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In 1962 Peixoto [14] gave a complete characterization of the structurally
stable C! vector fields on any compact, two-dimensional manifold without
boundary, and showed that they form a dense, open set in the space of all C!
vector fields with the uniform C? topology (see also [6], [7]). There later
followed examples showing that, on any non-compact two-manifold, there
exists an open set of vector fields, none of which is structurally stable ([10];
see also [16], [20]). Nevertheless, Kotus, Krych, and Nitecki [10] showed
how to control behavior «at infinity» so as to guarantee stability of a vector
field on any two-manifold under strong C” peturbation, and gave a complete
chracterization of the structurally stable vector fields on R? (see also [3]). In
this paper we consider the set P, of polynomial vector fields of degree < n on
R?, and give sufficient conditions for structural stability of X e, with
respect to perturbation in B, (Theorem 3.2). Up to an added condition that
asymptotically stable (or unstable) limit cycles be hyperbolic, these same con-
ditions are also necessary (Theorem 3.3). We use the coefficient topology on
B,, and require that the equivalence homeomorphism lie in a pre-assigned
compact-open neighborhood of idy, . Briefly, in addition to the usual condi-
tions that X be Morse-Smale, we have regularity conditions on the associated
Poincaré vector field 7(X) along the equator S' of the Poincaré sphere S2,
and conditions on certain distinguished orbits, so-called separatrices of
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saddles-at-infinity, in their relation to the saddle points of X and to the critical
points of w(X) at infinity. The polynomial nature of the problem simplifies
the dynamics to the point that we are able to prove existence of a dense, open
set of structurally stable vector fields (Theorem 4.1). On the other hand, the
analysis is complicated by the fact that the set of allowable perturbations is
small, and every one of them is global and large at infinity. In particular, we
have been unable to resolve the question, raised explicitly in [19] and implicitly
in [1, §6.3], of whether a limit cycle of odd multiplicity must be hyperbolic
in order to be locally structurally stable. (This question seems to have been
overlooked in [21] and [23].)

We note that the results of this paper do not depend on the validity of
Dulac’s Theorem asserting that a polynomial vector field has at most finitely
many limit cycles, a correct proof of which has not yet appeared in print. If
a valid proof were given, then the statements and proofs of a number of
results here would simplify greatly, and the similarities to the case of stability
of smooth vector fields on compact manifolds increase.

In comparing this work with previous work on stability of polynomial
vector fields ([19], [21], [23], for example), it should be noted that, while
we exploit the Poincaré compactification of R? (see §1), we do not require that
the Poincaré vector fields w(X) and x(Y) be equivalent on S? in order for X
and Y to be equivalent. This approach seems more natural, more closely
mimics the compact case, and allows closer comparison with results of the
general theory of stability of smooth vector fields on R%. Of course, more
complicated behavior is now consistent with structural stability.

Moreover, in our setting it is natural to allow smooth as well as polynomial
perturbations of X € %B,,. Building on work of Kotus, Krych, and Nitecki [10],
we fully characterize elements of B, that are stable under small perturbation
(with respect to the Whitney C” topology) by C” vector fields, r > 1 (Theorem
3.1). Again the equivalence homeomorphism must be close to the identity.
Strong control at infinity leads to a particularly simple result: X is structurally
stable if and only if it is «Morse-Smale», in the sense that saddles-at-infinity
are included in the «no saddle connections» condition (and only hyperbolicity,
not finitude, of critical elements is explicitly required). Structural stability is
generic in this setting as well (Theorem 4.1).

Peixoto [13] also showed that on compact two-manifolds, any requirement
that the equivalence homeomorphism be near the identity is redundant. This
is not always the case on open two-manifolds (see pages 20-22 of [10]), but
we are able to show that it holds for polynomials under general (C”) perturba-
tion (Theorem 5.1). For polynomial perturbation of polynomial vector fields,
the effect of restriction of the equivalence homeomorphism depends on the
degree of the vector fields involved; this question is discussed briefly in section 5,
and will be treated in detail in a forthcoming paper with F. Dumortier [4].
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This paper is organized as follows. Section 1 is devoted to background
material, and Section 2 to the statements and proofs of a few results needed
later. In Section 3 the structural stability theorems are stated and proved, and
are used in Section 4 to show that stability is generic. Section 5 treats redun-
dancy of restrictions on the equivalence homeomorphism.

The research on the results presented here was conducted for the most part
at the Limburgs Universitair Centrum, Diepenbeek, Belgium, and was partially
supported by the LUC and a Fulbright Senior Research Fellowship. Their
support is gratefully acknowledged.

1. Background

Definitions and constructions in this section are generally confined to R?. For
general background and meaning of terms not defined here, consult Hartman
[8] or Palis-deMelo [12]. For extensive discussion of various aspects of struc-
tural stability on open manifolds, see §2 of the memoir of Kotus, Krych, and
Nitecki [10].

8, will denote the set of vector fields on R? of the form

0 d
X(x,y) = P(x, y)a + Q(x, y)g,

where P and Q are polynomial functions in x and y of degree < n. Any such
X is uniquely specified by the (n + 1)(n + 2) coefficients of P and Q, hence
may be identified with a unique point of R®*P®*2 The topology induced
on P, from the usual topology on R” * D@*2 by this identification is the coef-
ficient topology on ‘B,,. Further notation:

¥": the C" vector fields on R?, Whitney C” topology (see [9])
9': the C” vector fields on S2, uniform C” topology

H: the homeomorphisms of R?, compact-open topology

J: the homeomorphisms of S2, uniform C° topology

For X € B, as written above, we let X+ denote the vector field
a ad
- s + P ) ’
Qx,¥) 75—+ P(x,) 3

also in B,,.

