REVISTA MATEMATICA IBEROAMERICANA
Vor. 3 N.° 2, 1987

Hardy Spaces and the
Dirichlet Problem on
Lipschitz Domains

Carlos E. Kenig and Jill Pipher

Introduction

Our concern in this paper is to describe a class of Hardy spaces H?(D) for
1 £ p <2 on a Lipschitz domain D C R” when n > 3, and a certain smooth
counterpart of H”(D) on R"~!, by providing an atomic decomposition and
a description of their duals. For a Lipschitz domain D,

H?(D, do) = {u: Au =0 in D and Nu(Q) € LP(dD, do)}

where Nu(Q) = SUPrg) |u(x)| is the nontangential maximal function. When
p =2 H? and L? are essentially the same. When the dimension n = 2, H?(D)
can be understood in terms of conformal mappings onto the upper half plane
(Kenig [20]).

In 1979, B. Dahlberg overcame one major obstacle in providing the atomic
decomposition of H'(D,do) in higher dimensions by showing that ap-
propriately defined atoms belong to H'. However, the pairing between BMO
and H'! was not established since, as we show, the most natural class of
measures arising from the harmonic extensions of BMO functions do not
satisfy the right Carleson measure condition.

At this point we would like to mention the work of Jerison-Kenig [18] and
Dahlberg-Kenig [10] where the analogous theory on Lipschitz (and even NTA)
domains was carried out for H?(D, dw) for harmonic functions ([18]) and
systems of conjugate harmonic functions ([10]).

The paper is organized as follows. At the begining of section 1 we describe
the notation to be used throughout. We then explain why Dahlberg’s lemma
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192 Carros E. KENIG AND JiLL PIPHER

(which was stated in [8], without proof) on the harmonic extension of BMO
functions fails. In addition, we give an example which shows that there is no
Carleson measure condition on the harmonic extension of a BMO function.

In section 2 we give (for completeness) the proof of Dahlberg’s lemma on
atoms ([8]). In order to exhibit the duality between H' and BMO, one requires
that some extension of a BMO function be a Carleson measure. At the end
of this section, we discuss which properties such an extension must satisfy,
and give the motivation for the work which follows.

There are two approaches to obtain such an extension result. One approach
is by duality, giving an atomic decomposition via a grand maximal function;
the other approach is constructive, as in Varopoulos [25]. In section 3 we con-
sider a related space, H”(wdx), a space of distributions on R”~!, where the
weight w(x) appears in the kernel used to define the maximal functions, and
not as a weight on Lebesgue measure dx. For this space of distributions we
prove that definitions in terms of grand maximal functions or vertical max-
imal functions are equivalent, give an atomic decomposition, a description
of the dual space, and a Varopoulos type extension theorem for the dual.
At the end of this section, a constructive proof of the extension theorem is
given.

In section 4 we use the extension result and a localization argument to
obtain the atomic decomposition for H'(D, do) and duality with BMO, (w).
This is carried out first for starlike domains, and a separate argument gives
the duality and decomposition for a general Lipschitz domain. Section 5 is
devoted to the analogous results for H?(D, do), 1 < p < 2. In this case the
dual of H? is characterized by a weighted «sharp» function, which arises from
the defining condition of BMO,(w).

We would like to thank J.O. Stromberg for helpful conversations on
weighted H?(R") spaces and for preprints of his joint work with A. Torchin-
sky on this topic.

1. We begin by reviewing some basic facts about harmonic functions on a
Lipschitz domain D € R” and by setting up the notation to be used throughout.
For Pe D, dw” is harmonic measure evaluated at P and k(P, ¢) = dw”/do,
where do is surface measure on dD. Then if G(P, ») is the Green’s function
with pole at P, we have

i)
k(P, ¢) = —G(P, °).
on
In D we fix an arbitrary P, and set G(X) = G(Py, X), k(Q) = k(P,, Q) and

dw = dwPo. If f(Q) is defined on D, u(P) = ,fa p J(QK(P, Q)da (Q) is the har-
monic extension of f to D, where do (Q) is surface measure on aD.
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To each point Q € 8D is associated a cone
I(Q) = {PeD: |P - Q| < cdist (P, aD)}
contained in D. For u harmonic in D, Nu(Q) = sup,r, |u(x)| is the non-
tangential maximal function of u# and
— v 2 -n+2 172
Su(@) = { |, IVuX)*d(x)~"*? dX]

is its square function.

Definition. H?(D, do) = {u: Au= 0 in D, u(P,) = 0 and Nu e LP(8D, do)},
and ”u”HP = "Nu“Lp(do)’

By Dahlberg’s theorem ([7]),
”Nu"L"(du) =~ |}Su||L,,(do) forall p>0,

and so H?(D, do) could just as well be defined using square functions.

The normalizing condition u(P,) = 0 says that if u(P) = j f(Q) dwP(Q) for
some function fthen Ia pfdw = 0. With this in mind we say that a harmonic
function @ on D is an atom if there exists a surface ball A C dD such that a =0
on D\ A, |a|.<o(A)"! and j'A a(Q)dw = a(Py) = 0. We will sometimes
identify an atom @ with its harmonic extension A.

Definitions.

(1) HLD, do) = { f:f= 2 \ca, where the a, are atoms and 3, |\;| < «}.
(2) BMO,(w) = {g: there exists C < o such that

sein ”A |8 — gal dw/s(8) + fap 18(Q)| dw < C},

where
1
8= o) IAg(Q) dw.

3) VMO, (w) = {g € BMO,(w): Tm [ le— &sl do/o(a) = 0} :

The space H'(D, do) is in fact a space of extensions of distributions, as not
every element of H' is the Poisson integral of its pointwise boundary values.
We should like to identify these boundary distributions with H.,(0D, do) and
thereby show its dual to be BMO,(w). At this point we take a closer look at
BMO, (w). In particular, an alternative Carleson characterization of BMO, ()
will be considered, and rejected.
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Suppose that u(x) and v(x) are the Poisson extensions of functions f and g
on 3D satisfying u(P,y) = v(P,) = 0. Assume u € H'(D, do). Then by Green’s
formula, together with the relationship between G(x) and harmonic measure,

[,/ Qe @do = [ AQQkQdo = [ CEIAw- v)) dx
=2[ GWVu-Vvdx.

In this way, the pairing between BMO and H'! is typically established by
bounding the solid integral over the domain. In our situation we have (with
d(x) abbreviating dist (x, D))

jD G| Vu)] Vo] dx = J D JT(Q) G)|Vu(x)| |Vux)| d(x)' ~" dx do(Q)
2 2 172 ) Gz -
< [ g s 7 [ o s
= [, Su(@Av(Q)do
with
G*(x) _
2 = 2 - 1-n
Av(Q) = JI‘(Q) |Vl 00 d(x) dx.

Observe that

G*(x)
2 _ . 2
LDA v(Q)do = L 400 |Vo|* dx.

Then by mimicking the duality argument of Fefferman-Stein [13], it will follow
that |f,, fedw| is finite if |Vo| satisfies the Carleson condition

» GA(X)
(1.1 j‘L(A) |V a0 dX < co(d)
where, for A = A(Q,, ), a surface ball centered at Q, with radius ry,
T(A) = {XeD: | X — Qy| <ro}.

This Carleson measure condition was introduced in Fabes-Kenig-Neri [11]
for the analogous problem on C! domains and in the C! case was shown to
be equivalent to the BMO,(w) boundary definition. However, for a Lipschitz
domain in R”, n > 3, the Poisson kernel does not satisfy the appropriate decay
and a BMO,(w) function can fail to satisfy (1.1).

Example 1. Let D € R? be that part of the complement of the cone

I'(m) = {|x| < my}
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with vertex at the origin which is contained in the unit sphere S. Then there
exists a function A(x), harmonic in D, given by A(x) = |x|*¢(x/|x|) where ¢
vanishes on the spherical cap cut out by I'(mn), and (0, 0, 1) = 1. Thus A(x)
vanishes on dDNoI'(m) and moreover a = «,, becomes arbitrarily small as
m— oo, i.e., as the Lipschitz constant of D increases. (See Dahlberg [6] for
a similar construction). Let A, € dI'(/m) be a surface ball with radius r < < 1
centered at the origin. Let D’ be a subdomain of D containing

DN{|xP +3*<1/2} =DNSy,
such that
aD,naD - ar‘(m)nsl/z

but with D’ smooth except at the origin. Then A(x) satifies the BMO,(w) con-
dition on 0D’ since it is a continuous function which vanishes where the bound-
ary of D’ fails to be smooth.

Let us assume that D’ does not contain the pole of G, (x), the Green’s func-
tion for D. Then both G(x) and A(x) are harmonic in D’ and vanish on
dD N oI'(m). Hence by the comparison theorem ([6]), we may fix some z, away
from the origin and obtain the estimate

G(x) _ G(zo)

1.2 h)  hGy)

for xeDNS,,,. Set T(A)™* = {xe T(4,):d(x) >r/2}. The above estimate
for G(x) shows that
|VA|2G*(x)/d(x) dx > Cor®® ™2 j r*/rdx = Cr*®.

J T+ T@A,)*

Here the constant C depends only on the comparability constant in (1.2) and
not on the radius r. Observe now that if the Carleson measure condition
holds, the estimate

22
j ro |Vh|2G?/ddX s o(d,)
implies that r** < Cr?. Letting r — 0 forces « > 1/2, but in dimension # > 3,
« tends to zero.

This argument fails, as it must, for dimension n = 2. In the plane the
Green’s function for the complement of a cone can be computed explicitly by
a conformal mapping onto the upper half plane and one finds that the restric-
tion o > 1/2 is satisfied.

There is, however, a more fundamental reason for the failure of the Carleson
measure condition of Example 1. Namely, if u € H*(D, do) and v is the har-
monic extension of a BMO,(w) function, the integral [, G(X)|Vu| |Vv|dX
need not be absolutely convergent.
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Example 2. Let D,D’ < R” and A(x) be as in Example 1. Again let A, be
the surface ball on 4D N aI'(m) with radius r centered at the origin. A plane
perpendicular to the axis of the cone divides A, into two pieces A; and A, with
a(4,) = a(Ay) = r"~ 1. We construct an H' function with support on A, by set-
ting u(x) = w*(A;) — Bw*(A,) where 8 = w(A;)/w(A,). By the doubling proper-
ty of harmonic measure ([17]), B8 is bounded above and below by universal
constants depending only on D and not, in particular, on the radius . Hence
u(x)/r"~!is an atom and Dahlberg’s lemma ([18], see 2.3 of this paper) yields
|u] 42 < Cr*~', where C = C(D).
We claim that there is no constant C such that

j |Vu(x)|G*(x)/d(x)dx < Cr* ™.

Because |VA(x)| s G(x)/d(x), this would imply that [, G(x)|VA(x)| |Vu(x)| dx
has no bound in terms of |u| ;. Assume, to the contrary, that such a cons-
tant C, exists. Define v(x) = u(x) + 8 and choose three points z;, z,, 23 in D
as follows. Let Q, (resp. Q,) be a point in A, (resp. A,) at a distance /2 from
the origin, the vertex of I'(m). If Q € 4D, let ng denote the unit normal at Q
and set z; = Q; + Mg s 2 = o, + mg, and let Z; be the point on the vertical
axis of I'(m) at a distance r from the origin. From now on, C will denote a
constant which depends only on the domain D, not necessarily the same at
each occurence.

Because w*(A;) > C (see [7]) and v(x) = (1 + B)w*(A,) we have v(z;) = C
Moreover, by Harnack’s principle, v(z;) = v(z,) = v(z;). Hence

C<u(z) =v(Q, + sz)

ad
=v(Q, + E"”QZ) + L o+ 3p - 0(Q2 + pngy )dp

<Ce1+B) + [ VU@ +ong)| dp.

This last estimate follows from Holder continuity since v is non-negative,
bounded by (1 + 8) and vanishes on A,;. If A, is a surface ball with
o(A,) = o(A;) whose double is contained in A,, the above estimate is valid
with Q € A, replacing Q,. Thus if we set

Ter(Zl) ={XeD:X=0+ PNy, Q651,6r<,0},
integrating the above inequality on Q € A, yields
C<CEU+P)+ [, o Vo) dX/r"~

er 1)

and so
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Crl < CEU+ BT+ [ &, | PPEOIGHX0/dX) - d(X)/GA(X) dX

er =1

S CE1+ Bt + Clr/G ) [, 1Vul0)|G*(X)/d(X)

where C(e) > [G(x)/G(z;)])* depends only on e and on D. Since G(z;) = G(z5)
=~ r%, and, by our assumption that C, exists, we have

C<C'e(1 + B) + C(e)r* ~2~.

Now fix a small o and then fix e so that C — C’e"(1 + 8) > 0. The above ine-
quality leads to contradiction as r— 0.

