y) when
r=sand |x — y| < cr, provided we also require some local integrability of XK.
For example, Theorem 1 remains true if (i)-(iv) are replaced by assuming that
K(x,»)(1 + |y|)~* is an integrable function of y for some L, and

jB(r 2) ‘K(x’ y)| dy < Ca(r, Z) if xe B(4r’ Z),

and

n+eqy
j IK(x, ) — K(x, 2)| dy < c<——’—-> a(lx - 2/, 2)
B(.2) |x — z|

if x & B(4r, z), where a(e, ¢) is a function which satisfies a(r, x) < ca(s, x) when
r=s.

1. Proof of Theorem 1

Let f be an atom associated with B(r, y,), i.e., let | f| < 1, supp (f) C B(r, ¥o),
Jf=0. Write

Tf() = [F(IKCx, y)dy
= [fDIK(x, ) - K(x, yo)l dy.

Note that 7f converges absolutely since K(x, ) is locally integrable as a func-
tion of y: by (i) and (iv),

a(lx - y|,X)
IKeo )| < e
a(l,x)

S x -y

if |x — y| < 1. Also, if |x —y| > 1, |K(x, )| < ca(l, ¥)|x — y|"@~V by (iv).
We want to estimate the size of |Tf(x)|.
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Case 1. xe B(4r,y,). By (i) and the first representation of 7f above,

alx =51,

1T < c j )] J
BG,vp lx =yl

(Ix = y|/r)a(r, x) .
<c - dy by (v
jlx—y|<5r |x_y| Y( )
= ca(r, x)
< ca(r, yo).

Case 2. x ¢ B(4r, y,). By (ii) and the second representation of 7f above,

le(X)‘ < Cj lf(y)‘ < Iy - J’ol )Eo a(lx - yol’yo) dy
B(r,yy)

|x = Yol lx — yo|"

a(|x = yol, ¥0)

since | f| < 1.
Thus, in any case,

|Tf(x)| < c Z}l 2750 a2y, yo)Xp i, &)
j =

Now let

J=ZNe8k

be a finite sum, \, > 0, and g, be an atom associated with B(ry, y;). Then

l Tf(X)l < c ; 2 e ; )\ka(zjrk, yk)XB(zfrk,yk)(x)'

For g > 1, by Minkowski’s inequality,

| TS g S e 2527700
w0

J
zkl )\k a(z Tis yk)XB(ijk,yk)

L
<eX 27 O SN X s } by (2)
j k k7 k- Lll,]
< czz—j(n“o)zja Z)\kxs(r o by (3)
7 k aad 574

- C« %} )\kXB(’k'yk)

L5

since 6<n+¢.If0<g<]1,
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|74 < 3277+ 00
J

J
; Nea(2'ry, yk)XB(erk,yk)

q
L

<Cz2—j(n+eo)q
J

S c Z 2 —Jjn+ 50)42j511
J

= C” ; )\kXB(rk'yk)

2iMeXp o !
% B2Iri,»y) Lﬁ

% )\k XB(rk,yk)

q
L4

q
5

since 6 < n + €. This shows that if
N
fN=ZIJ)\kgk, N >0,
and g, is an atom associated with B, , then

N
| Thlg < €| 20,

8

Let fe€ 8y . Write f = 2 TN\cge with \, > 0, g, an atom with support By, and
(see [10])

|520Mxs, g < €S Ly

If

N
E)‘kXBk
1

N
fN=41\:)\kgka ”TfN"Lg<C <c"f]|yg
Ly

and

-0 (N>M- o).
L5

N
Z)chBk
M

"TfN_ TfM“LZ SC

Thus, Tf, converges in L7 to a function A with 4| 12 S clfl - Of course,

the integral defining Tf converges since f€ 8, ,, and we wish to show that
Tf = h a.e. It is enough to show that Tf, — Tf pointwise. We know f,, = f
pointwise and f,, < ¢f* (f* = grand maximal function of f). Thus, by the
Lebesgue dominated convergence theorem, it suffices to prove that

[k, )] dy < co.