Let ® be B, or ¥ (r > 1), and X € D. Then X generates a local flow on R?,
which will be denoted 7, (¢, p). X and another element X’ of D are fopologically
equivalent if there exists h € H carrying orbits of the flow induced by X
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onto orbits of the flow induced by X', preserving sense but not necessarily
parametrization; 4 is termed an equivalence homeomorphism between X and
X'. X is structurally stable (with respect to perturbation in D) if for any
neighborhood M of id, in H, there exists a neighborhood % of X in D,
such that every X’ in R is topologically equivalent to X by an equivalence
homeomorphism #4 lying in M.

A critical point of X is Ayperbolic if no eigenvalue of the linear part dX(p) of
X at p has real part zero. A closed orbit v is Ayperbolic if jv div (X) is non-zero.
Choosing a sufficiently short line segment X through a point of v, and a coor-
dinate s on £ with s = 0 corresponding to v, the Poincaré first return map f(s)
is defined near zero, and both it and the difference map d(s) = f(s) — s, whose
roots correspond to closed orbits of X near v, are analytic. Thus closed orbits
accumulate on 7 only if a neighborhood of v is composed of an annular band
of closed orbits. The multiplicity of v is the multiplicity of the zero of d at
s = 0; v is hyperbolic if and only if it has multiplicity 1.

A positive [negative] semi-orbit o* (p) [0~ (p)] of X is bounded if it is con-
tained in a compact set, escapes to infinity if for every compact set K there
exists p’ e ot (p)[p’ € 0~ (p)] such that o™ (p’) [0~ (p")] is disjoint from K, and
oscillates if it is neither bounded nor escapes to infinity.

A saddle-at-infinity (SAI) is a pair (0" (p), 0™ (q)) of semi-orbits, each
escaping to infinity , such that there exist sequences p, — pin R* and ¢, > o in R
such that 5(¢,, p,) — g in R%. We identify this SAI with any formed using some
p' €0*(p) in the place of p or some g’ € 0~ (g) in the place of g, and further
require that if for some sequence #; = o, n(#;, p;) = r, then re o* (p) Uo™ (g).
Then o*(p)lo~(q)] is termed the stable [unstable] separatrix of the SAI.
The reader is cautioned that a SAI is a different object from a saddle (point)
(of (X)) on the line at infinity (see below).

A saddle connection is an orbit o(p) such that o* (p) is a stable separatrix
of a saddle, or of a SAI, while 0™ (p) is a separatrix of a saddle, or of a
SAI. Note that, as this definition makes allowance for existence of SAIs,
it is more general than the definition on a compact manifold. A separatrix cycle
(elsewhere sometimes referred to as a graph) is a sequence p,, 0, P, 03, - - - ,
D> Ok Dy 1 Of orbits, 'each p; a critical point, each o; a separatrix at p; or at
Djyy and tending from pjtop;, and p, , ; = p;. The definition is identical
for vector fields on S2.

We let W*(X) [W~(X)] denote the union of all orbits containing a stable
[unstable] separatrix (of a saddle or SAI) of X. Q(X) will denote the set of
non-wandering points of X and Per (X) the set of critical points and points
on closed orbits. For p € R?, a, (p) and w, (p) denote the o- and w-limit sets
of p under X respectively.

For X eB,, an analytic vector field n(X), the Poincaré vector field cor-
responding to X, is induced on S? as follows. Let
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H*(S* = {(x,y,2)e S’ C R?| + 2> 0},

identify R* with T(O’O,I)SZ, and let f*: T o, 1)S2 — H*(S?) be central pro-
jection. Then 7(X) is the unique analytic extension of z”~!(f*)+X to all
of $%, which is then termed the Poincaré sphere. We call R? the finite part of
the plane (f.p.p.), and S' C S, to which = (X) is tangent, (the line at) infinity.
Letting U, and U, be the hemispheres corresponding to x > 0 and y > 0 respec-
tively, and choosing ¢;: U;— R?, i = 1,2, to be the inverses of the central
projection from the vertical planes tangent to S at (1, 0, 0) and (0, 1, 0) respec-
tively, we have the following particularly simple coordinate representations
of n(X):

(nU) D, t)t”[Q(%,;> - sP<%,§>, —tPG,%)} (1.1)
(n Uy DG, t)t”[P<;,%> - sQG, %) —tQ<%,%>] (1.2)

where D(s, t) is a positive function which is independent of X, where {(s, t)|
t = 0} corresponds to the equator S C §2, i.e., to infinity, with positive s-
direction agreeing with the positive y-direction (in U;) or the positive x-direction
(in U,) and where {(s, )|t > 0} corresponds to the f.p.p. Choosing V; to
be the open hemisphere opposite to U;, i = 1,2, and analogous coordinate
mappings, we obtain the same expressions for #(X) as (1.1) and (1.2), valid
in ¥, and V, respectively, except for a multiplicative factor of (—1)" . (The
positive directions of the s and ¢ axes disagree with the positive directions of
the axes in R? in these cases.) Complete details may be found in Gonzalez [5].
We note in particular that, except for a positive scale factor, 7(X) appears
in these coordinates as a polynomial vector field of degree n + 1, and that
S! c S? is always invariant under 7 (X).

Suppose that for some reZ* U {0}, II= {7n(X)| X eB,} is given the
subspace topology induced as a subset of 9). Then the coordinate expres-
sions for w(X) given above quickly lead to the fact that if % is a neighbor-
hood of 7(X) in I, then, =~ }(R) is a neighborhood of X in PB,, (coefficient
topology).

We note finally that because R? is not compact, the flow 1y (Z, p) gene-
rated by X €8, need not be complete. But the vector field X formed from
X by rescaling by (1 + | X |)~'/?, say, is uniformly bounded, hence gene-
rates a complete flow with orbits identical as point-sets to those of X. Since
equivalence homeomorphisms ignore parametrizations of orbits, we may
safely ignore possible incompleteness of the flows involved, and treat all
flows under discussion as if complete (as was already done in the definitions
of this section).
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2. Preliminary Propositions and Genericity Theorem

This section is devoted to the statement and proof of a few propositions that
will be needed later. Several of them combine to show that a dense, open set
of B,, consists of vector fields whose structure is particularly simple, both on
R? and when extended to S? (Theorem 2.9). This latter result is practically
the same as a theorem of G. Tavares dos Santos [21]. See also the book by
J. Sotomayor [18].