2. In this section we give Dahlberg’s proof that atoms belong to H*(D, do)
and then discuss the two methods by which the atomic decomposition of H*
and its duality with BMO,(dw) will be obtained. Recall that a harmonic func-
tion A is an atom if there is a surface ball A € dD such that A = 0 on 4D\ A,
| Ao < 0(A)~ ! and A has mean value zero with respect to harmonic measure
dw = dw?o,

Lemma 2.1 (Dahlberg [8]). There is a constant C such that for all atoms A
[,pNA@do(@ < C.

PROOF. Suppose that A4 is supported on A, = {Q: |Q — Q| < r}, where r is
small. (If r > co(8D), then [;, NA(Q) do(Q) is bounded by |A| ;2.1 9(@D)"* <
C).

Since |A |2 < r' ", by the L? theory for Lipschitz domains (Dahlberg [9]),
we have

[, NA(Q) do(Q) < 0(83) * INA)| 2 < €.

Thus it suffices to estimate |4(X)| for Xe D, = (PeD:|P — Qy| > p} for p >
2r.Let S, = {PeD: |P— Q,| = p} and pick Q, € S, such that dist (Q,, dD) =
maxy s dist (Q, dD). Extend A to all of R” by putting A = 0 in R”*\D and let
At =max(4,0), A~ = max(—A4,0). Both A* and A~ are subharmonic in
{X:|X — Qp| > r}. If dr denotes normalized surface measure on the unit sphere
S, set

m,(p) = (JQ |A *(pT)IZdT) 172,
By Huber [6] and Friedland and Hayman [14],

2.2 m . (p) S V2(r/p)" *m . (r)exp ( - j;’ra* ) at/ t)
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where o (¢) is the nonnegative root of the equation
ale +n—2) = NU* (1), U*(t) = {(QeS: A*(tQ) > 0},
and
MU) = infU |Vu|*dr:ue CJ(U), [u?dr = 1} :
Set
b0 = [, A*Qdo (@)

where dw? is harmonic measure for the domain D, and let dw,, denote the
harmonic measure for D, evaluated at the point Q,. Let &k, = (%:D /do, be
the density of harmonic measure in surface measure on dD,. T hen”

ey 1@< ([, u@rm) " (|, )"

< (Japp A=) dap) V2. 0(dD,) " vz, IaDp k,do,

<C([,,, 1% @I do,) ' = Cm. g,

where the estimates above follow from the reverse Holder condition on %,
(see Dahlberg [9]). By Harnack’s inequality, maxp, |h| < Ch;(Q,), and by
the comparison theorem ([16]),

h*(Q,) - h™* (Py) _

h(Q)) h (P
However, A = h— h, and A(Py) =0, by assumption, so it follows that
hy(Q,) = b} (Q,). Hence, by (2.2) and (2.3)

(2.4) Max |4] < C(h(Q,) - by (Q)}*
sz

< Cr"'z(m+(r)m-(r))l/zpz'"exp<— L 2@ re-l) %)

Again by the L? theory,

n-1,2 = 2
Um0 [, o ) 1A% (P do(P)

< [, NA(Qdo(Q

r

<CJ, lAQI do(Q)

A

Cri-n

N
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This gives the estimate

Max |4] < Cr‘lpz’”exp<—Jp———a+(t) ta-@) ﬂ)
20 2r 2 t

Let
ag(t) = IU* ® dr

an set o(x) =2(1 —x) for 1/4<x< 1,

1 ., 3
<p(x)—310g(4X) +5

otherwise. Because ¢ is decreasing and convex, it follows that a . (f) = ¢+ (£).
(See Friedland-Hayman [14]). Since D is Lipschitz and A * 4~ = 0 there exists
a positive 3 such that a4 (¢) + a-(¢f) <1 — 3. Hence

SO +a- 0> sae(m(t) s a_(t»> >1+8.

Substituting this estimate into (2.4) gives

(2.5) Max [A| < Cp' ™"~ FrP

2p
and therefore
NA(Q) < Cmin {rf|Q — Qp|* ™"~ %,r17 ™). O

Observe that the argument yields a strong pointwise estimate (2.5) on the
harmonic function A(x) away from the support of its boundary values. We
will need this fact later.

Let us now assume that D is Lipschitz and starlike with respect to the origin.
Let dw denote dw®.

Definition.

H'(3D, do) = {f: £(Q) = lim u(rQ), u € H'(D, 5)} ,
r—1
where the limit is taken in an appropriate sense to be made precise later on.

Definition. For

1
VMO, (dw) = [g € BMO,(w): lim j lg — gal dw = 0} )
a@y—0 0(A) Ja

let VMOX(dw) be its dual, i.e., the linear functionals acting continuously on
VMO, (dw).



200 Carios E. KENIG AND JiLL PIPHER

Definition. H.,(3D, do) = { feVMO*dw): f= 2 N where the a; are
atoms, 2, j I\j| < o, and the convergence takes place in VMO¥* (dw) ]

Our goal in the next few sections is to establish the following.

Theorem 2.6.
H'(dD, do) = VMO#*(dw) = H.,(dD, do)

and the dual of H' (3D, do) is BMO, (dw) with pairing (f, ) = j' fedw, on an
appropiate dense subclass.

There will be an analogous result for nonstarlike Lipschitz domains, which
will be formulated at the end of section 4.

The main result we need is the following, establishing the pairing between
H'(D, do) and BMO, ().

Theorem 2.7. If ue £(D), the space of functions on D Lipschitz on D,
Au =0, u(0) = 0, and fe BMO,(dw) then

LD uwQ)f(Q) dw < |[NW| 114g 1S | 5mo -

The idea behind the proof of Theorem 2.7 is to find some (non-harmonic)
extension v of fto the domain D which satisfies a Carleson measure condition.
For suppose v(X) is some smooth extension of f to all of D, for which the
following formal argument is justified. Let G(x) be the Green’s function with
pole at 0.

[, 4@ fQdo= [ Gaw-v)dx
=2 JD G(x)Vu(x) - Vo(x)dx + ID G(x)u(x)Av(x) dx
=2 jD G Vu(x) - Vo(x) dx — jD G(X)Vu(x) - Vo(x) dx
- ju u(x)vG(x) - Vu(x) dx.

If d(x) = dist (x, dD), then |VG(x)| < G(x)/d(x), when x ¢ K for K some
region around the pole, and we have

”aDu(Q)f(Q)dw(Q), < L,G(x)IVu(x)l [Vo(x)| dx + jKu|vc;| Vol dx
+ | 4@ V00| Ge/d(x) dx.

The first integral on the right-hand side is bounded by .[a pSW)(Q)do(Q) if
|Vv|2)G?/d(x) is a Carleson measure. (See the argument at the beginning of §1).



HARDY SPACES AND THE DIRICHLET PROBLEM ON LipscHITZ DoMaIns 201

The third integral is bounded by j'a »Nu(Q) do(Q) as long as |Vv|G(X)/d(X)
is a Carleson measure. The second integral also has this bound if |v(x)] is
bounded in K. Thus we seek an extension v of f which satisfies, for some
constant C and all surface balls A € aD,

@) j r | VYOI G)/d@) dx < Co(d)
(2.8) (i) |Vu(x)| < CG(x)~!, for x near 4D
(iii) lv(x)] < Cy on a compact subset K of D.

We shall find such an extension by a localization procedure which allows
one to translate the problem to an analog on the upper half space R” . Roughly
speaking, a BMO, (w) function fon dD can be cut off and projected onto R" ™!
so that the resulting function lies in BMO(w dx), a weighted space of bounded
mean oscillation. The counterpart of (2.8) on R% will be obtained in two ways.
The first approach is by duality. We introduce a space of distributions on R* ™%,
a «weighted» space of homogeneous type, which could be regarded as a smooth
version of H'(D, do). The dual of this H* space will be BMO(wdx) and a
representation of a BMO(w dx) in terms of an appropriate kernel and a Carleson
measure is obtained. Obtaining such an extension constructively is the approach
to the classical duality taken by Carleson [2], Varopoulos [25], and Jones [19].
The theory here becomes somewhat elaborate, although we think it is of
interest in itself, and so an alternative constructive approach is developed. The
constructive argument parallels that of Varopoulos [25] and will be given at
the end of §3. Basic to both methods of proof is the following observation
about harmonic measure. '

Lemma 2.9. There exists a constant C, an a > 0, and a radius r,, all depending
only on the domain D, such that for every surface ball

A(Qo,r) = {Q€AD:|Q — Q| <}
with 2r < r,

W(A(Qos 277r) < C2770 2% Veo(A(Q,, 1))

Proor. By Lemma 5.8 of [17], there exists 7, and M such that whenever
2r<ry,

M~ < w(AQ, )/r" " *G(X,) <M
where X, is a point in D whose distance to dD is approximately | X, — Qo|. Thus

w(A(Qo> 277)/w(A(Qo, 1) < Cp 27" DG(X, - )/ G(X,).
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The Green’s function is harmonic in A(Q,, 2r) and vanishes on the boundary
of D so by Holder continuity ([17]) we have

G(X3-i) € C(X;5-s — Qol/D*G(X;) £ C277*G(X,), for some « > 0.

In the next section we define an H'! space relative to a kernel with a weight
satisfying the condition of Lemma 2.9. This weight should therefore be
thought of as the projection of harmonic measure onto R” 1. The localization
arguments and the translation of the problem in D to the situation which
follows are given later.

3. Suppose w is a weight on R"~! with the following properties:

(i) For some constant C an some 0 < a <1,

w(Q)/w(2'Q) <2

for all cubes Q and their 2/-fold enlargements 2/Q.
(3.1) (i) w(Q) = |Q| when the length /(Q) of Q is larger than 1.
(iii) w satifies a reverse Holder inequality with exponent two; that is

1 2d 172 1 d
<|_Q—|L,w x> s—@—Lw -

We remark that conditions (ii) and (iii) are stated in this seemingly strong
way for convenience only. If we only ask that we A4, i.e.,

__J-(n—2+o()

w(E)/w(Q) < C(|E|/|Q])? for some 6,

then this would suffice instead of (ii) and (iii). (See Coifman-Fefferman [3]
for the relevant properties of 4, weights).

Define BMO(w dx) to be the space of functions g € LL.(wdx) for which
there exists a contant M such that

1
su _—
oreuve 0]

where |Q| is the Lebesgue measure of Q and

j lg — golwdx <M
Q

go=w@ | gwdx.

Clearly if for each cube Q there exists some constant o for which

szp[IQl‘lfQ e - Qlde}



HARDY SPACES AND THE DIRICHLET PROBLEM ON LipscHiTZ DomMaiNs 203

is finite, then g belongs to BMO(w dx). Let VMO denote the closure of Lip,,
the compactly supported Lipschitz functions, in the BMO norm. This defini-
tion makes sense for if ¥ belongs to Lip,, |Q| is small, take Q, to be the cube
of length 1 containing Q. Then

o 1900 = vl wdx < [ [ I = xo| wax

< [V, (QWQ)
< Y] i (OW(Q)/ W(Qo)W(Q0)
< Wl hQr e,

by conditions (3.1) (i) and (ii). And when Q is large,
[, lvwiwar < cw@ < clol.

Hence Lip, € BMO(w ds). Fix, once and for all, a C* bump function ¢ sup-
ported in the unit ball B(0, 1) and ¢ =1 on B(0, 1/2). The kernel function
formed from ¢, relative to the weight w, is

S -1
K(x,z,5) = o(x - z/y)U <p<x 5 2 >W(Z') dZ’} .

An fbelonging to VMO*(w dx), the dual of VMO(w dx), will be called a distri-
bution and the pairing ¢ f, ¢) will be denoted _[ Sfowdx. For fe VMO*(wdx),
let

ux, y) = | (6,2,0)/@Qwe dz

be its «Poisson» extension to the upper half space.

Definition.

H'(wdx) = {fe VMO*(wdx): f * (x) = sup |u(x, )| eL‘(dx)} :
y>0

The first goal is to give an atomic decomposition of H'(wdx) and for this
purpose we need a definition of this space in terms of a grand maximal func-
tion. Let 8 be class of Schwartz functions and let

@={yes:[a+ )Y 3 IDYP)dx< 1],
la| =N
for some large N. The pairing of an f € VMO*(w dx) against y € Q is well defined.
To see this, fix a sequence of bump functions 6; supported on {|x| <2/* h,
with §; = 1 for |x| < 2/. Now if ¢ € @, 8;¥ € Lip, and we need [6;¥ — ¥/| g0 = 0
as j— . Suppose Q S R"~ ! is a cube with /(Q) > 1. We have
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JQ |(1 = 0)¥0)|wdx < (jQ”{lxl "
. (inzzj} ly[>(1 + |x])Ndx) 172

. dx 1/2
< 2—]N/2<J‘ w2—> 101172
" 1or) 1@

w21 + |x|)‘Ndx) 172

<27V7|g|
by (3.1) (ii) and (iii). Alternatively, if /(Q) is small, and x, is the center of Q,
jQ [(1 = 0)¥(x) — (1 — 6)Y(xp)lwdx < U(Q) - jQ V(1 - 6)¥)|wax
< GlQW(Q) < G|

where C;— 0 as j = co. The last inequality, valid for small cubes, is derived from
an argument we have used before. For Q, is the cube of length 1 containing
Q, condition (3.1) (i) yields

w(Q) < I(Q)"~2**w(Qy)
and again by (3.1) (ii),
(QW(Q) S Q)" ' o< Q)" .