This is clear from the earlier estimates on K since f*(y) < ¢, (1 + | y)) L for
all L. This proves Theorem 1.
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2. Proof of Theorem 2

It is enough by considering | f| and |K| to prove the result for

T, f(x) = ff(y)Kl(x Wy, K@) = ”—('|x ﬁ'lnx)-

We claim it is also possible to assume that K; satisfies (ii) with ¢, = 1. To see
this, let ¢(z) be a nonnegative smooth function supported in [z] < 1 with
¢(0) = 1. Let ¢,(2) =t~ "¢(z/t), t > 0, and define

Ri(x%,)) = [Ki(x, 29y, _ (0 — D) .

It is easy to check that there exist constants ¢’ and ¢ with 0 < ¢’ < ¢ < oo such that

'K (x,y) <K (x,») < cKi(x,y) and |V,K,(x,))| < Ky (x,)

c
Ix -
so that K, satisfies (ii) with ¢, = 1.

Since v € A,, (3) holds with é = n. Thus, by Theorem 1 and the fact that
HY =LY for veA,, we have | TlfIILq <c||f||L,, if f€8y,0. For general
feL?, since 8 , is dense in L%, there exist f;e So o With f;— fin L?. Thus
{T\/;} converges in L to a functlon h with | h|| 12 S c|f] 5" It is enough to
show that the integral defining T f converges a.e. and that *h = T,fa.e. We
claim that if N< e and veA4,, then

@.1) Jyen| T @ldx < ex 11y

This will imply (by replacing f by |f|) that 7, f converges absolutely a.e.;
moreover, it implies that T f; G, Tifae in |x| < N for some subsequence.
Since T, f — hin L?, a further subsequence converges pointwise a.e. to 4,
and so & = T [ a.e.

We now prove (2.1). For f>0

T, /() < (Lym o Do )f(y)K,(x,y)dy =F, +F, + F;.

[¥]>2x|

Then

flxl N EW) + ) dx < f(y)< K (x,») dx) dy.

j[y|<2N+1 J.lx—y|<3N+1

Also, by (iv),

dx
K (x,y)dx<c J‘ — =
J'lx~y|<3N+1 ! N lx—y|<3N+1 'x_yln # Now?
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and

fO)dy < (

=cN,u]|f||Lg'

vV dy) P £

j|y|<2N+1 I|y|<2N+1

Finally, if |y| > 2|x|, then K;(x, y) < ca(|y|,0)/|y|" and

.2) j‘lxl <NF3(x) dx < cy J‘ f0) Mdy

Iyl>1 |y|"

_ _ a ’Op’ 1/p’
scNufuLp( j o(p)~ o0 AL d) -
o\ Jiyl>1 |yl

Thus, (2.1) will follow if

A= j v(y)'l/("'l)——————a(lyi’o,)pl dy < .
Iyl>1 | ¥

Let By = {y:|y| <1}. Cover {y:|y| > 1)} by balls {B;}5_, with |B,|"" =
dist (B, 0) and ZTka < c. Let B, = 10B,, and note that B, D B,. Clearly,

45 UBY

T |Bl® Js,

v-l/(p—l)dy

=~ 2 a(B)? v(B) VPP
1
since veAp.AIf M 20,

since B, D B,

M M
21; Mea(Biu(By)'? < ; Mea(B)X 5,

L

<c by (2)

M
2 )‘kXEk
1

5

<c by (3)

M
;x,,ka

5

M
<c Z Nev(By)
1

since the B,’s have bounded overlaps. Pick A, so that

)‘ka(Bk) =Nv(By), i.e, N= [a(Bk)/v(Bk)]V(p_ .
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Then from above,
M _ 1-1/p
[ > )‘ka(Bk):| < cu(By) V.
1
Since the constant c is independent of M, we obtain
2iNa(By) < cu(By) TP,
1

But the sum on the left equals

ia(gk)l +1(p=Dy(B,)~ V(P

1
and since 1 + 1/(p — 1) = p’, it follows that 4 < cu(B,) ?”9. This proves
that A4 is finite and completes the proof of Theorem 2.