Proposition 2.1. Suppose X € P, is such that, for some reZ* U {0}, for
every neighborhood M of idy, in J there is a neighborhood % of w(X) in Y’
such that if Y € R is tangent to S* C S?, then Y is topologically equivalent to
X by some h € M satisfying h(S*) C S*. Then for any compact set K C R* and
any 6 > 0, there is a neighborhood U of X in B,, such that if X, € U, then X,
is topologically equivalent to X by some h that is C°-8-close to idy, on K.

Proor. Given K and 8, choose a compact neighborhood L C H™* (S?) of an
e-neighborhood of f* (K), some e > 0. By uniform continuity of (f*)~*|L, for
some £> 0, x,y €L and distg,(x, y) < & imply dist,((S ") '), (S ")~ '(»)
< 6. Choosing p = min (¢, £), let M correspond to C-p-closeness to idg,, and
let R be the neighborhood of 7(X) in §" hypothesized to exist. We claim that
U= x"!R) is as required. It is a neighborhood of X, and for X; ell, by
hypothesis these exists # € M which satisfies #(S') C S* and is an equivalence
between w(X') and w(X;), which by choice of ¢, &, and pu is easily seen to be
uniformly é-close to idp, on K. [

Proposition 2.2. For X € B,,, any one of the following conditions implies the
Jailure of the inclusion CI(W™* (X))NCI(W~ (X)) C Per (X):

() w(X) has a separatrix cycle containing a point not in S' C S
(ii) X has an oscillating orbit;
(iii) (X) ¢ Per (X);
(iv) there is a point p € R*> for which a,(p) or wy(p) is not empty, nor
precisely one ctitical point, nor precisely one closed orbit.

Proor. Call the inclusion 7. If (i) holds, 7 obviously fails. If (ii) holds, then
for w(X) on S? there is an arc in the f.p.p. that is composed of orbits of X
and which joins critical points 4 and B of 7(X) on S* C §? (4 = B possible),
such that every point in the arc is in a, (p) [or in w, (p)] (Where o(p) oscillates).
Since aW(X)(p) [wW(X)(p)] is connected, a saddle connection of X (among
separatrices of SAIs) is formed, so I fails. If (iv) holds, then either o, (p) is
compact, hence X has a separatrix cycle, so 7 fails, or a,(p) is not compact,
so o~ (p) oscillates, so I fails by (ii).
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Finally, we show that (iii) implies failure of 7 by showing the contrapositive.
Hence assume 7 holds, and suppose p € R?\ Per (X). Passing to 7(X) on S?,
by the Poincaré-Bendixson Theorem the non-empty, connected set W X)(p)
must be either a single equilibrium or a single closed orbit, else (i) holds, which
would imply failure of 1. But if @ x)(P) is such, then either it is a sink for
(X)) in §?, which implies p ¢ Q(X), or it is a saddle for w(X) containing p
in a stable separatrix, which by I implies that o, x,(p) is a source for m(X)
in S2, which again implies p ¢ Q(X). O

Proposition 2.3. If X € B, has only finitely many critical points, all critical
' points and closed orbits are hyperbolic, and there are no saddle connections
(even when SAls are taken into account), then QU(X) = Per (X).

Proor. If X is as hypothesized and p ¢ Per (X), then w_ (D) [, x,(P)] is
a nonempty, compact, connected subset of S2. By the Poincaré-Bendixson
Theorem and the hypotheses, if it contains a separatrix, that separatrix is
wholly contained in S* C §2. In any event, it is composed of a single sink
[source] (which could be a separatrix cycle) of 7(X), whose basin of attaction
[region of repulsion] contains p. Thus p ¢ UX) U

Proposition 2.4. The set &, of all vector fields X in P, such that w(X) has
only finitely many critical points, all hyperbolic, is open and dense in PB,,.

Proor. G. Tavares [21] has shown that the set of X in 8, such that X has
finitely many critical points, all hyperbolic, is open and dense. Examining the
form of 7(X) in the charts on S? mentioned in section one, formulas (1.1) and
(1.2), we see that the same arguments carry over to give a relatively open,
relatively dense set with only finitely many singularities of w(X) on S! C §2,
all hyperbolic. [

This proposition is also an immediate consequence of a more general result,
Proposition 4.1 of Chapter Two of [18].

Remark 2.5. The set of all vector fields in 93, which have only finitely many
critical points, all hyperbolic, is dense, but not open. For example, let

H,(x,y) = 2ax® — a’*x*y — x* = 2axy + a*>y* + y,

a e R, and let X, € B, be the corresponding gradient vector field. Then X, is
non-singular, but X, has a non-hyperbolic critical point at

11
() = <7 az>-
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Proposition 2.6. The set &, of all vector fields X in &, C B, such that =(X)
has no saddle connections, except in S* C §?, is open and dense in B,,.

Proor. If X,(x,») = X(x,») + pX *(x,), then for non-zero p near zero,
X, is a rotation and scaling of X, hence breaks all saddle connections between
saddle points of X. Tavares [21, Lemma 3.4] used Sotomayor’s criterion to
show that passage to X, breaks connections between saddles of 7(X) as well.
Since X, is near X in B,, the set in question is dense. It is open because the
finite portion of a saddle separatrix varies continuously with w(X) (see for
example [1], Lemma 3 of §9.2). [

Proposition 2.7. The set &; of all vector fields X in ®, C &, C B, such that
w(X) has finitely many closed orbits, all hyperbolic, is open and dense in *B,,.