One can now define, for n€ @ and B(x, f) = {x'e R"~: |x — x'| < t}, the
extension

Salx, 1) = J‘f(Z)n<x~:—z> w(z) dZ/ w(B(x, 1)).

The grand maximal function of f is

f*) =sup sup |fa(x', 1)
Q |<t

ne x—-x'|<

Lemma 3.2. There is a constant C such that
1 + * +
E “f “Ll(dx) < "f ” Li@dx) < C"f “Ll(dx)

Proor. The argument is an adaptation of that of Fefferman-Stein [13], so
only those details which indicate how the properties of the weight come into
play are provided. Recall that ¢ is our fixed «nice» bump function. The non-
tangential maximal function is

Nf(x) = 5P FACIIIR

x—x'| <t
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where f,(x, t) is the u(x, t) defined before. We shall first see that

||Nf||1_1(dx) = ”f* “Ll(dx)‘

Assume Nf e L'(dx) and let 5 € G. A purely geometric argument (p. 185 of
[13]) shows that the tangential maximal function

¢ N
f**(9) = sup | £, (x', t)|<|——>

x—x'|+t

belongs to L!(dx) for sufficiently large N. Suppose that for some ¢ € @, and
s<1, n=y=*p, where ¢,(¢) = s "*1p(+/s). Then

- ] ff(y)” Ve = s~ lsa(x—s’}) dx} W) dy‘
= ‘ j Yolx — z)qf(y)s‘”+ ‘¢<z S_ty >W(y) dy> dx

This interchange of integration can be justified in the same way one justifies
the interchange in the ordinary convolution case and we obtain

w(B(z, st))
w(B(x, 1))

jf mx — y/OHw(y)dy

e, )] < f Wx — 2)[s=m+1 £ 0| dz

-N
> dz - f**(x)

st -N
27t + st

< j I, (x — g)|s=n+1 B D) < st

w(B(x, 1)) \ |x—z| + st
=f**(X)S_"+IZ fon+l ¢<x:z>

j Jix—z|=24t

w(B(z, st))
W@ 1)

By (3.1) and the fact that we A®,

w(B(z,s1))  w(B(,st) w(B(,2't)

. \n—2+a M)
w(B(x, 1)  wB( 2°D) wB(x, 1)) < (s/29) M)

{(*7)
{(*7)

Thus

(s/29)Ndz

)

If,’,(x’t)lsf**(x)s—n+1_sn—2+a22MjJ t—n+1
J

|x —z| ~ 2/t

Sf**(x)s_ 1 +a221lljs—N2—jN<t—n+1 J‘
j |

x—z|~2Jt

Sf¥*(x)s N1t since Y eQ.



206 Cariros E. KENIG AND JILL PIPHER

The remainder of the argument for | f*| 1., < |Nf 114, follows Fefferman-
Stein verbatim, cutting up the support of 7 to express it as a sum of convolu-
tions ¢ * @55 with ¢y € Q.

To show that |Nf| 14y < |/ 7 | L1y ODE uses a geometric argument of
Burkholder-Gundy to prove

1/r
INf(x)| < sup (—l—j [f*(z)]’dz) , O0<r<l1
xeo \ |Q| Jo

and invoke the maximal theorem. Again, for details, we refer to [13].

The main step in the atomic decomposition for H'(wdx) is to provide an
appropriate dense subclass of functions. Here we follow closely the method
of Macias and Segovia [26].

Given a distribution fe H'(wdx), let @, = {x:f*(x) > \}. Associate to Q, a
partition of unity {n;} with 3.;n; = Xg , 7; = 1 on B(x;, 1)), supp 1; S B(x;, 2r)),

—
and |D%y;f. < CY ' Furthermore, UB(x;, r)) = Q) and for some constant
M, and some ¢ > 2, no point of {, lies in more than M of the balls B(x;, cr)).
Define the mapping S; on VMO(w dx) by

$;(@) = 7,0 [ W) ~ Y@, @w@) dz - { [, )wdz'} "

Lemma 3.3. If y € VMO, then Z;: . Sj(\p) belongs to VMO and

< Cl¥lemo-
BMO

IR
Jj=1

Proor. Let B; = suppy, and /(B) = radius (B)). We first show that 217_, 7,(x)

(¥ — ¥ ) belongs to VMO, where ¢, = 1/w(B)) jB.wdx. The difference be-
J J J

tween this sum and ] j S;(¥) will be controlled later. Fix a cube J < R"~ ! with
center x,. We need only consider those balls B; which intersect J. These balls
B; are of two types: I(J) < I(Bj) or I(J) > I(Bj). Let je g, if I(J) > I(B) and
J€ 3, if I(J) < I(B)). Set

c,= (x - .

1= 2 60 = b),
Then

wdx

wdxsj
J

5 00 = )+ 3 (0, = 2,00 N~ V) |wax.

JEIJ, JEJ,

|
.

Z ﬂj(x)(‘lb —¥Yg)—¢ Z nj(x)(‘// —¥p)
Jj=1 J 1551 J
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The first term above is bounded by

5], -t < o 3 18] < €[, Sx, @<l

We consider the two sums in the second term separately.

)

since no point lies in more than M of the B/’s. In the second sum we add and
subtract y(x) from ¢, — ¢, and it remains to bound
J

|

The balls B; which occur int this sum have I(Bj) = I(J) and so at most M
of them intersect J. Hence we have only to estimate a single term of the
form

> 1,060 - ) | wdx < ML V() — v, wex) dx < M|J|

JEIJ,

33 (1,00 = 1) = ¥p) \ wdx.

Jjed,

34 [, 1m0 = 0,0l 960) = 95 | W) dx

where /(J) < [(B)). Let J, be the 2"-fold enlargement of J and let 7, be the
smallest # for which B; < J, . Of course, for this ng, |J, | is comparable to
|B;|. By the gradient estimate on 7 ;> (3.4) is less than

I(J)

I(Bj) J‘J ' W - ‘I’Bj) -W- ‘LBJ.)J + I; (¥ - 1//Bj)JI -W- ¢Bj)‘ll—l]

+ W - ¢Bj)1no wdx

Applying the BMO condition on y to the interval J,UJ,_, gives
|‘/’Jl - l»bJ,_l| < |Jll/W(JI)-

In particular,

1) 1) |,
I(B)) ij"“ h ‘I’BJ.‘de < [¥lsmo IB) WE;W(J)

< ClJ|

IJ) |B) <1(J) >2
IB) 7] \1(B)

IJ) \*
<cvl <1((B?)> '
J
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A similar estimate is achieved on the sum:

)
1B)

IJ) & |Jt|

= IB) ; wdy "

; l‘[/JI ¢JI 1

L) o W)
z(B) Z ey w(Jy)

Lo NEON
w12 G0 1B) \210)

_ Q& ani-o )
- 8@

g
<2 @) e
=1
< ClJ|.

To control the difference between the sum ;. (= ¢B) and ). ;S
note that each term is bounded by

1
le(x)TBj) J‘B |‘// - ¢Bj|de

and, as in the previous argument it is possible to obtain a bound of |J| on the
BMO(wdx) norm of the difference.

We have shown that > j Sj(x[/) € BMO(wdx), and it remains to verify that
it belongs to VMO(wdx) when ¢y e VMO(wdx). Suppose that y € Lip,.
Then

n.wdz
; S,V — %} S, (D)%) < ; [1,(0) — n(x0)] ‘f [Y(x) — ¢(z)]W

J

wdz
+ (%) j W) — Yoo s
J j"7

jwdz

wdz
Z[n,(X) n,(xo)]jw(x) W)lf
.1

wdz'
+ C|x - xOl.

By considering, separately the cases /(B;) < |x — Xo| and /(B;) > |x — x| in
the sum above, and using |Y(x) — ¥(2)| < I(B;) we can see that 23;S;(¥) is also
Lip,. If y € VMO(wdx), let 6 be a Lip, function such that |y — 0|40 < €
Then



HARDY SPACES AND THE DIRICHLET PROBLEM ON LipscHITZ DoMAINS 209
28,0 =28, - 0) + 2.5;0).
J J J

The second term is Lip, and the first is BMO with norm bounded by
¥ —0lgmo- O

Lemma 3.5. If y € VMO, set

V) = [YOIKx, 2, Hw(y) dy

where
K(x,y,1) = ox = /0] [ o6 = 2 /yw@) de'} .
Then y, converges to ¢ in VMO(wdx) as t = 0.

Proor. We first show that |, |50 < C|¥] ppo for £ < 1. Let Q be a cube
in R*~1. If t < I(Q),

J () — Yolwdx < j j [V(9) = Yol K(x, », Hw(y) dy w(x) dx
o Q JyeB(x,1)

- o —y/1)
s Lezg YO) = Yol reB,0 WBr, 1)) O EN) dy

< Cl¥lemol@l-
If instead ¢ > I(Q), let Q, be the cube of length ¢ - /(Q) containing Q. Then

L [, () — ¥ ()| W(x) dx

= j'Q ' ‘[ (1//()’) - \[/Q,)((K(x,}’, t) - K(Xo,y, [))w(y) dy W(X) dx

wdy
< L LEQ, W) = ¥ | 1x = X /t woy " dx

_ [
~ —t——" ¢l| BMO W(Qt)

w(Q)

l(Q) )n—2+ a@
Q) t

< ¥l emo Q" UQ)/D)*
< [Vl amo@" !

since /(Q) is also less than 1.

< ¥l gur (Y (
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We now need to see that if € Lip,, then ¢, € VMO(wdx) and |¥; — ¥|gmo
— 0 as ¢~ 0. Clearly y, € Lip, if ¢ is Lip,, so we now estimate |, — ¥|zuo-
In fact, for 0 <8 <1, we have |, — ¥[;, ) <t'~°. Consider |(¢; — ¥)(¥)
— (e = Yxo)|. If £ < |x = xo],

V) = ¥ < [ [¥0) = Y@K Cx, 2, W) dy
<1<t P x - xoff.
If t> |x — x|,
(¥ = D)) = (¥ = D)xo)| < J [¥(») — ¥ |K(x, », 1) — Kxo, ¥, )| W(y) dy
+ V0 = ¥o)| [ Ko, 2, YW() dy
< |x = x|
< 117 B|x — x,|".

If we choose B8 =1 — «, and /(Q) is small, then

Jo 1@ = D0 — W = DEWE dx < [ [, I = Xl " wdr < 2%]Q),

which tends to zero with . When |Q| is large, |, — ¥| < ¢ and the same bound
is achieved.

Finally, if Y € VMO, write ¢ = 6 + n where 6 € Lip, and |7 g0 < €. Then
1Y — ¥l gmo < 10: — Ol gmo + Clel < Ce, if ¢ is small.

Lemma 3.6. (Compare Macias-Segovia [22], Lemma 3.2). Suppose f is a
distribution in H'(wdx) and let Q = { f* > \}. Let {n;) be the partition of
unity associated to 1 described above. Define the distribution b; on
VMO(wdx) by setting

(bj, ¥> = ([, S;(¥))
JSor all Yy e VMO dx). Then
(B.7)  Nb;(x) < CNry/ %o — x;)" =1+ aXcB(xj’ ery o) + Cf *(X0) X, cr ) (Xo)

the series 3, j b ; converges weakly in VMO*(w dx) to a distribution b satisfying

(3.8) j b*(x) dx < cjﬂ F*() dx,
and if g=f-b,
r n—-1+2 .
(3.9 Ng(xp) < CN %: <m) + Cf *(xo)X, ﬂ(xo)-
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Proor. We shall prove (3.7) and (3.8); the proof of (3.9) requires no new
ideas and the argument is essentially provided in Macias-Segovia [22].

ProOF OF (3.7). To estimate Nb;(x,), let us first assume that x, ¢ B(x;, cr))
for some constant ¢, which does not depend on j. Then

| [ 5500000 ~ y/0w () dy - w(BOG, 1)
= W(Bo, )"+ | [F0)S (s, JOIW) |

where goxo,,(-) = ¢(x, — +/t). For the above expression to be nonzero, we
must have ¢ > c|x, — x;|. Therefore,

lSj(Saxo, t)(x)l =

ﬂ,-(x)[nj(Z’)w(Z’) dz’] T [ (@r ) = 01, (@I @W(R) dz‘

S sy (Ix = x|/Dw(z) dz - U 1, dz’} -1
< e/t

and

ID(S;(0e, NI < 2 Cap(1/r) =B~ 81 < o /1yr] 11,
B=sa

Now pick y;€“Q with |x; — y,| = r;. The function S;(#x,,) has support in
B(xj, 2rj) < B( Vs crj) SO we can write Sj(gaxo, 2) =0(y; - y/rj). The above
computations show that Ct/rj - 0(z) belongs to @. This gives the estimate

‘ <ﬁ —r’;sj(wxo, ,)> } wB(,, cr) "1 S F*()
and so

. L, _ WBOper) 1 - (i)"‘““i
1<}, @x,,07| - WB(Xo, 1)) s———w(B(xo,t)) A C R P

using (3.1) (i) and the fact that yje”Q. Because |x, — le < t, the above is
bounded by e\(r;/|x — le)"’ 1+« "which is the first summand in (3.7).