3. Proof of Theorem 3

The proof is similar to that of Theorem 2. We first note from [1] that
HY = L7 with equivalence of norms if v(x)/|x|” € A, and v(x)/|x|” € A,: in
fact, we can then write v(x) = |x|"w(x) with we A, and w(x)/|x|" " PP e A4,
which fulfills the requirements in [1]. We also note by Lemma 6.3 of [12] that
if weD, and v 2 0, then |x|"'weD,,.

Now suppose that |x|~®veA, for some e with 0 <e<e¢, ¢ <1, and
|x| ""ve A,. We claim that |x| "Pv € A,. Consider first the case of a ball B
which is small compared to its distance to 0. Then |x| is essentially constant
on B and, consequently,

G.D <—l—j |x|"’vdx><—-LJ [x| “’v]‘”""'”a’x)lz_1
' 1Bl Js IB| Js

's bounded by a fixed multiple of the 4, constant of |x| ~ v (or |x| ~"v). If,
n the other hand, B is not small compared to its distance to 0, we may assume
renlarging B by a fixed factor that B = {x: |x| < R} for some R. Next, note
it both |x| "#v and (|x| "?v) "~ D are in D, since they may be written,
ectively, as

XD ") =[x, 720, wed,,
and

X[ (x| " Py) " VPD = |xPw, 620, weA,.
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Hence, the product in (3.1) is equivalent to a similar product with the domains
of integration replaced by R/2 < |x| < R. This essentialy reduces the situation
to the first case and proves the claim.

It is also not difficult to see that if w satisfies we 4,ND, and « > 0, then
|x|*w € A, for any r > max {p,d + a/n}. Of course, if we A, then weD,,.
It follows that if v is a weight which satisfies |x| " ve A,, then ve 4, (and
D,) if r > p(1 + ¢/n). Thus, if |x| "PveA,, (3) holds for any 6 > ¢ + n. The
requirement in Theorem 1 that 6 < n + ¢, is then satisfied if € < ¢,. In case
€ = €, this requirement is also satisfied since if |x| "“°Pve A,, then |x| " Pve A,
for some € < ¢,: this is a corollary of the fact that if a weight we A4, then
|x|"we A, for some n > 0.

Combining facts and applying Theorem 1, we see that under the hypothesis
of Theorem 3, | Tf"Lg < C"f“Hg = cl[fll,_g if f€ 8¢, o. Moreover, Tf = Sf for
such f since [f = 0. Hence, | Sf][LZ < c||f||L,z,) if f€84,9. To show the same
inequality holds for any fe L%, it is enough as in the proof of Theorem 2
(since 8,4 is dense in L% for v satisfying the hypothesis of Theorem 3) to
show that Sf converges a.e. if fe L? and

3.2) |SF dx < ey nol flps  0<n<N<w.

jn<|x|<N

Inequality (3.2) is similar to (2.1) and serves the same purpose. We will actually
prove a stronger version of (3.2), namely, its analogue for the operator

1/ = [17O)] [Kx, ) - K(x, 0)] dy.

This will prove (3.2) and show that Sf converges absolutely a.e. in g < |x| < N,
and so a.e. in R”,

Write
Eaﬁ:hkmn+LWMWRwi+h®ﬂﬂ=ﬂ+la+&'
By (ii) and (iv),
|yl \ a(|x|, 0)
mescj fU)(—— —
! Iﬂ<Mﬂ| | |x| |x
a(|x], 0)

D) |ylody if |x| <N.

St Jien

We have

j]y|<le()’)l lylEO < llflllf,(jllyl<N[y‘eop'v(y)_"'/pdy>1/1"

= e, 1 g
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since the fact that v = |y|*w, weA,, €< ¢, implies that

ep’ ~p'/p — (eg— P’ -1/(p-1)
f|y|< GO TP dy Ly|<N|y| w(y) dy
< N7 Ly|<Nw(y)—1/(p—1) dy.
It follows easily that
Jy <t en Fil @< 0y m |l

Now consider F,. First note that f is integrable away from 0: for n > 0,

Jia PO D <UL (], 000707y )

=Crol g

since the fact that v = |y|""w,, w, € 4,, gives

-1/(p-1)
J ()" VP-Dgy = j M)_p__ dy,
[71>n [¥1>n

which is finite since w; ? "D e 4, (see, e.g., (2.3) of [7] for the case n = 1).
We have

F(x) < | SODIK G )| + [K(x, 0]} dy.