Proor. Suppose X € ®, has infinitely many closed orbits. They cannot
accumulate on a critical point or a separatrix cycle, since X is in ¢,, hence
accumulate on a closed orbit v of 7(X). Analyticity of 7(X), hence of a Poin-
caré first return map on a section through <, implies that a neighborhood of
7 is made up enterely of closed orbits of #(X), hence that there is an annular
band of closed orbits of X in R?. Analyticity of X similarly implies that each
boundary of the band is either a single critical point, a single closed orbit, or
a separatrix cycle. (See [17] for a detailed discussion and proof.) While the
outer boundary could be S! C §2, the inner boundary must be a center or a
separatrix cycle, both of which are impossible for X in &,. Thus every X in
©, has at most finitely many closed paths.

Suppose now that X e ®,, and that X has some non-hyperbolic closed
paths. Passing from X to X/, as in the proof of Proposition 2.6, for a non-zero
a close enough to zero, any particular closed orbit of X of even multiplicity
either disappears entirely or decomposes into two hyperbolic closed orbits,
while any particular closed orbit of odd multiplicity persists and becomes
hyperbolic (see for example [1], Theorems 72 and 73 of §32.4). If ! C §2 was
a closed orbit of n(X) originally, it is easy to make a small adjustment in X
to make it hyperbolic (see Gonzalez [S] for example). Thus we have density
of &;. Openness is clear. [J

Remark 2.8. The set of vector fields in @, C &, C B, having only hyperbolic
closed orbits is not itself open. For example, let

d
X,(x, ) = [a*x® — x*y — 2x%y3 — y° — 2a%*x3 = 2x%y — 29> + x — )] >
+ [x° + 3a*x*y + 2x3y? + 3a*x%3 + xp* + a%y®

a
+2x3 — 4a*x%y + 2xy* — 2a%9® + x + y] e
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In polar coordinates this becomes
2 2, 9
X, (r,0) = (ar — 1)*(ar + 1) r;
]
+ [(** + 1)* + @*r* cos O sin B(a*r*(1 + cos6) — 2)] 25"

so that for |a| < 2/V5, the coefficient of 3/06 is positive. Thus X, has a hyper-
bolic unstable focus at (0, 0) as its sole critical point, and a semi-stable cycle
lying in the circle x? + y% = 1/a? as its sole closed orbit, if @ # 0. The field
X, is Morse-Smale, and X, — X, in the coefficient topology on PBs as @ = 0.

Theorem 2.9. There is a dense, open subset & C B,,, each of whose elements
X has the following properties:

(i) w(X) (hence X) has only finitely many critical points and closed orbits,
all of them hyperbolic;
(ii) w(X) (hence X) has no saddle connections, except in S*' C §%; and
(iii)) Q(X) = Per (X).

Proor. Let & be the set @; of Proposition 2.7. Then © is a dense, open
subset of %8,,, all of whose elements satisfy conditions (i) and (ii). But then they
satisfy (iii) as well, by Proposition 2.3. [

3. Structural Stability Theorems

The first theorem of this section is an application of the characterization
theorem of Kotus, Krych, and Nitecki [10] to the situation of smooth pertur-
bation of polynomial vector fields. Recall Section 1 for definitions of terms.

Theorem 3.1. X €B,, is structurally stable with respect to perturbation in X',
r = 1 (Whitney C’ topology) if and only if

(1) X has only hyperbolic singularities and closed orbits (and there are only
finitely many of the former);

(2) X has no saddle connections (where separatrices of SAls are taken into
account); and

3) UX) = Per (X).

Proor. While the theorem can easily proved directly, for brevity we will
simply show that the three conditions stated are equivalent to the conditions
characterizing structural stability with respect to perturbation in ¥ given in
Theorems A and B of [10]:
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(i) there are no non-trivial minimal sets or oscillatory orbits;
(ii) every critical point and closed orbit is hyperbolic; and
(iii) (W~ (X)NCI(W* (X)) C Per (X).

Hence suppose X satisfies (1), (2), and (3). Since no flow on R? has a non-
trivial minimal set, the first half of (i) holds automatically. Proposition 2.2(ii),
finitude of the set of separatrices, and (2) combine to exclude oscillatory semi-
orbits, so (i) holds. Condition (ii) follows from (1), and (iii) from (2) and
finitude of the number of separatrices.

Conversely, suppose conditions (i), (ii), and (iii) hold. First, since by (ii) all
critical points of X are hyperbolic, they are isolated, hence by Bézout’s Theorem
[22] there are at most n> of them. This and (ii) imply that (1) holds. Certainly
(iii) implies (2). Truth of (3) follows from Proposition 2.2(iii). [

Turning to polynomial perturbations of polynomial vector fields, we have
the following sufficient conditions for structural stability. These same condi-
tions will prove necessary for stability, with the possible exception noted in
Theorem 3.3.

Theorem 3.2. X e€B, is structurally stable with respect to perturbation in 3,
" (coefficient topology) if

(1) X has finitely many critical points and closed orbits, all of them hyper-
bolic;
(2) X has no saddle connections (where separatrices of SAls are taken into
account);
(3) if 8! c 8% is a closed orbit of (X)), it is hyperbolic, or
(3" if p is a critical point of w(X) on S' C S?, then it is hyperbolic, or
dn(X)(p) has a non-zero eigenvalue with corresponding eigenvector
not in T,S' C T,S% and
(4a) no separatrix o* (p) [0~ (p)] of a SAI tends under (X)) to a saddle-
node on S' C 82 in forward [reverse] time, and
(4b) no separatrix o™ (p) [0~ (p)] common to two distinct SAls tends under
w(X) to a non-hyperbolic saddle on S* C S? in forward [reverse] time.

PrOOF. Suppose X satisfies the hypotheses of the theorem and #(X) has
S! c S$? a closed orbit. Then 7(X) is Morse-Smale, hence structurally stable
in 9, r > 1. Moreover, the equivalence homeomorphism can be required to
preserve S! C 82 and to be close to idg, . Hence by Proposition 2.1, X is struc-
turally stable.