Let us assume now that x, eB(xj, crj), and consider two cases. If ¢ > T
then supp Sj(“’xo:t) S supp ;. Moreover,

I5/(0,(@r, Ma </t <1 and [DS)(er, )l <™.
Reasoning as before we conclude that

<by 0y, )|/ WBGKo, 1) S F*(xp).
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On the other hand, if 7 < r;, split Sj(<pxo,,) in two parts as
8,(Px, ) = 1,0Nes, 1 0) = [ [, W@V &'} [, @, (DIWdz

= hy(¥) — h ().

The function A,(y) has support in B(x,,2¢), and satisfies |4;]|., <1 and
|D%h, ] < t~'*l. Consequently,

[< S, by [W(BCxo, 1) ™1 S f*(x0)-
The function A, has support in B(xj, 2rj) and satisfies
|13] 0 < WBGo, 1))/ WB(x, 2r)
and
| DR < WBExo, 1)/ WB(x, wr) - 17719,
Since [x, — x;| <1,
w(B(xo, 7))

mh2> W(B(xo, 7)) <S*(x0)-

[<f, b)) [ W(B(xo, 1)) < I<f
Altogether, this gives (3.7).

Proor oF (3.8). Let
b* = 3 b,(x).

Jjsk

The above estimates imply that {b*} is a Cauchy sequence in H,(wdx), since

M M
2 | Nbax< 3 c)\f (r;/|x = x|y~ dx
Jj=N+1 J=N+1 c

B(xj, crj)
M
.3 j Frodx
J=N+1 B(xj,crj)
M
<C>\ Z ZJ' (rj/zlrj)n—1+adx
J=N+11>1Jlx-x;|~2r;
M
¢ 3| rwe
Jj=N+1 B(xjcrj)
M M
S X Y27kt X S*)dx
j=N+1 J=N+1 B(xj,crj)

M
<c 2 J f*(o)dx
B(xj,crj)

Jj=N+1
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asf*>xon B(xj, r;)- By the finite overlap property of {B(x;, crj)} the above
sum will be small once N and M are large.

We now want to see that {b*} converges (weakly) to a distribution in
VMO*(wdx). If y e VMO(w dx),

k k
KB, ¥y | = ’<f, 2 Sj(¢)> < [ lvmor| 22 S;() <CIf1 1¥]mo>
Jj=1 Jj=1 BMO

by lemma 3.3. Since the {b*} are uniformly bounded in VMO*(w dx), some
subsequence {b%) has a weak limit, b, in VMO*(wdx). Because the b* are
Cauchy in H'(wdx), the argument to follow shows that b is the A limit of
{b%}, and hence of the entire sequence {5*}. To compute the H'(w dx) norm
of b, we test against ¢ and by weak convergence in VMO*(w dXx),

() + cf*()x, )

B, crp B, crp

Nb() < Tim Nb'5 S 35 () x = )=+
Jj=1

e
so that
[prax<c| rrax. O
When fe VMO*(wdx), set
J0. 0 = (A KC,p,0) = [f@etx = 9)/0 [ o = 2/wE) d2'} ~ ) dx.

Then one can show that { f(s, ?), ¥) = ( f,,) for all ¢ and since ¥, — ¢ in
VMO(wdx) as t— 0, by Lemma 3.4, f(»,?) will converge to f(») in the
ditribution sense as ¢ — 0.

Lemma 3.10. If f is a distribution in VMO*(w dx) which satisfies
[(r*@rdx <=,
then there exists a function F € L*(dx) such that, for all { € Lip,,
(fiwd = [ Fopw dx.
Proor. Notice that f(y, ¢) is not quite the same as f.(¥,t), however
J ot —z/0w) dz = wB(, 1) for x| <t.
This implies that |f(y,?)| < f*(») for all ¢ and so f(y,?) is uniformly in

L*(dy), by the same argument used in the proof of Lemma 3.2. By passing
to a subsequence we get an L%(dx) function F(x) such that (s, #) converges
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weakly to F(s) as t = 0. We also know that f(+, £) = f when tested against Lip,
functions. Let y € Lip,. Then

£ ¥y = Hm (Fe, 0,9 =lim [ 70, DU OIW) dy.

The reverse Hélder condition of exponent two tells us that y,, € L*(dy), and
we have shown that f(e, #) € L*(dy). Hence

imc f(-, 1), ¥> = [FOWW) dy
which proves the lemma. [

Lemma 3.11. Suppose f is a distribution in VMO*(w dx) with j f*(x)dx < .
Then, given e > 0, there exists a function § € L*(dx) such that

(i) g has a unique extension, g, to VMO*(w dx)
() [(f-g*wdx<e.

ProoF. Choose \ > [ f*(x)dx such that
jnf*(x)dx< e, for Q= {f*>N\}.
By Lemma (3.6), f= g + b, where
[b*dx < frmdx

and

g¥0) S AN (ry/1x = x;| + )" T + of *()Xeg ().
J
Therefore,

I(g*(x»2 dx < N f (20 b= x] + e+ j (f*()? dx
Jj Q
< oN?Q| + xj o dx
Q

<A Jf*(x) dx

By lemma (3.10), there exists an L*(dx) function & such that {g, ¥) = (&, ¥)
for all y € Lip,. And

[(7-prdx=[br@dr<e. O
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Definition. A function a(x) is an atom if the support of a(x) is contained in
some ball B(Xo, 1), |a]o<r~"*' and [a(x)w(x)dx = 0.

Lemma 3.12. There exists a constant C such that for all atoms a(x),
[a*max<c.
Proor. Let a(x) be an atom supported in B(x,, r) = B,. Let

M, (1) = sup { [ IO w3 dy/wQ)]

be the Hardy-Littlewood maximal function formed from the measure wdx.
Consider

la,(x, )| < fa(y)so(x - »/Ow(»)dy - W(B(x, 1)) ’

1

—— a(y)|w(y)dy,
S B D) Jo OO Y
which shows that

sup |a,(x, t)| < M,a(x).
t

Now
JB(XO, - Na(x)dx < |B,|" Z(J M, a)*(x) dx) 172
= 1B]"*( | M, @ )w = Cowex) dx )
s IB,IVZ(fazdx)V2
<IBf - Jal-<C.

The last few inequalities follow from the fact that w~! € 4,(wdx), (Mucken-
houpt [23]) and the properties of atoms. It remains to estimate Na(x) when
X € °B(x,, 2r). By the mean value property of atoms,

-1
la,(x, )| = I {jw(x - z/t)wdz}
. J . a)lex — y/t) — o(x — xo/)Iw(y) dy
yeB,

|y — x|

v dy

<w@ew ) fal. |,

r
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Note that if x € “B(x,, 2r), then ¢ must be larger than c|x — x,| in order that
supp (x — +/f) Nsupp @ be nonempty. So |a,(x, t)| is bounded by

n-1l+a
B -1, r W(Br) < B _1< r >
1B/ |x = xo| W(B(x,1)) <IB |x — x|

by (4.1) (i). This implies that

j Na(x)dx < Z IBrl-l_z—l(n—l+a)dx
"B(xo,Zr)

1>2 J{x: |x —x,| =2ir}

S 2 |Br‘_1 ~ 2—l(n—1+a) .(zlr)n—l

<C 0O

Definition.

Hl, = {f= 2 \ay: the a; are atoms and | f| ;. = 25|\ is finite}
3 a g
where fe VMO*(wdx) and the convergence is in VMO*(w dx).

By Lemma 3.12, H., is contained in H'(wdx). Standard arguments show
that the dual of H}, is BMO(w dXx).

Lemma 3.13. H., is the dual of VMO(w dx).

Proor. We refer to Coifman-Weiss [5], p. 638, for a proof of
VMO(R", dx) = HL,(R"™ 1)

which can be modified to yield our lemma. [J

Theorem 3.14. Let f be a distribution in VMO*(w dx) with j" f*(x)dx < .
Then there exists a sequence of numbers {\.} and atoms {a,} such that
S = 2N\cay in the sense that

(f’ \b) = {g)\kak’ 1,/}
for all Y € Lip, and the norms | f| 14,4, and 2. INe| are equivalent.

We shall confine ourselves to a few remarks about the proof of Theorem
4.14; the technical details of the construction are standard from the informa-
tion we have at hand, and the reader is referred to Latter [21], Stromberg-
Torchinsky [24], or Macias-Segovia [22]. We observe the following.
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(1) The density Lemma (3.11) provides a class of L], .(w dx) functions on which
the construction of the atoms can take place. This forms, essentially, the
heart of the proof.

(2) We already know that elements of H'(w dx) have an atomic decomposition
H'(wdx) as a subspace of VMO*(wdx) = H},. The point of course is the
equivalence of the two norms. Moreover, by Lemma (4.13) and continuity,
the relationship { f, ¥) = (XN ay, ¥) is true for all y € VMO(w dXx).

(3) Theorem (3.14) shows that H'(wdx) is complete in the norm j Sf*(x)dx.
It is equivalent to this fact since lemma 4.12 guarantees that | f| ;14,4
is bounded by | f| HL, and so the comparability of these two norms is
equivalent to the completeness in | «| 1,4, DOrM.

(4) Finite sums of atoms are dense in H'(wdx).

(5) If one uses the approach in Stromberg-Torchinsky [24], an atomic decom-
position for H'(wdx) can be obtained with arbitrarily large vanishing
moments on the atoms. That is, whenever p(x) is a polynomial of degree
less than N, the atoms a(x) will satisfy

j a(X)px)wx)dx = 0.
Corollary 3.15. The dual of H'(wdx) is BMO(wdx), with pairing

fid) = [fuwax,

for f a finite sum of atoms.

Theorem 3.16. Let y € BMO(wdx) with compact support. Set
os(s) = 57" 1p(s/s).

Then y = by + b where by(x)w(x) € L*(dx) and b has an extension h(x, s) to
the upper half plane (in the sense that h(x,s) — b weakly in L'(w dx)) which
satisfies

(1) |Vh(x, s)|w# ¢4(x) is a Carleson measure, and
() |VAx, s)|w* o (x)-s < C.

Remark. As in P. Jones [19], one can obtain such an extension for all
BMO(w dx) functions, once it is known for compactly supported functions.

Proor. Recall that for u € H'(wdx),

- -1
G17)  u(ey) = f o(x — 2/9) f@W() dz - U <p<" 5 z )w(z') dz'}
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We claim that if \ is a linear functional on H'(wdx) and u € H'

) = ju(x)gw(x) dx+ S | utr, g, ) dx

n= —o
where y,— —o as n—=> o, y, = +© as n—=> —, |y, — ¥,4+1| < min {8, y2}
and

2 leal| <IN

lels +

oo

(We assume here, by the density lemma, that in (3.17), fe L' N L*(dx)). The
argument for this is due to C. Fefferman; it depends on the fact that u*(x),
the vertical maximal function defines an equivalent norm on H'(wdx). Our
source for this is Garnett [15].

Fix a ball B, and let y e BMO(w dx) with support in B. Then if fis an atom
supported in B,

jf(x)tﬁ(x)W(x) dx = jf(x)gw(x) dx + f‘j u(x, y,)g,(x) dx

. N x—z
- J‘fgw dx + lim f fwe) % j 0

N-oo y

’ -1
(145 e

Let by = g./we Ll .(dw) and set b = ¥ — b,. Then b belongs to BMO(w dXx).

Set
— -1
>U¢<"y £ >w(z')dz'} g,(0) dx

)

N X—z
h =
& _z}\,j ‘0( Vn
so that
j bfwdz = lim jf(z)hN(z)w(z) az.
N-o
The function h,/(z) is well defined, as

N
|hn@)| < _ZIJVIB(z,yn)l/W(B(z, Yn))-

Now test h, against an atom a:
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N
ja(z)hN(Z)W(Z) dz = va f a(x, yn)g(x) dx

. ,
< ja“(X) _levlgn(x)ldx ‘

SCla|pm<C.

So |Ay|gmo is bounded by a constant independent of N.