J.le/z < |yl <2|x|

Hence, by (i) and (iv),

A
n<l|x|<N

dx dx
< y |:j =z t j‘ ’—n:I d
N.flybn/zlf( ) eyl =3 F T Jyapmen W)

[¥I>n/s2
<oyl Flig.

Finally, since |K(x, y)| < ca(]y|,0)|y| " for |y| > 2|x|,

W, a0,

+

Fy(x) < Cj‘
>

and
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a(|y],0)
¥

j F3(x)dx<cNJ |f()]
n<|x| <N [»]>29

+f If(y)ldyj a0 4y
Iy > 21 n<lxl<n  |X]

The second term on the right is at most ¢, [ f|,» as above. The first term
N, 4

is like the integral on the right in (2.2) and can be treated by the argument

given there. This completes the proof of Theorem 3.

4. Proof of Theorem 4

We first show that (2) is necessary for |Mf|,, <c|f|;e if 1<p, g<oo
v u
and

_ a(B)
Mfe) = sup - By L |flu

The proof is by duality. For N\, > 0,

[ EMa@Boxs, Jug = sup [ (SheatBxs, e
o gl

=1
lel g

The integral on the right equals

a(By)
v(By) Js, gu}

< 2 MU(By) inf M(g)
B

k

Z)‘ka(Bk) L gu = Zka(Bk){

<2 M L M(g)v

_ j (Zhexg, ) Mgv.
By Holder’s inequality and hypothesis, this is at most

|50, ML < | Zhes, el = | Eneta, g

Taking the supremum over g, we obtain (2). Note that the proof works
without any hypothesis on a, u, and v except @ > 0 and v(B) > 0.

For the converse, we also assume (iii) and veD,. If I is a cube, let
a(l) = a(B) where B is the smallest ball containing 7. It is then easy to see that
(2) for balls is equivalent to (2) for cubes. For example, if I, is a cube and
B, is the smallest ball containing I, , and if (2) holds for balls, then
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| ZMaloxg, | < [ EMaBoxg, |3 k>0
<o Znts g
< St g

by (3), since B, C o}, @ = «a,,. A similar argument shows that (2) for cubes
implies (2) for balls. Similarly, since v € D,, and (iii) holds, Mf is equivalent
to its analogue defined by using cubes rather than balls.

Let G be a fixed dyadic grid of cubes. For ¢ € R", let ‘G be the grid obtained
by shifting G by ¢. Define

"Mf(x) = sup 1y (I) j | f|u.

IetG

We need the following analogue of Lemma 2 of [9].

Lemma 4.1. Let a satisfy (iii) and ve D,,. Then

at) ,
st v(I)Jv|f| _J‘ Mf(x)dt, 0<r<oo,

Il<rn

‘th ¢ independent of r and x.

7. Fix x = x, and a cube I, containing x, with edgelength A, < r. Con-
ose dyadic I in B,,(x,) with edgelength 2A,. The number of such I is
I. If I is such a cube and x, is the center of I, then shifting I by
+ ¢ for any n with || < hy/2 gives a cube ‘I containing I, with
“ince different I’s lead to essentially disjoint sets of #’s, the
=set E of all tis = (r"/|Ip|)(he/2)" = r". If t e E and ‘I is the
then by (iii) and the doubling property of v,

X[ 1w\l

v(lp) v(T)
C'MF(xy).