If X satisfies the hypotheses and S! C S? is composed entirely of critical
points, then condition (3’) implies that on a neighborhood of S*, 7(X)(x, y, 2) =
zY(x, y,z), where Y(x,y, 0) is non-zero and not tangent to S'. Thus for all
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R e R* sufficiently large, X points everywhere outward from (or inward to)
B (0,0) all along dB,(0, 0). Moreover X has no SAls. If a neighborhood N
of idy, in the compact-open topology is specified, then there is a compact set
K and a number e > 0 such that if 4 is e-close to idy, on K, then A€ N. By
hypothesis (2) and Proposition 2.2(iii), 2(X) C Per (X), hence we may choose
ReR™ so large that X)UK C Int (Bg(0,0)), and non-tangency of X to
9B (0, 0) is true. Since X|CI(B (0, 0)) is Morse-Smale, there is a neighborhood
M of X in ¥'(Cl(Bg(0,0))) (uniform C” topology) so that Y eI implies Y
equivalent to X by A uniformly C%e-close to idy, on CI(B,(0,0)), and Y is
nowhere tangent to dB,(0, 0). By compactness of B(0, 0), clearly there is a
neighborhood O of X in B, such that Y € © implies Y € M. Given Y € IR, the
corresponding /4 extends to a homeomorphism of R? (possibly far from idp,
off B,(0,0)) as usual: for pe IRZ\CI(BR(O, 0)), there exist unique 7(p) € R,
P € 3Bg(0, 0), such that 1, (7(p), p) = p; define A(p) = 7, (—7(p), A(H)). Since
X has no SAIs, there are no separatrices other than those of the saddles of
X, and these all lie in B,(0, 0), hence % preserves all distinguished orbits, and
£ is the required neighborhood of X in B, .

Since in the coordinate charts discussed in Section 1 w(X) is a scaled
polynomial vector field, the only case remaining is X satisfying conditions (1)
through (4) and #(X) having a finite non-zero number of critical points on
S! c §2. Let a neighborhood N of idy, be specified, and let compact set K
and e > 0 be such that if 4 is any homeomorphism that is C%-e-close to id on
K, then heN.

Let C, denote Per (X) together with all points lying in separatrices that
limit on elements of Per (X) in both directions. Choose R € R* so large that
the e-neighborhood of the compact set C, UK lies in Int (Bg(0, 0)). About
each saddle point g of X choose a closed neighborhood N,, bounded by a
quadrilateral whose sides are line segments transverse to X, which is contained in
an e/4-neighborhood of g, and which contains no critical point besides g, and no
entire closed orbit. About each critical point g [closed orbit ¥] which is a source
or a sink choose a closed neighborhood N,[N,], bounded by a circle [pair of
simple closed curves] transverse to X, similarly.

Each separatrix of a SAI, and each separatrix of a saddle point that escapes to
infinity, tends under (X) to a unique critical point of =(X) on S' C §. By
assumption (3'), that critical point is a node, topological saddle, or saddle-node,
in a neighborhood of which 7(X), expressed in local coordinates (1.1) or (1.2),
is nowhere horizontal besides along the s-axis, corresponding to S*. Thus for R
sufficiently large, the separatrix in question crosses dB,(0, 0) precisely once,
without tangency, or, in the case of a separatrix of a SAI that escapes to
infinity in both directions, exactly twice. Fix such a number R. On such a
separatrix, choose a point p, outside C/(B (0, 0)) and a point p, in the interior
of the isolating neighborhood of the critical element on which it limits, or, in
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the case of a separatrix of a SAI tending to infinity in both directions, outside
CI(Bg(0, 0)) and near the second critical point on § ! ¢ 52 to which the separatrix
tends. Choose points p;, p, similarly for each separatrix joining critical elements
of X in R%. For each of the finitely many compact orbit segments [p,, p,] so
obtained, there exists a number 6 > 0 such that if at every point p on the orbit
segment a perpendicular segment X, of length 26 (centered at p) is erected, then
L,NE, = & for p # q. Choose the minimum of all such numbers (one for each
separatrix) and e/4, and for each orbit segment [ p;, p,] form the set N[ p,, p,]
composed of all the transverse segments X, for pe€|[p;,p,]. Shrinking
6 if necessary we can insure that the neighborhoods of orbit segments are
pairwise disjoint. Let & denote the closed set which is the union of all the
neighborhoods NJ[p;, p,] of orbit segments, the isolating neighborhoods of
critical elements of X, and the complement of Int (Bg(0, 0)).

Now consider a perturbation of X to a sufficiently close element Y of B, .
By well-known theorems, hypotheses (1) and (2), and the fact that choosing
Y close enough to X in B, makes Y arbitrarily C"-close to X on pre-assigned
compact sets, the critical elements and separatrices of saddles limiting on them
of Y properly persist and lie in &. We now show that if ¢ is a separatrix of
a saddle point of X escaping to infinity, then the corresponding separatrix ¢’
of Y also escapes to infinity, never leaving &; that if ¢ is a separatrix of a SAI
of X, there is a unique corresponding separatrix of a SAI of Y, lying in & (and
that Y has no additional separatrices of SAIs); and that if the semi-orbit
opposite to that in ¢ forming the SAI escapes to infinity, then so does the
corresponding opposite semi-orbit of ¢’.