We now claim that BMO < L[ ? €(dw) for some e > 0. By the A, property of
w1, y2w? e L], .(dx) for any ¥ e BMO(w dx). But w € A, (dx) so there exists
a small § > 0 such that w~%e L} (dx). (See Coifman-Fefferman [3]). In par-
ticular, &, € Li;} “(wdx) and so on B, there exists constant c,, and a constant
A for which |k, —c,|'*<dw < A, all N. Thus there is a weak limit for
{hy — cy); call this h. We have

Iﬂzwdx=jﬂ)wdx

for all fe L™ with support in B, and j Sfwdx =0. Hence b = h + ¢ for some
constant C. As in Varopoulos [25], set

— -1l
)U¢<"y 2 >w(z') dz'} 2,00 dx

where 0 € C* satisfies 8(¢) =1 for 0 <t < 1/2, 6(t) =0 for t > 1. Then

N
hN(Z, 5) = -ZNO(S/}’,,)JI ‘P<

X—Zz
Yn

© N

(3.17) [Vhy(z, $)| < j j (ywB )} 2 gxdS;(x,y)
y=s J{lx—z| <y} j=-N

where dS;(x, y) = dxony= ;- If we set

N
do(x,y) = ZNg,-(X) ds;(x,y)

ji=-

then do(x, y) is a Carleson measure. In fact

‘[er J:da(x’ y) < C|QL

which we will refer to as the vertical Carleson measure estimate. Hence, using

G.H®

_1 W(B(z,s)) d
|Vh,(z,9)] < 2] Lzz:s L_zld,s(yW(B(z,s))) WBG ) o(x, )

>0

<2 j j @2's) " 'w(B(z,5) '@~ "2 *do(x, y)
>0 Jy=2Is Jlx—z|<2!s



220 Carvos E. KENIG AND JiiL PIPHER
|Vh,(z,5)| < Z Q7Y T e sw(B(z, 5))} T 'o(B(z, 2's) % [0, 2's])

< 227 "2/ w(B(z, 5))

>0

because do is Carleson. This proves (2) for k,(x,s). Now consider the
Carleson property of |Vh,|wxg,(+)/s"'. Fix a cube Q< R"~! and let
S(Q) = Q x [0, /(Q)]. We split the integral in (3.17) in two parts, estimating
each separately.

2 |w* o ()|
(3.18 j j wr oD o e ds
) z 9)eS@) xeB(zy) YW(B(Z, ) o)
w(B(z, 5))

y
<C — 22y lgmnt gz dsdo(x, y
h J&x,»)eS4Q) LeB(x,y) L=0 w(B(z, ) 7 )

r

y
<C j‘ j (s/y)" "2y~ s~ * gz dsdo(x, y)
J(x,9)€S@Q) JzEB(x,y)

n
<C j do(x,y) < C|Q|.
S(40Q)

LY

-1 W(B(Z, S)

— = s~ "* U dg(x, y)dz ds
@9eS©@ kgo .[vaskl(a) Lezkgy w(B(z,)) )

(3.19)
<j >, J j 2751Q) ~ s/2X Q)1 "2 s "+ L do(x, y) dz ds
z,5)eSQ) k>0 2k1(Q) Jxe2kQ

1(Q)
< 2 j j (2”‘)"‘”“IQII(Q)""‘”“’j s~ dsdo(x, y)
k>0 Jy=2kI(Q) Jxe2kQ s

< 3 27*gl = clal.

K50
Combining (3.18) and (3.19) gives (3.16) (1) for |VA,(x, s)| with a Carleson
measure constant independent of N.

By (3.16) (2), when s> 0, |VA\(+,s)| is uniformly bounded on compact
sets. A similar result holds for higher order derivatives. Thus there exists a
sequence of constans {a,]} such that h,(x,s) + a,, = A(x,s) uniformly on
compact sets as N— oo, and also Vh,/(x,s) = Vh(x,s). This h(x,s) satisfies
conditions (1) and (2) of the theorem.

For fixed N, the expression

— —— -1
5 o o 5.5 Jrerae

N
2 G(S/yn)so<
iy
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is bounded by some constant c,, and converges pointwise as s —>0. So by

dominated convergence, hy(x,s) = h,(x) as s >0 in L .(wdx).
For fixed s > 0,

j h(x, 8) f)w(x) dx = 1‘111_r>r°1° hy(x, 5) fOIw(x) dx
for all fe L*(B) with [fwdx = 0. Hence if fis an atom,
j h(x) f(x)w(x) dx — J h(x, 5) fOOw(x) dx
= lim | [A,y(x) — hy(x, ] FIW(X) dx

N—-o

and

oo

| () — hp(x, 5)| < _Z |&x()|u™ (1 = 6(s/y,)]
which converges to zero as s— 0. So for all atoms f,
(3.20) lim J‘ h(x, s) fIw(x)dx = j h(x) f)w(x)dx = j b(x) fO)w(x) dx.
s—0

Now let f be an arbitrary L™ function supported in B. Set g = (f — (f)g)X5-
By (3.20) with g in place of f, we get

jfbw dx — (f )Bj bwdx = lim | g(x)h(x, s)w(x) dx
B s—-0
which implies
b(x) = lim [h(x s) — J\ h(x s)w(x)_dx_} + ()
- sl-'O ’ B w(B) B>

where the limit is taken weakly in L'(wdx). Thus (b — (b) )X has an exten-
sion A(x, s) — C(s) to the upper half plane where

C(s) = lim | A(x, s)w(x) dx/w(B).
s—0 JB

Using the vertical Carleson measure estimate, it is not hard to check that C(s)
verifies (1) and (2). O

We now describe an alternative, constructive mean of obtaining the exten-
sion theorem for BMO(wdx) functions. We mimic the approach of Varo-
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poulos [25]. Let us assume that fe BMO(wdx) has support in Q, the unit
cube) with (f )Q0 = 0. Then we claim the following.

Lemma 3.21. If fe€ BMO(Qy, wdx) with | f | gm0 < 1, there exists a sequence
of dyadic cubes [Ij} and constants {«, } such that
J

3
M |76 - Sy x, @] <5 wea .

@) loy | < |L|/w().
() 2 L] < ClLy|, for all dyadic I,.

LET,

Proor. The proof is obtained in the same way as its counterpart in BMO(dXx),
the argument in that situation is due to Garnett ([15]. p.) and closely follows
the stopping time procedure used to prove the John-Nirenberg theorem. We
observe that one only needs to show that if f belongs to BMO(w dXx), then for
any two consecutive dyadic intervals 7, I’, the difference |(f), — (f),/| is less
than C|I|/w(I) where I = I'UI". Moreover, this condition characterizes the
difference between BMO(wdx) and dyadic BMO(wdx). [

The function f(x) = 2 o, X,(x) can be extended to the upper half space in
a discrte way by setting

F(x,y) = gl o Xp(x, ¥),
where I'= I x [0, L(I)].

Lemma 3.22. In the distribution sense, |VF(x, y)|w* ¢,(x)/y"~ Lis a Carleson
measure on R . (Comparare Varopoulos [15], p. 226).

Proor. We give the proof in R% , for the mesure |VF|w* ¢, (x)/y" . Note
that dx;/0x, with I = [a, b], is Lebesgue measure on {x = a,0 <y </(I)} and
{x=0b,0<y<I()} and that dx;/dy is Lebesgue measure on {xe 1, y = I(I)}.
Consider first 2 o, (3x7(x, ¥)/3y)w* ¢, (x)/y"~ ! Then for (x, y) € supp dx /9y,
W qpy(x)/y"‘1 is comparable to w(/)/|I|. Let 8, = a,w(I)/|I|. By (3.21) (2),
|8, < 1so we must show that > ,8,0x;/dy is Carleson when the intervals {1}
have the packing property (3.2) (3). But this is precisely Varopoulos’s result.

Now consider X a,0x;(x, ¥)/0x)w * ¢, (x)/y"~ . Let I, be a dyadic interval
of the form [p/2™, p + 1/2™] for n, p > 0. Let I, and 7, be its adjacent dyadic
intervals and set

wi= ) adxy/dx, i=0,1,2.
I<T,
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Then

(I o)
I j w o, (0)/y" ! duy(x, y) = j J Z a,w(B(a,y)/y" ! dS,(x,y)
xely Jy xel, =0I<1,
where dS,(x,y) =dyfor (x=a,0<y <)} and {x=a+ I(I),0< y <II)}.
By (3.2) (2) and our basic estimate for w(B)/w(2*B), the above is bounded by

1{ep)]
j j M w(B(a, y))/y" "' dS,(x, )
I, Jxel, (I)

1709)
Lel j /1" /i) 2+ * dSy(x, y)

ICIO
I109)
<2 Z j ) /y)t > dy
=2 > I) < ClLy),
I<],

which gives the desired estimate for the measure y;. The rest of the argument
of [25] goes through with the help of the following estimates:

() = (Nl S U|/wA)

and

2w <L, O
1<,

The discrete version of our extension given by Lemma 3.22 can be smoothed
to obtain a continuous one by setting F(x, y) = F* #,(x, ) for some smooth
bump function ¢. The estimate for |V, F(x, y)|, both the pointwise bound and
the Carleson measure condition, is not hard. The main difficulty lies in the
estimate for |V, F(x, y)|. This can be overcome however by writing d¢,(+)/dy
as V,n,(x, y) for some other smooth bump function 7.

4. We shall prove in this section, the main results for H*(D, do), D C R"
and Lipschitz. The fundamental tool will be the extension Theorem 3.16. Let
us begin by localizing to a part of the boundary of D which is the graph of
a Lipschitz function.

There exists some 6 > 0 and a finite convering of {x: dist (x,dD) < 8} by
balls B, = B(Qj, r;) such that

B(Q),4r)ND = B(Q;, 4r) N {(x,¥): ¥ > ®,(x)}
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where each & § is Lipschitz. Let {1//j} be a finite partition of unity for
{x: dist (x, D) < 6} subordinate to [BJ.} with \/xje Cy. Let w; be defined on
R"~! by w;(x) = k(x, ®;(x)) for (x,0,(x)) € 0D N B(Q, 4r;), where k = dw/do.

Lemma 4.1. The measure w;(x)dx on R"~! obtained by extending W; (the
projection of harmonic measure) by reflection across the face of a cube

IS (x:(x,®,(x) €ADNB(Q;, 7))

satisfies conditions (3.1) (i), (ii), and (iii).

Proor. Let us assume that w(x) is the projection of harmonic measure onto
the unit cube Q, and then extended by repeated reflection across the faces of
Qptoall of R, Thus R"~! = UQ,, each Q, has unit size and w(Q,) = w(Qy)
all /,k; and when the cubes are large, conditions (i)-(iii) are obviously
satisfied. )

Let us consider the first condition (3.1) (i): w(Q)/w(2/Q) < C2~/¢" -2+
for all cubes Q. When both Q and 2/Q are contained in some Q,, this is clear.
If the length of 2/Q is large, let j, be the largest integer such that /(2°°Q) < 1.
Then w(Q)/w(2/Q) = w(Q)/w(2/°°Q) - w(2/0(Q)/w(2’Q) and by our previous
remark it is enough to show (3.1) (i) under the assumption that /(2/Q) is small.
We shall reduce this situation to the case where both cubes are contained in
some Q.

We claim that there exists a Q' and Q7, both contained in some Q,, with
w(Q")/w(Q}) comparable to w(Q)/w(2’Q) and w(Q") <27/"~2*Dw(Q)). To
see this choose a Q, such that |QNQ,| > |Q|/2. Then

w(Q) = ; w(@NQp < 2" 'W(@NQ)y,
since w was extended by reflection. Inside QN Q, there is a cube Q' with
|Q’| = |Q@N Q| and since w € A(Q;, dx) we also have w(Q’) = w(QN Q). The
same argument gives a cube Q;, Q'C Q;C Q, with w('Q) = w(Q)) and
Q) ~ 21Q).

The argument for the reverse Holder condition of exponent two consists of
the same case by case analysis and will be omitted.

Lemma 4.2. If fe BMO,(dw) and 6 € Cg (R") with |V0| < c, then f € BMO,(dw)
with | f8] gmo < €IS lamo-

Proor. Let A = A(Q,,7) be a small surface ball contained in 3D and let
ca = 0(Qy)(f)a where Q, is the center of A. Then



HARDY SPACES AND THE DIRICHLET PROBLEM ON LipscHITZ DoMAINS 225

[, 156 = cal do < [ | AQIOQ) — Qo) doo + [, 0(Qo)LS — (N)a] do
<oA)6]<lS I zmo + [, /D] 1Q ~ Qo de
<l flamo - @) + - [ |71 dw.