Hence,

a(ly) 1 t
v(ly) J;o Iflu < c"—" Ltl <r Mitro)

and the lemma follows.
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Denote the expression on the left in Lemma 4.1 by M, f(x) and apply
Minkowski’s integral inequality to obtain

1
IM Sy < e j |'Mf | . dt
|t|<r v

with ¢ independent of r. Hence, if we prove that

“.2) I'MF |y < €l £l g

with ¢ independent of ¢, then we will obtain |M,f| S <c|f] L with ¢
independent of r, and Theorem 4 will follow by letting F— .
To prove (4.2), fix ¢ and f and let

Ep = (x:2° <'Mf(x) < 271,

k=0, 1, £2,... The E, are disjoint. By considering maximal cubes, it
follows from the dyadlc nature of ‘G that we may write E;, = U .J Lo L € 'G,

L, disjoint in j (and so in j and k), and

k g%—% C,k|f|u<2"“.
Therefore,
2XPy(Ey) = %}2"1’ v{; )
~Z< ) |f|u) o )
vl ) )i
=Z(v(1(1k>ﬁ)/pj )
Since ‘
|'MS | = (2 2u(EY)”,
we obtain

aZ; ) P
IMF 1 ~ [Z(Wj Iflu> ]

~sup 2, b, , ;.10 j | flu,

xR e )P
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where the supremum is taken over all sequences {bj’ ¢} with bj’ =0 and

[ {bj,k} ||1P = (;{bﬁk)l/p =1

Now
al; ) )
’ Js
(, ©
“f"L" Z "kl)(l )l/P i ke 19
1
<clflg Z bk o, 7 u

by hypothesis, with ¢ independent of ¢ and f. We shall use duality to show that

I —

4.3 L
@3 jx ok U(Ij,k)l/p "2k 17

S Cp,o-

For gelLy, >0,

1 1
b, ————x v= ,b, ,——= v
szk ik (T, P 1,8 JZIE TR J‘g,kg

, v
<l m(z[v(, )j ]v(lj,k>>
,k

< (Z j Hv(g)"'v) 4
ik JI;

< |Hy(g) "L‘,’,"

where H,(g) denotes the maximal function of Hardy-Littlewood type defined
by

H,(g)(x) = sup 777 j lglvdy.

Since ve D, |H,(g)| 17 S <clgl| > and it follows that (4.3) holds. Collect-
ing estimates, we obtain 4.2). This completes the proof of Theorem 4.

5. Proof of Theorem 5

It is enough to prove the analogous result for cubes instead of balls, i.e., to
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show that under the hypothesis of Theorem 5,

6 | Sheattn iy <] Zhex, g

if A\ = 0 and the I, are cubes. In fact, it is enough to prove this for dyadic
cubes as we now show. If I is any cube, there are 2" dyadic cubes J; with
|J;| = |I] and I C UJ;. By (iii) and (iv), a(J) < ca(J;) with c independent of 7
and J;. Find such a covering for each I; and denote the dyadic cubes by Jj ;.
Then

Z)\ka(lk)XIk < %;)\ka(lk) Z X i
< C; [;)\ka(Jk’,’)XJk,i] °

Thus

| Z Nt g < ¢ X | Sheatr i,
u i k ¢

L

H
P
Ll)

assuming that (5.1) holds for dyadic cubes. However, it is easy to see from
(3) that

[,
k 1

< C“ Z )‘kxj
)73 k k

5

with ¢ independent of i. Thus, since the number of i’s is finite, we obtain by
combining inequalities that

| 2 Malixy, |rg < €] ey, oz

as desired.
For the rest of the proof, we will assume that the cubes {7} are dyadic.
Fix {\¢}, M =0, and let

(5-2) M (x) = sup Mealu(l) X, (%)-

We claim that
(5.3) S halx, () < clM, (M- 12, >0,

with ¢ depending only on ¢, n, and «. Fix x. Note that there is at most one
I, of a given size which contains x since the cubes are dyadic. We may then
assume that those ; containing x are ordered in size, i.e., that I, C I;if k <.
For k, = ky(x) to be chosen and e > 0, write
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2 Nali)x,, () = ka valiyuli) ™ %, G} ul)

=Ko

+ kZ {)‘ka(lk)u(lk)eXIk Yuly) 5"

>k,

< M_e(x)kZ uly) + Me(x)k;c utl) ™.