First let o be an unstable separatrix of a saddle ¢ of X which escapes to
infinity, with orbit segment (p,, p,), p, € N, and p; ¢ B,(0,0), and tending
to critical point r, of 7(X)in S C §2. If r, is a node, then for Y close enough
to X, w(Y) is so close to w(X) that o’ tends to a critical point ry of w(Y)
arbitrarily close to ry, o’ C &, and for all p € [ p;, p,], o' crosses T, precisely
once. If r, is a saddle, then by hypothesis (2), moving along S' in either
direction from r,, we encounter finitely many (possibly none) saddle-nodes,
FisTa ..., 1y, all contracting onto S*, followed by a stable node r;+ 1. Under
sufficiently small perturbation, ¢’ clearly remains in § and tends to a cri-
tical point arbitrarily near one of 7o, ry,..., 7., and crosses X, precisely
once, for each p € [p,,p,]. If r, is a saddle-node, then by hypothesis (4a),
proceeding in the direction induced on S' by the flow of w(X) near r,, we
must again have a sequence of saddle-nodes, each contracting onto S’, followed
by a stable node, and reach the same conclusion. Note that in all these cases
there is a subinterval (a, b) C Zl’l containing p,; in its interior, every point
of which escapes to infinity under both X and Y. The same arguments handle
the case of a stable separatrix of X that escapes to infinity in backward
time.
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Now let 0 = 0" (p) be a stable separatrix of a SAI of X with orbit segment
[p:, p,] and tending to r, € S* C S2. By hypothesis (4a), r, is a saddle of 7(X),
and of the two critical points adjacent to r, on S', at least one is a saddle point
of w(X). If both adjacent critical points, call them r, and r,, are saddles, then
by hypothesis (4b) r, is hyperbolic, so for Y close enough to X, n(Y) has a
unique hyperbolic saddle point r{ near r, with stable separatrix ¢’ near o and
meeting each transverse segment in N[ p,, p,] precisely once. There are also
unique closest critical points rj, r5 to ry, near r; and r,, and each with a
unique unstable separatrix, so each SAI of which ¢’ is now a stable separatrix
persists. If precisely one of the critical points of 7(X) adjacent to r, on S*, call
it r;, is a saddle point, then proceeding in the opposite direction along S Laway
from ry, by hypothesis (4a) we encounter finitely many saddle-nodes (possibly
none), all contracting onto S!, followed by a stable node. Thus there is a
subinterval (a,b) C X by containing p in its interior, such that every point of
(a, p,] escapes to infinity, but no point of (p,, b) does. Under small enough
perturbation, Y has a unique pair of critical points ry near ry, and rj near r;
having no critical points between them along the arc of S under considera-
tion; ry has a unique stable separatrix o', and r; has a unique unstable
separatrix, so the SAI persists, and its stable separatrix ¢’ is appropriately near
o for Y close enough to X. If ¢’ meets EP; at pi, then every point on (a, pi]
escapes to infinity, but no point of (p1, b) does. The same arguments handle
the case of an unstable separatrix of a SAI.

The persistence of escape to infinity of the opposite semi-orbit from a semi-
orbit forming a separatrix of a SAI has exactly the same proof as persistence
of escape to infinity of separatrices of saddes.

By hypotheses (3’) and (4a), SAls of X are in one-to-one correspondence
with saddle connections of w(X) that are subarcs of S* C S, hence there are
finitely many of them, and clearly none are created under sufficiently small
perturbation of X. Since therefore X has finitely many critical elements, sad-
dle separatrices, and SAI separatrices, by the discussion of the previous
paragraphs, there is a neighborhood It of X in B, such that if Y eI, then
separatrices and critical elements of Y lie in &, and by a long but straightfor-
ward procedure, we can construct a homeomorphism fzy: & — § which (a) is
idg, on 05, (b) is C'-e/2-close to id on B.(0,0), and (c) carries critical
elements and separatrices of Y back onto the corresponding objects of X. We
can now finish the proof in several ways. On the one hand, we can apply the
classical techniques of M. C. Peixoto and M. M. Peixoto [15] to create a
homeomorphism of each canonical region of 7(X)|H* (S?) to the corresponding
canonical region of 7(Y)|H™ (5%). There are several new types of canonical
regions, but their techniques carry over, inducing an equivalence homeomor-
phism of X and Y in R?, which as in [15] can be made e-close to id, on the
compact set K, simply by choosing Y close enough to X. On the other hand,
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imitating the procedure in Kotus, Krych, and Nitecki [10], we can increase &
in a natural way so as to include one orbit from each canonical region of X,
hence of Y, in R?, and can extend A, to a homeomorphism A,: R* = R* by
the identity off §, and define a C%-flow on R? by u(t, p) = hy(n,(t, h~'(D))).
Obviously h;l carries p-orbits back onto 5y-orbits, and is CP%e/2-close to
idy, on B, (0, 0). But p has exactly the same critical elements and separatrices
as 7,, and exactly the same orbits as 7, off §. Hence for Y close enough to
X, as outlined in [10] we can use techniques of Neumann [11] to construct a
homeomorphism # of R? that carries ny-Orbits to u-orbits, and is CP-e-close
to id on K, and carries 7,-orbits onto ny-orbits, as required. []

We now turn to the necessity of the conditions of Theorem 3.2 for struc-
tural stability. We have the following partial result.

Theorem 3.3. If X eB, is structurally stable with respect to perturbation
in B,, and has no non-hyperbolic limit cycles of odd multiplicity, then X
satisfies conditions (1) through (4) of Theorem 3.2.

Proor. Let X € B, be structurally stable with respect to perturbation in .
Since X has any topological property satisfied by a dense subset of B, it
follows from Theorem 2.9 that X has only finitely many critical points, each
one a node, focus, or topological saddle, finitely many closed orbits, none
semi-stable, and no saddle connections (including when SAIs are taken into
account), and that Q(X) = Per (X). Condition (2) of Theorem 3.2 thus
follows immediately. The additional hypothesis on limit cycles of odd
multiplicity implies that all cycles are hyperbolic.

To establish hyperbolicity of critical points, choose disjoint compact
neighborhoods N, N,,...,N, and M;,M,,...,M,; of the closed orbits
Y1> Y25 -+ -» Yx and critical points py,p,,...,D;, isolating them from one
another. Suppose X has at least one non-hyperbolic critical point, say p,. If
detdX(p;) > 0 and TrdX(p,) = 0, then p, is a focus, since it is not a center.
But then for any neighborhood ¢ of X there is a rotation and scaling
X, =X+uX + of X that is in %, but has a closed orbit wholly contained in
M; (¢f. [1, Remark 3 of §10.3]). Then X, has at least k + 1 closed orbits,
hence is not equivalent to X, a contradiction. Thus all non-hyperbolic critical
points of X are nodes and saddles, and the M; can be chosen so that the dM;
are circles and quadrilaterals to which X is transverse, except at the corners
of the latter. It follows that there is a neighborhood R" C R each of whose
elements has a least one critical point in each of the M;. For we simply choose
R’ C R so that YeR' is also transverse to dM; in the case of each non-
hyperbolic node, and apply the Poincaré-Bendixson Theorem. Then choose
R’ C R so that Y e R"” is nowhere opposed to X on dM; in the case of any
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non-hyperbolic saddle, so that the index of Y with respect to d; is the same
as that of X, namely (by Bendixson’s formula) —1, hence dM; surrounds a
critical point of Y.