Let 2/A denote the surface ball contained in 4D with o(2/A) = (2/)"~1o(4)
and let m = inf {j: 6(2/A) > 1/26(3D)}. Then

@y [ 1ndes [ 1r-nldo+ 3 [ 10 - Dl do

+ J |(f)2ma| do
A

Applying the BMO, (dw) condition to the interval 2/~ A we see that

|(ai-1a = (Naial < 0Q78)/w(278)

Therefore

2| 1o 1a = (el deo < () - 33 0Q78)/(28)
Jj= Jj=

< > 7y~ 2*. diam (D) - (2r)" ~*
j=1

<Crt 2,
Also
|(Namal S C, 1518w < Clf |pyo-
Altogether then (4.3) is bounded by | f| gyo (0(A) + 7" 7% + w(4)}, and
re [ 1/1deo < | flgyo (diam (3D) - o(&) + r"~' + r-r" =2+
<clflamor™ ™' O

Lemma 4.4. Assume fe BMO,(dw). Then there exists an f, with fok € L”
(k = dw/do) such that if f; = f — f,, there is an extension F of f; in the sense that

j U@ dw = jD G(X)Vu(x) - VF(x) dx — jD u(x)VG(x) - VF(x) dx

Sor all u € £(D) and |VF(x)|G(x)/d(x) is a Carleson measure on D. Moreover,
|VF(x)| s G~ '(x) near 8D and |VF(x)| + |F(x)| is bounded in a compact
subset of D. (Compare Lemma 2.3 of Fabes-Kenig [11]).
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Proor. Let {y;} be the partition of unity associated to D subordinate to the
covering [B } and let f\b x) = 1,& (x, @, (x)) -f(x, @, (x)) Let w; (x) dx be the
measure of Lemma 4.2. By Lemma 4. 2 f‘,, x) belongs to BMO([R" ! w; dx).
Let B be the support of f¢ ). Theorem 3.16 tells us that f‘,, g; (where
gw; eL°°) has an extension F,, to the upper half space such that (VF\, (x, s)|w *
<ps(x)/s" !is a Carleson measure and |VF¢ @, s)|(w * o (x)/s" %) lis bounded

Pick 0 eCy(B ), identically 1 in a nelghborhood of the support of ybj. Set
Fj(X) = 0j(X) . ij(x,y - Gj(x)) for XijﬂD, X = (x,y) and y > 0,(x); put
F;=0 outside BjﬂD. We will first show that

V6, (x, ¢ + ;(0) - Fy (x, )] w;(BCx, 1)/

is a Carleson measure on R%™ !(dx dt) for all cubes Q with [(Q) =1, r<r,, a
number which depends only on the domain D. When the gradient falls on
F‘,j(x, t) our estimate is known. When the gradient falls on Gj((x,t + &,(x)),
consider the integral

@.5) [\ ], 1Fy, G0 0lw, B, )/t~ dxat
= L; jQ |Fy, (x, 1) = Fy (6, R)|w;(B(x, 1))/t" ™ dx dit
+ j(; jQ |F¢j(x’ R)IWj(B(x, 1)/t" " ldxdt,
where R is the radius of B;, the support of f,pj. The first integral is bounded by
R —
L; JQ, L=, [V, (x, 5)| ds w;(B(x, 1)/t"~ " dx dt
<[ fo [ I9F e, 9l (B, /571 - ¢/ G5/ s
n-1
SR JX <0, j ‘VF‘# (x, )| w;(B(x, 5))/s"~ " dx dt
= CRIer

since the Carleson measure property is satisfied over all vertical lines for our
extension. But R is just a constant which depends only on § in the covering
of {X:dist(X,aD)<é}.

We claim that |F¢ (x, R)| is bounded by a constant which depends only on
R and hence only on the domain D. Recall from the proof of (3.16) that
ij(x, R) has the form h(x, R) — (1/w(B)) _[B h(y, Rywdy. Hence

|Fy, (e, R)| < sup |VA(z, R)| | B,

which is at most (w(B)/R" ") - |B| < w(B). Therefore, the second integral in
(4.5) hast the bound



HARDY SPACES AND THE DIRICHLET PROBLEM ON LiPscHITZ DoMAaINs 227

dxdt

of | W, (B 1) w(B, 1)
2 Jo Jo, wB(x,r) e

<Gy L L @/ry" =2+~ dxdt - w(Q)

< CDW(Q,)T_"+2 : |Wr|
< Cprw(Q)
< Cpro|Q/]

SR*Cp|Q|-

The pointwise gradient estimate holds for 0,0, t + <I>j(x))VF,,,j(x, t) and
when the differentiation falls on Bj, we have

|V0,0x, £ + @,(0)) - Fy (5, )] < |Fy (6, £) = Fy (%, R)| + |Fy (x, R)|

R
< J‘ |VF, (x,5)| ds + Cp
=t

5

ROs"2 wBxt) "2
L:w(B(x,s) T PEe ) T

tn—2 R Sn—2 t n-2+a
———- = ds + C
wB(x, 1) Ur2<s> g R}
n-2
< Ct
w(B(x, t))

This shows all the bounds for the extension. We now show that F is an exten-

sion in the required sense.
Consider

j u(Q)f(Q) dw = 2 f uy;b,f de
aD j JebD
=2 ju(x, ®,())0,(x, 2, LfY;(x) — g;(x) + g;(x)]w;(x) dx.
J

Let h;(x) = f,pj(x) — g;(x). Then f, = X, g;(x, ®;(x)) satisfies fok € L*(do). We
look at a single term

[ utx, ®,006;(x, @, Nk, )w, ) dx.
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Let F, be the extension of A;. Then the above is equal to

ii_{r; u(x, ® j(x) + s)0 ; (x, ® j(x) + s)F\,j(x, SHw;(x) dx

= lim u(x, tbj(x) + s))Fj(x, ¢I>j(x) + 5) dw.
s—0 JaD
Now for fixed s > 0, Fj(x, <I>j(x) + 5) can be approximated by C? functions

and since s is fixed, Fe £(D). Then Green’s theorem can be applied and the
formal reasoning of the argument following the statement of Theorem 2.7 is
justified. Thus we have established

Theorem 2.7. If ue £(D), Au = 0 and u(Py) = 0, then

|[,, 4@ 1@ dw| < CINUl 14 | /Lo

Lemma 4.6. Let £(3D) denote the functions which are Lipschitz on dD.
£(D) is dense in VMO, (w).

Proor. Clearly £(dD) is contained in VMO, (w). By Lemma 4.2, if y €
VMO, (w) then 6y € VMO, (w), where 6 € Cy and supported on B where

BNaD = ((x, ®(x)): ® Lipschitz on R"~!}.

Then if ¥(x) = (0¥)(x, &(x)) we need only show that Y € VMO(w dx) (see sec-
tion 3) to establish the density. Write ¥ = (¢ — ¥,) + ¥;. Clearly ¢, is in Lip,.
Thus we only need to see that ¥ — ¢, has small BMO norm when ¢ is sufficiently
small. We follow an argument in Garrett, p. 272. Let

- 1
M, = sup -——
5(%) I(J)Eb |J|
We know that M;(J) >0 as 0. Fix a cube Q< R""! and a 6 so that
M) <e. i
If I(Q) >, express O =UQ; with /(Q) <8. Let =2y, X, (x). We
— _ J J
estimate the BMO norms of (¥ — h), (¥, — h,) and A, — h. First,

LN/— ¥,lwdx.

[[15-twax<s [ 19 towar<m@ Sig) <0l
]
For A, — h we have

(h = W) = [ KCx, 3, O1R() — h)Iw() dy
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and if £ < (Q)), |h(¥) — h(x)| s |1,ZQ. - JQ,‘| where Q) is adjacent to Q;. By
J J
applying the BMO condition to Q;U Q; one sees that
I‘ZQJ, - J;Q;I < CM&(‘;)'QJI/W(Q_,)

Hence

7 <19l
; J‘leht — hlwdx < CM&W);WQIJ-_)' w(Q;) C €|Q|.

Similarly, one can show that
IQ ¥, — hlwdx < €|lQ]. O

Lemma 4.7. H',(3D, do) = VMO*(w).

Proor. The proof in Coifman-Weiss [S] can be modified to work in our
situation, once we know Lemma 4.6.

Lemma 4.8. K(x, Q) = dw*/dw belongs to VMO, (w)).

Proor. Fix xeD. If A is any atom,
4| = | [4Q@KE Q)aw@) | < [, ,NAQ@do@ < C,

which means K(x, ¢) belongs to BMO,(w). Then if A = A(Q,, 1) is so small
that dist (x, Q,) > 2r,, the pointwise estimate (2.5) for the harmonic extension
of atoms, i.e.,

|AG)| < rflx — Qo' 7" 7F
implies that K(x, ¢) belongs to VMO, (w). O
We now assume that D is starlike with respect to the origin. At this point
we define
H'3D, do) = {f= lim u(rQ), u € H'(D, da)}
r—1
where the limit is taken in VMOX*(w). The arguments to follow will show

. that this limit exists and there is uniqueness in the sense that f= 0 implies
u=0.

Lemma 4.9. Let feH.(D,do). Set u(x)= f fOQ)K(x, Q)dw (Q). Then
ue H'(D, do) and lim u(rQ) = f(Q) in VMO*(w).
r—1



230 Carros E. KENIG AND JILL PIPHER

Proor. First, u(x) is well-defined since K(+, Q) € VMO,(w), by Lemma 4.8.
Let

f=2Na
J
where the @; are atoms, and 3 [\] < c. Then
Nu(Q) < 2 [\|Na;(Q),
J

so u e H'(D, do).
Given € > 0, let N be large enough so that

N
f= ,-; N+ Ry
where | N(R) |14, < € Then
N
u(rQ) = j;r N a,(rQ) + R (rQ).

If g€ VMO, (w), then by Theorem 2.7,

N
' j‘ |:u(rQ) - j;l )\jaj("Q):lg(Q) do| < |N(Ry) “Ll(d.,) lglamo S €

Moreover, by Theorem 2.7,
N
hn} Z )‘jaj (rQ)g(Q) dw = J Zl )‘jaj(Q)g(Q) dw.
r— J J=

Thus lim u(rQ) = f(Q) in VMO*(w). O
r—1

At this point we can give the proof of
Theorem 2.6. H'(dD,do) = H 18D, do), with comparable norms.

Proor. Lemma 4.9 implies that H},(3D, do) is continuously imbedded in
HY(D, do). If u e H'(D, do), then Theorem 2.7 shows that {u(rQ)} is bounded
in VMOX*(w) and so there exists a subsequence {rjk}, .~ 1 as kK — o, such

that u(rjk) — fe VMO*(w) as k — oo. This limiting distribution is unique, for
by Theorem 2.7, if r;,— 1 and r,— 1,

| [ 14,0) ~ ur10)18(Q)| d < CINGur, ) = s D] 1118 o
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and the above tends to zero as L i 1. By uniqueness and Lemma 4.9 this
shows that every u e H(D, do) can be written as

ux) = [fQK(x, Q) dw(Q)
where f(Q) = lim u(rQ) belongs to H.,(dD,ds). O
r-1

We now consider the case of a general Lipschitz domain D, not assumed
to be starlike. In this situation we have the following result.

Theorem 4.10. If Au = 0 and Nu(Q) € L*(dD, do), there exists a sequence of
constants {)\j} and atoms [aj} such that

u(x) = gl N j a,(Q)K(x, Q) dw (Q)

Jor x € D; with |NW)| 114, = 25;|\,|- Moreover, the above sum of atoms
determines u(x) uniquely.

Let us fix our domain D and a u in H'(D, do), and set up some notation.
There exists a finite collection of starlike Lipschitz domains D; & D such that
UD; covers a neighborhood of aD in D, with N, (u) € L'(dD; do;) where N, U
is the nontangential maximal of u relative to the domain D;. Let u; = u| oD,
so that u; belongs to H'(D;, do;). The domains D; will have the additonial pro-
perty that there exists subdomains D; of D;, with the same starcenter as D; and
with U D; covering a neighborhood of D within D, such that 24; = A;, where
A; = dD;NaD and A; = 3D,;NaD. Fix the pole of the Green’s function for D
at PeD and let dw denote dw?,. Define VMO, (w) as the closure of £(3D)
under the norm

J’ |¢|dw+ sup inf {j |¢—¢A|dw/a(A)}-
A

ASAD y,contant
Its dual VMO*(dw) can be identified with H.,(dD, do). Let dw; be harmonic

measure for D; evaluated at the starcenter.

Lemma 4.11. There exists distributions f; in VMO¥(D;, dw;) with the pro-
perty that if Y e VMO, (3D, dw) and is supported in a compact subset of A;,
then (if we call the origin the starcenter of D)),

@.12) S ¥ 00, a0y = lim LD. urQW(Q) do.

Moreover, if the above limit is zero for all such ¢ e VMO (3D, dw), and all
i, then u=0.
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Proor. If K C C A;, then dw;/dw and dw/dw; are bounded on K. Hence if
¥ is supported on X, its VMO (aD,, dw;) and VMO, (3D, dw) norms are com-
parable, with constants dependmg only on K. Since u; € H(D;, do;), Theorem
2.6 for starlike domains gives distributions f;e VMO,(dD;, dw;) satisfying
(4.12). To establish the uniqueness of the {f;}, we use an argument of
Dahlberg-Kenig [10]. If the expressidons in (4.12) are zero, we will see that
N, (u,) belongs to L?(34;, do) and that the nontangential limit of u; is zero on
A;. By the L? uniqueness in the Dirichlet problem (Dahlberg [9]) this would
imply that u is identically zero.