<%k,

The I,’s in these sums are dyadic cubes containing x, and they are ordered in
size. There may not be cubes containing x of every (dyadic) size, but if there
are missing sizes we just add cubes of those sizes, thereby increasing the sums
on the right side above. We do not add any cubes to the collection used to
define M, and M _,. It follows easily from the doubling condition on u and
the dyadic nature of the cubes that for any &,

3 u)’ < cull )

K<k,

and

> wl) ™ < cully)
k=k,

with ¢ depending only on n, ¢ and u. Thus,
2iMali)x; (0) < elM - (ully ) + M (ull ).
Pick k, so that
u(l ) = (M ()/M_ ()},

and (5.3) follows immediately.
By (5.3)

| S Neatlix,, [,q < c(j MY My dx) g,
For small € > 0 to be chosen, let g; and g, be defined by

1 1 1 1

=— - —=—te

€

7 g @ 4q

Then 1/q, + 1/q, = 2/q, so that 2q,/q and 2g,/q are conjugate indices. By
Holder’s inequality

([ Me>M 2 udx) Ve < IMZIM - ]2
The hypothesis (1) that a(Du(l)*? < cvo(I)? may be rewritten as both

auHV4* e L co)? and  a(Dul)?2 < < cu(I)V?.
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Also, since g > p, we have q;, g, = p for small € > 0. To complete the proof,
we need the following lemma.

Lemma 5.4. Let ue D, and a(I) satisfy (iii) and (iv). Let M, be defined by
(5.2) for a collection of dyadic cubes {I.}, and assume that

a(yu(I)"* < < co(I)"?

Sor all cubes, 1 < p < g < . There is a number n > 0 depending on u and a
so that if e> —nm and veA,,

IM] 1 < ¢ 2Ny, |z

As we shall see, the value of 5 can be taken to be u/no where u is the
parameter in (iv) and u € D,.

Before proving the lemma, we note that Theorem 5 follows by combining
it with the facts above, since then for small e > 0

IMIZIM_ 1 < | She 12717 = o] Shey g
Proor oF LEMMA 5.4. Write
IM|7q = j sup Oveaud)x;, ) u dx
< 2IMal)ud) .
Let

g) = 2 Nxy, (%)

For j=0, =1, £2,..., let 3, = (I;: [I| = 2"} and define

1
g;(x) = <m Lkg>)f1k(X), I, €3;.

Then

SN aT ) u(l) 9+ =3, Na(I ) u(I )9 +?
k < k T 1h k k k
k€%

1 +

Jj Ikeﬁj

(5.5) =% jg,-(x)" (27" 3 al)tudt) ', 09} dx.
J

Ikesj
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Think of gj(x) as a function on R” x {27}, and think of
dm(x,j) =27 30 al)u)?* 'x, (x)dx
Ie3; k
as a measure. We claim that dm is a (g, p)-Carleson measure with respect to
v(x)dx i.e., that if J is a cube in R” with edgelength A, then

(5.6) > j {2”‘" 2 a)uld)* 'x, (x)} dx < co(J)"”
2/sh JJ I.€3; k

with ¢ independent of J. Since v e D, , we may assume that J is dyadic. The
I’s in a given J ) are disjoint, and those above which intersect J have
edgelength 27 < A, i.e., are smaller than J, and so are contained in J. Hence,
after performing the integration with respect to x, we see that the left side of
(5.6) equals
.7 2 ; OALTIALARR

2i<h |I, ji

— 2Jn
I,CJ

From (iv)

I w/n J\
a(ly) < c<‘-“%> a(J) = c(%—) a(J).

Thus, (5.7) is at most

q .
B S 5 ugye,
e Y R o=}
n.cJ
In case € > 0, we have
) Su()uldy) if I.CJ,
and therefore the last estimate is bounded by

Ly a(J)"

2Jedy( J)ed 1) < rq €q
] Zéh u(J) Ik;&-u( PEY P R u(J)*u(J)
I,cJ
— ca(_])qu(])eq +1

since the cubes in each Sj are disjoint. By hypothesis,
a()u(J) ! < eo(J ),
and (5.6) follows in this case. If instead e < 0, then since u € D,

u(J) < c((JI/1LDuy) if I CJ,
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and we see the estimate above is at most

a(J)‘I Jrq (4 eq
e 2 2 30 [l /1T w“ud)
S YV R =5}
I,cJ
a(J)? ; :
-7 zj(uq+mreq) cq
¢ hy.q+naeq zjzs.]h u(J) Ik§3~ u(Ik)
1,cJ
= ca(J)u(J)9+1,

provided ug + noeq > 0, i.e., ¢ > —pu/no. Thus, (5.6) again follows.
Using (5.6) and Carleson’s theorem, we see that (5.5) is at most c|g*]| T
where

2*(x) = sup {g,(»): (1,/) satisfies |x — y| < 2'}.