But now if detdX(p,) =0, we use the well-known fact that for any
neighborhood R of X, there is a Y € R having at least two critical points in
M, so Y has at least / + 1 critical points, a contradition. Thus X satisfies con-
dition (1) of Theorem 3.2.

Condition (2) was mentioned already. To establish (3) for X suppose first
that S' C §? is a closed orbit of 7(X), but non-hyperbolic, say (by condition
(1)) asymptotically stable in H* (S?). Then # is odd, and letting

n+1
——1€eZ,
5 €

the vector field

Y05,) = [PG63) = o+ Dxte” + "1 2

)
+ [0, ») — an + Dy + yH)™ 3

is in B,,. It is readily verified that if o > 0 is sufficiently small, ' C S*is a
hyperbolic, asymptotically unstable limit cycle for #(X), so that by Poincaré’s
Theorem there is a closed orbit of Y outside any pre-assigned compact subset
of R?. Since the closed orbits of X are all hyperbolic, they all persist under
perturbation to Y, so Y is not equivalent to X, having one more closed orbit
than X does, a contradition. If condition (3') fails for X at pe S' C 82, it is
not difficult to find an arbitrarily small change in the coefficients of X to pro-
duce a vector field Y for which w(Y) has a critical point in the f.p.p. arbitrarily
close to p, so that Y has at least one more critical point than X, contradicting
stability of X. Since condition (3’) holds for X, it follows from Theorem 65,
§21 of [2] that every critical point of 7(X) on S* C S? is topologically a node,
saddle, or saddle-node. '

Finally, we must establish (4a) and (4b). First suppose that X is structurally
stable but that (4a) fails, say (0" (ry), 0 (sp)) a SAI such that under w(X),
ro—>r eS! and s, — s; €S (reverse time), and r, is a saddle-node of 7(X).
Let r, be the first critical point of (X)) encountered in moving away from r,
along S! in the direction opposite to that of s,, and let p = dist, (r2, 51)-
Rotating the coordinate system in R* so that r, is at the end of the x-axis, it
is not difficult to check, using chart (1.1), that there is an arbitrarily small
change in the coefficients of X that removes the critical point of (X)) at ry,
so that either the SAI is destroyed completely, or has separatrices tending to
points of S' C S that are at least p/2 > 0 apart. Thus choosing K = CI(B,(0, 0))
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of sufficiently large radius R, and e = 1, the new vector field Y obtained from
X by the perturbation is either not equivalent to X at all, or else not by a
homeomorphism that is C%e-close to idy, on K, contradicting stability of X.

It (4b) fails, we can always split the offending critical point in S* C S? into
three or more by a small perturbation, similarly violating structural stability
of X. O

Let us say that a closed orbit v of X € D is structurally unstable in D if for
any neighborhoods N of ¥ in R? and % of X in D, there exists X, € ® which
has other than exactly one closed orbit entirely contained in N. It is well
known that if © = ¥', then v is structurally unstable if and only if it is non-
hyperbolic. Thus when © = P,,, hyperbolicity implies stability. The converse,
however, has so far eluded proof:

Question 3.4. (Cf. [1 §6.31, [19]). Is a non-hyperbolic limit cycle vy of X €,
necessarily structurally unstable in 3,?

If v has even multiplicity, a simple geometric argument shows that there is
an arbitrarily small rotation of X producing a vector field Y having no closed
orbit in NV, so the answer to the question is «yes» in this case. An affirmative
answer in general would mean that the conditions listed in Theorem 3.2 fully
characterize structural stability in B,,.

4. Genericity of stability

Results of the previous sections yield the following genericity result.
Theorem 4.1. There is a dense, open subset & of B,,, every element of which
is structurally stable with respect to perturbation in either ¥, r > 1 (Whitney
C’" topology), or in B, (coefficient topology).

Proor. Let © be the set described in Theorem 2.9, which is dense and open
in *B,. Structural stability in X" and B, follow from Theorems 3.1 and 3.2
respectively. [

5. Equivalence Homeomorphisms

This section examines the role of restrictions on the equivalence homeomor-

phism in the definition of structural stability. In the case of arbitrary smooth
perturbation, we are able to duplicate Peixoto’s theorem from the compact case.
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Theorem 5.1. In the definition of structural stability of X € B,, with respect
to perturbation in ¥',r > 1, the requirement that the equivalence homeomor-
phism lie in a pre-assigned neighborhood of idy, is superfluous. That is,
Theorem 3.1 is also valid in the case that no restriction is put on h.

Proor. It is obvious that if X € B, is structurally stable when #4 is restricted
to being close to idp,, then X is structurally stable when 4 is unrestricted. To
prove the converse, we suppose that X € B,, is structurally stable in the setting
of arbitrary equivalence homeomorphisms, and demonstrate that X satisfies
conditions (1) through (3) of Theorem 3.1, hence by the sufficiency statement
of that theorem is structurally stable in the original sense.

To begin with, we claim that X has no semi-stable limit cycles. For if it did,
then given any neighborhood % of X in ¥", we could find a positive C* func-
tion e(x, y): R = R so small that Y(x, y) = X(x, y) + e(x, »)X * (x, y) would lie
in ®. Yet such Y has only hyperbolic limit cycles ([1], Theorem 71, §32), con-
tradicting stability of X. But then all the limit cycles of X are in fact hyper-
bolic, since the fact that we have smooth perturbations at our disposal means
that if X were to have a non-hyperbolic limit cycle v, then by an arbitrarily
small C” perturbation of X supported in a neighborhood of vy, a semi-stable
limit cycle can be made to bifurcate off from v (see for example [10], Corol-
lary 8.7(ii)).