With this in mind, let y € Lip (3D;) be supported in a compact subset of
dD;\ A;. Let 0 be the starcenter of D; and assume that ;(0) = u(0), where
V(%) = j ap. ¥(Q) dw;(Q) is the harmonic extension of ¥ to D;. Set v; = u; — ¥;.
Then v; beiongs to H'(dD; da;), v;(0) = 0 and its boundary dlstnbutlon g is
supported in dD; \ A;. Then v, has an atomic decomposition, v; = Z )\ a where
we may assume that each a has support in aD; \ K; where A; C K C C A;. By
the pointwise estimate (2. 5) on atoms, N, (v,) € LZ(A,) Let Ah; be the nontangen-
tial limit of v; on A;, an L? function ona neighborhood of A;. Then for all
6 e Lip (A,), by dominated convergence we have

J: h;0dw; = lim J_ v;(r@O(Q) dw; = lim J‘ v;(rQ)0(Q) dw; = 0.
4; r—1J4; r—1JoD;

Hence 4, is zero almost everywhere A;, but therefore u; has zero nontangential
limit on A;. O

Lemma 4.13. L%@D, do) C H.,(3D, do).

PROOF. Let y € BMO, (dw). Then [, fi dw = [, ,,f¥k do, but Yk € L¥(do) since

172

1/2
sup {j |y — ¢A|2k2da/a(A)3 and sup U‘ = v, dw/a(A)}
A A A A

define equivalent BMO,(w) norms.

Lemma 4.14. Let fe H.,(3D, do) with f= 3. j )\Jaj Suppose there exists a

g€ L*dD, do), with g = f on A < 8D in the sense that

Jan\bdw - Japg‘pdw

Sfor all Y e VMO, (w) with supp ¢ S A. Then for any A' CC A, if

=\ j a,(Q)k(x, Q) do,
J

N(u) belongs to L*(A', do).
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Proor. We can assume that there exists a starlike @ with d2NdD = A by
taking A small, and that u|, e H 1(Q, do). Set v(x) = j'A 2(0Q)k(x, Q)dw. The
proof of Lemma 4.11 on the domain Q shows that N(u — v) € L%(A’, do). O

Lemma 4.15. Let a be an atom on 0D; with respect to dw; supported in
K C C A,;. Then there exists a constant C = C(K) such that

Il 21 0,40y < C-
Proor. Clearly,
lal| H1,(3D,do) < C(K) sup UaD ay dw: Yy € VMO, (w),
Il gpmo < 1, and supp ¢ g]{}_

Fix such a ¥ in VMO, (w). By the construction in Lemma 4.4, y has an exten-
sion F such that |VF|G(x)/d(x) is a Carleson measure and F = 0 outside D;.
We can also assume that F = 0 at the poles of both G and G; (the Green’s
function for D,). Let u;(x) = [ a(Q) dw} be the harmonic extension of a to D;.
Let 6 be a C7 function with 6 = 1 on supp F and supp § < D; N D. Set v; = Gu;.
Then, by the argument used in the proof of Lemma 4.4 the following formal
calculation can be justified.

|[,pavdo| = | [, A0FGE dx|
= | [, @voFGax+ | via@)Gadx +2 [, GVv;- VFax|
’ [ Gvv;-VFax— [ vvF- Vde'
< ([, GilVF||vui dx + [, [VFI(Gi/dlu )

which is bounded by |Na|,.,p 4, as before. [

ProoF oF THEOREM 4.10. Let { f;} be the distributions obtained in Lemma
4.11 for u € H'(D, do). Fix i and let 4; € C§ satisfy 7; = 1 on a neighborhood
of A; and suppn; C C A;. Set g; = fin;. Let ¥; € Lip (dD,) be compactly sup-
ported in A; such that

&0 = | :(Q)dw.
By Lemma 4.15, g; has an atomic decomposition on (D, dw),

"gi "Hiz(aD,dC’) <C and g =y;+ %‘,)\;a;

where the aJ". are atoms on D compactly supported in a neighborhood of A;.



234 Carvos E. KENIG AND JILL PIPHER

Now consider

000 = u() — [ &(QK(x, Q) do.

By Lemma 4.14, N(v) € L*(K;), A, CK; C A;. On Dy, I # i, w; ;= v, = v{l
belongs to H'(3D,, do). Let f; ; denote the boundary value distribution of v,f
on dD;. As before, multiply f; ; by a cut off function 5, and set g; ; = 1,f; ;.
Again’ "giJHHl(aD,dw) < C and

& =¥+ ;)\fcafc

with @}, and atom on (3D, dw), compactly supported in a neighborhood of
A,. Set

U0 = () - [ 8, (QK(x, Q) do.

We have N(v; ) € L*(A)), but we claim that N(v;,) is in L? on a neighborhood
of A;UA,. By the pointwise estimate (2.5) on atoms, the harmonic extension
of g; ,is in L? away from A, and v, is in L*(4,). It remains to consider the
behavior of N(v; ;) on the intersection of a neighborhood of A; with a
neighborhood of A,. At such a point, however, the boundary values of v; and
g jarein L? and so in this case, the claim follows by Lemma 4.14. Proceeding
in this manner, we find v,(x), ..., v5(x) such that u(x) — 23, v;(x) has non-
tangential maximal function in L2(8D), v;(x) = [;, &:(Q)K(*)Q) dw and with
each g;€ H.,(dD, do). By Lemma 4.13 this proves the theorem. [J

S. The results for the H”(D, do) spaces, 1 < p < 2. In this section we discuss
the results for the H?(D, do) spaces, 1 < p < 2. As before, we introduce a
related space on R”~!(dx) and obtain our results in this setting first. In what
follows we shall use the notation of section 3. Our weight w(x) satisfies condi-
tions 3.1 (i)-(iii). Note the difference in the normalization in our definition of
atoms below.

Definitions.
(1) An atom a(x) on R"~! has support in a cube Q and satisfies |a|., <1 and
L, a(yw(x) dx = 0.

(2) LE%wdx) = {ge Ll .(wdx): M (g) e L%(dx)} where g > 1 and

M} g(x) = Sglilz {ﬁ L lg — golw() dx} .
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(3) £Z Uwdx) = closure of the Lip, functions in L 4w dx).

(We observe that if Y € Lip,, M ¥ y(x) < C and if x is far from the support

of ¥, M¥y(x) < C/|x|" ! so that Lip, is contained in L% %(w dx)).

4) HP(R*™ ', wdx) = { fe (£ZP', wdx))*: Nf € LP(dx)} where ( )* denotes
" the dual space and 1/p + 1/p’ = 1.

(5) H? (wdx) = { f: f = 2 N\ay where the a,, are atoms supported in balls B, ,
12 MXp, |l zpasy < ° and the convergence takes place in (LZ7 (wdx))*}.

Lemma 5.1. A «distribution» f belongs to H”(w dx) if and only if either f*
or f* belongs to LP(dx) and all maximal functions have comparable norms.

Proor. To argue as before one needs only check that if Y € @ then the pairing
{f, ¥) is well-defined. To check this one must first see that M ¥ (y) e L?'(dx)
(for p’ > 2) and that ijp — yin L% P (w dx) where 0j is smooth bump function
supported on {|x| <2/}. O

Lemma 5.2. The functions in L*(dx) N\ HP(w dx) are dense in H?(w dx).
The proof of Lemma 5.2 proceeds exactly as the proof of Lemma 3.11 once

we have the following facts. (See Lemmas 3.3-3.6 for the notation appearing
below).

Proposition 5.2.1. If y € £5 'Y wdx) then so is Y, Sj(¢) and
j=1

= "‘l’”L,ﬁ»ﬂ(wdx)'

> 5,)
Jj=1

L 9wdx)

Proor. Our proof of Lemma 3.3 shows that in fact
wz( Zsw)<cmorzy
J=
where m is the Hardy-Littlewood maximal function. [J

Proposition 5.2.2. If ye L7 Ywdx) and Y, (x) = jz,b(y)K(x, ¥, Hw(y)dy,
then y,— Y in L% %wdx) as t — 0.

Proor. If y e L% Y(wdx), then we claim that

” ¢t ” L;:'q'(wdx) = " ‘r,’" LE 9wdx) "
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The proof of Lemma 3.5 shows that M7 (¥,)(x,) < CM?{(x,) so this is
immediate. Then if ¢ € Lip,, we need y, € £2,%(wdx) and | M. (¥, ~ ¥)| 1oy
— 0 as £ — 0. But again, in the proof of Lemma 3.5 we found that

l[‘pt— ¢||Lip(g) s tl—ﬁ, for 1>8>0.

Hence, if t < 1, and Xo is the center of Q,

M3 — ¥)xo) < U Tor J | = VX)) = @ — Pxp)|wax

BXO

1
<sup — | 17 Plx — x, |Pwdx
» 101 JQ b = xgl

03x,

stl7e if (Q<t<].

If (Q)>1t
1 1
j | — YX)|wdx < - f j V() — ¥(0)|K(x, y, yw(p) dy w(x) dx
lol 19| Je
< t < tl—a

The estimate M ¥ (Y, — ¥)(x) < t'~* can be used for x,esupp (¥; — ¥). If
(Y, — ¥) has support say, in B(0, 1) and |x| > 2,

SUP Tor j | — I Wx) dx < ———

Q3x,

1
.1
B(0, |xo|) Jro,» ¥ lisn,
. I K(x,y, yw(y) dy w(x) dx
< ct
h x0|" 1
and then | M (Y — V) zoepo, 19,00 S - O

Theorem 5.3. If fe HP(wdx), then there exists a sequence of positive con-
stants {\,} and a sequence of atoms a, supported in balls B, such that the
sum 35, My converges to f in (%57 (wdx))* and in HP(w dx) norm, with

[k

S IS | growan -
LP(dx)

< o,

Moreover, if {a,} is a sequence of atoms such that “Z)\ka
k LP(dx)

then

Z )\kak EHP(W dX)
k
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and

II Z )\kak‘
x

< c" SN
k

k

HP(wdx) LP(dx)

Proor. Both the statement of the teorem and the ideas in its proof follow
Stromberg-Torchinsky [24]. Again, the decomposition of an fe HP(wdx) is
fairly standard, using the ideas of Later [21], and we refer to Stromberg-
Torchinsky [24] for the proof in this case. We turn to the proof of the second
half of the theorem.

Let

N
S = 2] Meay
=1

be a finite linear combination of atoms. Consider

Nay(x) = sup (@), (x, 1)

-1
J a(Velx —y/yw(y)dy - U o(x =y /OHw(y’) dy’}

= sup
t

when x € B, = supp a,

sup |@),(x, | < C
when xe€2/B,\2/" 1By, j> 1, and r, is the radius of B,
xX—y x=y\| vO)dy
J “"”’["( t ) "< r ﬂ w(B(, 1)

< c |y = Wl
=X
wB(, 1) Js,

‘(ak)'p(x! t)‘ S

w(y) dy

re  w(By)

ST wBx, 1)

But in order that (ay),(x, ) be nonzero when x € 2/B,\ 2/~ 'B,, we must have
t > c2’ry, hence the above is bounded by

re  w(By) Iy nolre —itn—
L k)< . =2 /1)
“%r, w2'By S\ 27, ¢

Let a0 = ka(x) and a; ;(x) = X, ,-Bk(x). Then we have shown that

Nay(x) < cag, o) + 25 271 g, (%)
Jj=
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Therefore
N N © . N
"N< > )\kak> < Nl 0 + 2727071 B Near,
k=1 LP(dx) k=1 LP(dx) Jji=1 k=1 LP@dx)
N
< ‘ Z )\kXB
k=1 LP(dx)
© N
—Jj( =1+ a)qj((n—1)/,
+ Z 2 -Jkn )i - 1)/p) Z >\kXB
Jj=1 k=1 LP@dx)
’ N
S C 2 )‘kak ’
k=1 LP(dx)

where the next-to-last inequality follows by a change of variables in the integr%

Corollary. The dual of H”(wdx) is L*'? (wdx), with 1/p + 1/p’ =1 and
pairing { f,g) = j f(x)g()w(x) dx, for f a finite linear combination of atoms.

ProOOF. Suppose f= 2 \.a; is a sum of atoms with

“Z)‘kak "Lp(dx) =~ | arovan -

If ge L* P (wdx), we have

jf )gx)ywdx = j‘ ; M@ g(X)w dx

< ;MI g — g, |wadx

By

< 2 Me|Byl inf M g(x)
k x€B,

< " Z >‘kXBk |ILP "M‘fg"LP’(dx) °

If A is a linear functional on H?(wdx), one can show that A is given by a
ge L} ?(wdx), with pairing {f,g) = [fewdx, as in Coifman-Weiss [5]. It
can also be shown that HZ%, is the dual of £%'7'(wdx).