Fix x and suppose |x — y| < 2’. By definition of g;, if ye I, €3,

()_.,_L_f <.,£_f
SO LS e

where I is any interval containing x of edgelength =~2/. If there is no such I

for y, then g;(») = 0. Thus, g* is majorized by a multiple of the Hardy-

Littlewood maximal function of g. Therefore, |g*|,, < c|g|.» by [8] since
v v

veA,. Combining estimates, we obtain Lemma 5.4; this completes the proof
of Theorem 5.

6. Proof of Theorem 6

The proof is similar to that of Theorem 5. As there, it is enough to prove the
result for dyadic cubes instead of balls. Fix x and order those /, containing
x according to size as before. Let g(x) = Z)\kx,k(x) and

Ax) = sup val)' " %, 1, e>0.

For k, and e to be chosen, write

Zkka(lk)x,k(X) =k§c + Z

o k>k,

< sup a0 |50 + 4,09 3, atl) ™%, .
ksk, K>k,

By adding cubes if necessary, we may assume that sup, _ K a(Ik)X,k(x) and
Ziks K, a(Ik)‘ex,k(x) are taken over cubes of every dyadic size containing x.
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We do not add any cubes to the collection used to define g or A,. Thus, by
(iii) and (iv),

> Meali)x; () < calli )g) + cally) ™ “A().
Pick ko so that a(f; ) = (4.(x)/g(x))""** . Then
2Mal)x, () < gAY, r=1+e

By Holder’s inequality,

1/pr u\" \ver
o0 v fon) 7 ([ ())

If we show that

6.2) j Aﬁ(%) v< cjgpv, r=1+e

then the right side of (6.1) is at most c|g| 7T and Theorem 6 follows.
To prove (6.2), note that since

A < XMal)x, (0, r=1l+e

the integral on the left is bounded by

Z)\ia(lk)‘”J <ﬁ>rv.
I, \V

Using the same notation as in the proof of Theorem 5, we see this equals

1 . u\
2.2 (m ffkgf")""k’” L <‘) v
-3 [aer| 3 (g [, () o}

Thus, (6.2) will be as before if we show that the expression in curly brackets
is a (p, p) Carleson measure with respect to v(x)dx. If J is a cube in R” and
|J| = A", we must show that

(6.3) 2 j { 2 a(Ik)”’< j <u> )x, (x)} dx < cu(J).
27=n )7 (1.5, | I |

Arguing as before with J dyadic, we see this amounts to proving that

> > alp)” L (%) v < cvlJ).

2/<h I.€3;
r.cr



334 P.S. CHANILLO, J. O. STROMBERG AND R. L. WHEEDEN
Since a(I}) < c(|I|/|J|y""a(J) if I, C J, the sum on the left is majorized by

. 2.1' wor u\’ , 2J \ kpr u\
ca(J)? zjzs;h <_h) z,czelsj Lk <—v—> v < ca(J)? zjzs:h <_h_> L <;> v,

I.cJ

since the cubes in 5j are disjoint and have edgelength 2/. The last expression
equals

(6.4) ca(J)”’J <i>ru.
n\v

Since (1)’ holds, the following lemma shows that if r is chosen near 1 (i.e., €
is chosen small), then (6.4) is at most cv(J), and the proof of (6.3) is complete.

Lemma 6.4. If ve A, the following two conditions are equivalent:

(a) condition (1), i.e., there exists s > 1 such that

1 1/s U(I)
a(I)”<——j us> <c——+
17l Ji 17|
for all cubes I,

(b) there exists r > 1 such that

1 u r 1/r
”(I)p< oD) L <F> ”) ¢

The proof is essentially the same as that given in [2] for the case a(I) = |I|'"
and we shall not repeat the details.

for all cubes I.
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