If X had more than n? critical points, then there would be an algebraic
curve of critical points of X [22]. In such a case there exists a Y € B,, which
is arbitrarily close to X in 8, and which has finitely many critical points. Then
letting f(x, y) be a C* bump function which is identically 1 on B(0, 0) and
vanishes off B,.(0,0), for R large enough and Y close enough to X,
S, »)Y(x, ) is close to X in X', but is not equivalent to X, a contradiction.
It is well known that an arbitrarily C'-small perturbation of X supported on
a neighborhood of each of its critical points will yield a vector field with only
hyperbolic critical points, hence each of the finitely many critical points of X
is a node, focus, or topological saddle. At none of them can det dX vanish,
else by a C" perturbation the critical point in question can be split into several,
contradicting stability of X. Thus any non-hyperbolic critical point p of X is
a weak focus. Regardless of its multiplicity there is a C" perturbation of X
which causes an odd number of limit cycles to bifurcate from p, so that either
the stability of p changes, or the new vector field near X has a semi-stable limit
cycle near p, in either case contradicting the stability of X. In sum, X has
finitely many critical points, all hyperbolic. Thus (1) of Theorem 3.1 holds.

The requirement of condition’(2) now makes sense, and it is clear that it
must actually hold for X, since saddle connections are easily destroyed by
local smooth perturbation.

Finally, (3) follows from Proposition 2.3. [
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In the case of polynomial perturbation of X € B,,, stability of X depends on
whether or not # is restricted to be close to idp,, at least for n large, the reason
being that separatrices of SAIs can make a sudden jump as X is changed. On
the other hand, if closeness to id is overly restricted, say uniformly C°close
rather than close in the compact-open topology, then as in the case of general
smooth X ([10], Proposition 2.10), any X with an orbit escaping to infinity
in both time-directions will be structurally unstable. A detailed analysis of the
effects of restriction of 4 in the setting of polynomial perturbations will be given
in [4].

References

[1] Andronov, A. A., Leontovich, E. A., Gordon, 1. I. and Maier, A. G. Theory of
Bifurcations of Dynamic Systems on a Plane, Israel Program for Scientific
Translations, John Wiley & Sons, 1973.

[2] — Qualitative Theory of Second-Order Dynamic Systems, Israel Program for
Scientific Translations, John Wiley & Sons, 1973.

[3]1 Camacho, C., Krych, M., Maiie, R., Nitecki, Z. An extension of Peixoto’s
structural stability theorem to open surfaces with finite genus, in «Geometric
Dynamics». Lecture Notes in Math. 1007, Springer-Verlag, 1983.

[4] Dumortier, F. and Shafer, D.S. Restrictions on the equivalence homeomor-
phism in stability of polynomial vector fields.

[5] Gonzilez Velasco, E.A. Generic properties of polynomial vector fields at
infinity, Trans. Amer. Math. Soc. 143(1969), 201-222.

[6] Gutiérrez, C. Structural stability for flows on the torus with crosscap, 7rans.
Amer. Math. Soc. 241(1978), 311-320.

[71 — Smooth non-orientable non-trivial recurrence on two-manifolds, J. Diff.
Equations. 29(1978), 388-395.

[8]1 Hartman, P. Ordinary Differential Equations, Birkhauser-Boston, 1982.

[9] Hirsch, M. W. Differential Topology, Springer-Verlag, 1976.

[10] Kotus, J., Krych, M., Nitecki, Z. Global structural stability of flows on open
surfaces, Memoirs Amer. Math. Soc. 261, 1982.

[11] Neumann, D. Classification of continuous flows on 2-manifolds, Proc. Amer.
Math. Soc. 48(1975), 73-81.

[12] Palis, J. and deMelo W. Geometric Theory of dynamical system, Springer-
Verlag, 1982.

[13] Peixoto, M. M. On structural stability. Annals of Math. 69(1959), 199-222.

[14] — Structural stability on two-dimensional manifolds, Topology 1(1962), 101-120.

[15] Peixoto, M. C. and Peixoto, M. M. Structural stability in the plane with enlarged
boundary conditions. An. Acad. Bras. Cien. 31(1959), 135-160.

[16] Peixoto, M. M. and Pugh, C. C. Structurally stable systems on open manifolds
are never dense, Annals of Math. 87(1968), 423-430.

[17] Perko, L.M. On the accumulation of limit cycles, Proc. Amer. Math. Soc.
99(1987), 515-526.

[18] Sotomayor, J. Curvas definidas por equacdes diferenciais no plano, Instituto de
Matematica Pura e Aplicada, Rio de Janeiro, 1981.



STRUCTURAL STABILITY AND GENERIC PROPERTIES OF PLANAR PoLYNOMIAL VECTOR FIELDS 355

[19] — Stable planar polynomial vector fields, Revista Mat. Iberoamericana. 1(1985),
15-23.

[20] Takens, F. and White, W. Vector fields with no nonwandering points, Amer.
J. Math. 98(1976), 415-425.

[21] Tavares dos Santos, G. Classification of generic quadratic vector fields with no
limit cycles, in «Geometry and Topology. Proceedings, 1976». Lecture Notes in
Mathematics 597, Springer-Verlag, 1977.

[22] Walker, R.J. Algebraic Curves, Dover, 1962.

[23] Ye, Y. Q. Theory of Limit Cycles, Translations of Mathematical Monographs
Vol. 66, Amer. Math. Soc., Providence, R.I., 1986.

Douglas S. Shafer*

Mathematics Department

University of North Carolina at Charlotte
Charlotte, North Carolina 28223

* Research partially supported by NSF Grant INT-8612625 and by funds from the Foundation
of the University of North Carolina at Charlotte and from the State of North Carolina.