Lemma 5.5. If A is continuous linear functional on HP(wdx), there exists
{yn} With y,—0as n— + and y,— o and n— — and functions g.(x),
{£,(0)}"=% _ such that for all fe L* N L'(dx),

n= —o

A(Sf) = Jf(x)gw(x) dx+ 2 | ulx,y)g,(x)dx

n= -
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—_ — ! -1
ux,y,) = jf(Z)so(xy Z>W(z)dz- U«p<xy & >W(z’) dz’}

|8 ()] + =Z_J 3 |g.(x)| € L (dx).

where

and

Proor. Again, we refer to Garnett [15] for C. Fefferman’s argument in the
case p = 1, which may be easily modified to give the above characterization
when p > 1.

Our strategy for proving the atomic decomposition for H?(D, do) and the
duality result is the same as that for the H'(D, do) situation. To carry this out
we need a Varopoulos-type extension theorem for L;;"’(w dx) functions. We
shall formulate our result within the framework of the theory of tent spaces.
In what follows the functions and measures are defined on R% and I'(x)
denotes a cone with vertex at x.

Definitions.
(1) T% = {f: A=(f)(x) € L*(dX)} where Awf(x) = ilg)) FiCHSIIE
2 T = (f:A,f(x) e LP(dx)}, p < o, g < o, where

AgfG) =[] 1fC,p)| dx’ dy/ym= 1}V,

) 8= {u: A{(n) € L?} for p < o, where dy is a measure on R% and

Ai(w) = r(X)}""“a’u(x’,y).

4) 77 = {p: C1(n) € L™} where

1
Ci(W)(x) = sup {— f du(x',y)} .
osx (10| Joxio,1on

Theorem 5.6. (Coifman-Meyer-Stein [4] and Alvarez-Milman [1]).

. 1
D (T2 =18s —+
® (T 1 »

.11
i) (T9* =T, —+—=1.
@) (7% 2 > o
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Theorem 5.7. Suppose g L}, '*(wdx). Then

8(x) = go(x) + g, (x),

where g, € LP(w dx) and g,(x) has an extension g(x, s) to the upper half space
n

. in the sense that g(x,s)— g(x) weakly in L'(wdx) with

@ [Ve(x, )|w= p,(x) € 7§
and
(ii) |Ve(x, s)|s - wxog(x) e T%.

ProoF. We argue as in Theorem 3.16, omitting those details which are merely
repetitious.

By Lemma 5.5 since g determines a continuous linear functional on H? (wdx)
we have

N
fg(X)f(x)W(x) dx = jf (g~ (x) dx + ]ym _ZN f u(x, y)g;(x) dx
for all
M
f= Z Ny
k=1
a finite linear combination of atoms, and where
lg=(a] + 2 |gn ()| € LP(dx).
Set go(x) = g»(x)/w(x) and get

N xX—2z x_zl ) -1
hN(z)=j=§_;,N ¢< ”, >{j¢< 5, >wdz} g;(x) dx.

For each N, h, belongs to Lz"’(w dx) with norm bounded by a constant
which is independent of N. For §# € C* with 8(f) =1 when 0 <?< 1/2 and

0(t) = 0 when ¢ > 1, define
ot -1
>U ¢<y ‘ >wdz'} g,() dx.
Yj

If we assume that g has compact support then, as in our argument for (3.16),
there are constants c,, such taht {4, — c,] has a weak limit in Z”(w dx), call
it h(x), and g,(x) = h,(x) + c for some constant c. Then we need only prove
the estimates (i) and (ii), uniformly in N, for |Vh,(z, s)|.

N
hN(zs s5) = _ZJJVG(S/yJ) J‘ ‘P<

xX—z
Y
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Let us first check condition (i). We write

i@ )= | Key,2)do(x,y)

—_ — ! -1
K(x,y,z)=¢<xyz>Urp<xyz)W(z')dz'} ,

N
da(x,y)=_ZNg,-(x)da,-(x,y) and do,(x,y)=dx on y=y,.

j=-

where

By the properties of {gj} , @ computation shows that do € 74, with

" do ” 1-11’ < ”g" L‘f‘: P(wdx) *

We must show then that |Vh,(z,s)|w#¢.(z) belongs to 74 whenever do
belongs to 74, with comparable norms. We have already (Theorem 3.16)
argued for this in the case p = . By interpolation (see Alvarez-Milman [1])
it suffices to check this in the case p = 1. Assume then that do € Ti , 1.e., that
-n+1 _ [®
y do(x,y) = fof do(x,y) < 0.

»[I'E"‘l T Rn—1

Then, since
*© -1
Van@ < 7 f L, WBE I dot, ),

we have

S
)

(o fens £ o i <y WBE SN/ B )5 ™"+ 'y~ dz dvdo(x, )
r, 0 j,R,,_l f=O(S/J’)"_2+ayn_ZS_"+ Ydsda(x, y)

y=

CI:=0JRn—1da(xsy) < ©

i} 0 .[Rn—l W S‘,S(x)lvhjv(zs S)| dzds

NN

N

where the second inequality used the basic estimate 3.1 (i) on the measure
wdx.
We turn now to condition (ii). We want to show that

|Vhy(z,5)| - s(ws p,(0) € TZ

under the condition that do € 77. Recall that

172
T°2°={f: sup [Lj 1f(X’,y)12dx’dy/y} GL“’}
19l Joxo,10n

QO3x,cube
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We have shown (3.16) that the above condition on |V4,,(z, 5)| holds in the case
p = . By interpolation (Coifman-Meyer-Stein [4]) it suffices to show that
this statement holds for p=1. If doer], |Vhy(z,s)|w*ez)e) and
therefore

o V(@ 9w 0,(2) - sdz ds/s"

is in L'(dx). To show that
ds 172
U IVhN(z,S)lZIW*%(X)-SIzdz—n}
T'x) s
belongs to L(dx), we estimate
sup |Vhy(z, s)|s - w* ¢,(2),
T'(x)

which is less than

sups~ "+ 'w(B(, s))‘f f {ywB(x, )}~ de(x, y)
T(x) y=s5 J{lx—z| <y}

ssups"‘”j J ¥y~ Ns/y) "2t do(x, y)
' y =5 J{lx-z| <y}

ssupj J y~ " lda(x,y)
T(x) JO J{x-z|<y}

which belongs to L'(dx) since doe7}. O

Having obtained the main result for H”(w dx), we now give the description
of H?(D, do) and duality with

L#'7'(8D, dw)

= {g € L' (dw): sup {l/a(A)j‘ lg — &,l dw} + J‘ |g| dw € L7 (3D, da)} .
AsQ A aD

We will use the same localization procedure and notation as in the beginning
of section 4.

Lemma 5.8. Let 0eCy(R") with |V0| <c. Then if geL? 7 (dD,dw),
gdeL? P (3D, dw) also.

Proor. The proof of Lemma 4.2 shows that M7 (¥2)(x,) < cg*(x) +¢c. O
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An H?(0D, do) atom is function A, harmonic in D, with |A]~ < 1 and with
boundary values A(Q) supported in a surface ball A € dD and satisfying
[aA(Q)dw (Q) = 0. We have the following analog of Lemma 4.6.

Lemma 5.2.4. £(3D), the space of Lipschitz functions on dD, is dense in
L#'P'(dD, dw).

Proor. Our argument for Lemma 4.6 (the density of £(dD) in VMO, (w))
will work in this context if we know that a compactly supported y belonging
to L7 P (R*~', wdyx) satisfies a «small oscillation» condition. That is, we
want to see that

1
sup ——
1o <s |0

Q>3x,

J‘Q [V — Yolwdx = M;(x,)

satisfies: | M;(xo)| 74y = O @s 6= 0. But this is just a consequence of the
dominated convergence theorem together with the fact that w(Q)/|Q| = w(x,)
as /— 0, which is finite almost everywhere.

One can then show

Lemma 5.2.5. HZ = (L¥'7'(dD, dw))*— (although this information is not
necessary for the duality argument).

Lemma 5.9. If2.7_, M A, is an infinite linear combination of atoms, the N\,
are positive and A, = supp A, then

"Z)\kAk|H"(D,do) = UaDN<Z )\kAk)p da]l/p
< “ZkaAkl

LP(do) *

Proor. Since K(x, Q) e VMO, (w), the harmonic extension of this infinite
linear combination of atoms makes sense by duality. Now let Bj = B(xj, rj) be
the finite covering of {dist (x,dD) < 6} for é = 6(D) with B(xj, 4r;) NaoD =
{(x,»):y = ®;(x)}. We can assume that for each k, 0(A,) < 6 so that all atoms
have support contained in one of these coordinate charts. Let m, be the largest
m such that 2™A, (= Ag(xx, 2™r)) is contained in a ball of radius no more
than 6. By Dahlberg’s pointwise estimate (2.5) on atoms, there is a 3> 0
so that

my
NAKQ) S %, (@) + 35271771+ Py, (Q) +27 M D 140x,,(0).
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Hence

1/p 1/p
{LDNP(; >\kAk> da) < {LD (; kaAk(Q)>p}
my p 1/p
+ {j <Z)\k Sa-ie-1emy (Q)> dU(Q)} 4 SIN2 ™t Da=1+8).
aD \ k I=1 k 3

Let ¢ ;= 1if I < my and ¢, ; = 0 otherwise. The second term in the sum is
bounded by

© 1/p
2 2_1("_”3){] (Z ek,l)‘kXZIAk(Q)>pda}
=1 oD \'%

with by a change of variable, valid since each 2’Ak is contained in a coordinate
chart, is less than

CD I; 2~ In—-1+ B)2I(n -1)/p || Z )‘kXAk ”Lp(dcr) .
The third term in the sum is bounded by
SN LD Xy (Q) do
< C@) N2~ et DT Pyme= i LD X5, (@) do

< C(®)a(dD)'* a

;MXA,‘

LP(do)
Lemma 5.10. If u € £(D) with Au = 0 and u(p,) = 0 then

| [, 4@ /(@ de (@] < CING a1 £ 1500, 0
Sfor all fe L¥?'(3D, dw).

Proor. By Green’s theorem, (see the argument following Theorem 2.7 in
section 2),

|[,p 4@ (@ do (@] < [, GEIVul [V0] d + [ VG - Vou

where d(x) = dist (x, D) and v is some smooth extension of f(Q) to D such
that this formal argument is justified. Suppose that |v| + |Vo| < CinKC C D
and that
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O IVo(0)| G(9)/d(x) e %
(5.11)
. IVo)|G(x) e TZ

where 774, T‘;" have the obvious definitions on a Lipschitz domain D. Let
B(p,) be a ball containing the pole of G(x). Then

j G(x)|Vu| |Vy| |Vv| dx

DB(py)
<jj G|Vl V0| =2 do(Q)
= Jap Jro VUl [V dx ! o

X 1/2
sf Su(Q)U IVvlzGZ(x)d(xr"dx} do(Q)
aD IX(9)]

< | Su ||LP(do) hzile! T2'(D)
< C|Nu| LP(do) 1£1 L#.2(3D,do)"
Using |[VG(x)| < G(x)/d(x) away from p,,
G/d |u| |Vv| dx < jwjr@ G/d |u| |Vv| d(x)~"* ! dx do(Q)
< jaDNu(Q) fr@ G/d |Vo|d(x) ™"+ dx
<IN | ooy | G/d V0] e

= "Nu"LP(dg) "f"L#.p"

.[D\B(po)

Since G is integrable on B(p,) and |v| + |Vv| < C here, the integral over
G(p,) is handled as before. []

Thus it remains to find such an extension. Because we have the result on

" (Theorem 5.7) and we can localize to a coordinate chart of dD (Lemma
5.8), the argument is just a variant of that given in Lemma 4.4 and we omit
the details.

Assume now that D is starshaped with respect to the origin.

Definition.
(i) H?(dD, do) = { f: f(Q) = lim u(rQ), u € H?(D, do), with convergence in
(LZ*'(OD, dw))*}. -t

(ii) H%,(8D, do) = { f:f= 2\ Ay where the A, are H? atoms and
H Z >\kxAk " Lp(da) S oo } ’

and the convergence takes place in (L¥'?'(dD, dw))*.
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Theorem 5.11. H? (8D, do) = H?(D, do) and (H”(D, do))* = L¥'?' (3D, dw).
Proor. We refer the reader to the proof of Theorem 2.6 given in section 4. [

Finally, as before, we have the following theorem for domains, D, not
assumed to be starlike.

Theorem 5.12. If Au = 0 and Nu € L”(dD, do), p < 2 there exists a sequence
of constants [)\j} and atoms {A j} such that

ux) = I\, jA,.(Q)K(x, Q) dw(Q)
J

for xe S, with | Nul| 1Pde) = ||Z)\ijj|| 1P(0) - Moreover, given {\;} and {A}}
sequences of constants and atoms satisfying |2 A;X Al 1P S ®, there exists
J

a harmonic u(x) = >, >\J.A (%) with Nu € L?(do). These boundary values deter-
mine u(x) uniquely in the sense that the limiting distributions on the starlike
subdomains of D are zero if u =0 on dD.
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