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Figenvalue Problems of
Quasilinear Elliptic
Systems on [R”
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Abstract

In this paper, we get the existence results of the nontrivial weak solution (\, u)
of the following eigenvalue problem of quasilinear elliptic systems

. 1 . . . .
—D,(a,s(x, u)Dgu') + ED,,,-auB(x, u)D u/Dgu’ + h(x)u' = Nul? =2,

for xeR", 1 <i< N and

u=@hu? .. ., uN)yeE={v=©01%..., M| v eH'(R"),1<i< N},
where a,4(x, u) satisfy the natural growth conditions. It seems that this kind
of problem has never been dealt with before.
1. Introduction

We consider eigenvalue problems of the following quasilinear elliptic systems
on R”

1 o : :
(L1) = Da@ag(x, )Dst’) + - Dyitoag (X, Dot Dytt’ + h(x)u" = Nu|? =2,

371
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for xeR", 1 <i< N and
u=@hu’...,.uMeE={v=0"1v%..., 0" |V eH'(RY),1 <i<N)

where R < p < 2A/(A — 2), A= nif n > 2, 2A/(A — 2) is any positive number
lager than 2 if n <2,

d )
D = s Dyi=—
* ox, “ o o

and the summation conventions have been used and will be used in the follow-
ing, i.e. the repeated Greek letters and Latin letters denote the sum from 1 to
n and 1 to N respectively.

Problem (1.1) comes from the theory of harmonic mappings. There have
been some results of (1.1) in bounded domains ([1], [2]). In [1], the existence
of solutions for (1.1) is discussed under the conditions

1 E1* < au50x, wELEs < ma || B b2 >0

lim uD,a,5(x,u) =0

u— +o
forevery (u, £) e R! x R", xeQC R", where N=1,p =2n/(n — 2), n > 2if

n> 2. In [2] the existence theorem is obtained when N> 1, h=0, 2<p.
< 2n/(n — 2), n > 2 under the conditions

a1 |£1* < o(|u)|E* < auplr, w)ELEs < ayo(lu))| €

|u’DuiaaB(x’ u)l < CU(Iul)

IDyitop(x, w)] < Co(lu]),  [Dyaag(x, u)| < n(lul)

U

_TDuiaaﬂ(x’ u)EaEB < a3aa6(x1 u)EaEB (O <a; < 1),
for every (x, u, £) e @ x RN x R", where o(¢), 5(¢) are nonnegative continuous
functions on [0, + ) satisfying that for any c¢; > 1, there exists ¢,, such that
a(c,;t) < cyo(t) for all £ > 0.

However, there have not been any results for (1.1) in the unbounded do-

main R”. Formally, if the minimum of the functional

(1.2) 1) = [ 180506, WD, u'Dgus* + h(9)|ul*) dx

over the set {u eE’ [nlu|?dx = p} (n > 0) were achieved by some u, there
should be a \ € R! such that (\, «) solves (1.1) in a weak sense. But there are
some difficulties in dealing with the functional I(x). Firstly, because of the un-
boundedness of R", the Sobolev embedding is not compact and the standard
convex-compactness techniques can not be used, at least in a straightforward
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way as in the case of bounded domains, and this makes the problem of the
existence of a minimizer more difficult. Secondly, the space where 7 is dif-
ferentiable is L, N E (see [3]), so even if we had found a minimizer u € E of
I, we could not conclude the existence of (\, u) R! X E solving (1.1), unless
we had known that u € L,,. But, usually, the fact that | u|, is finite is obtained
because u satisfies the related Euler equation which in turn is a consequence
of the differentiability of I at u. This makes the problem complicated.

To overcome the first difficulty, we use the concentration compactness
principle, recently developed by P. L. Lions ([4], [5]), when treating the con-
strained variational problems in unbounded domains. To overcome the second
difficulty, we first show that, for any minimizer u of 7 and some ¢ € E,

d

—Iu+t =0

a (u + 1) Y
i.e. the Euler equation related to the functional I holds in a weak sense for
u over special test functions in E. We then use the Nash-Moser methods to
show that |u|, is finite and finally we get the existence of a nontrivial solution
(\, u) of (1.1).

2. Main Results

In this section, we present the main results of this paper. First of all, we give
some notations and conditions.

Let H'(R™) be the usual Sobolev space, N > 1 be a natural number and
E={u=@" ..., uM)|u'e H(R"),1 < i< N}. The scalar product of
u,v € E is defined by

(u, vy = LR" [D u'D v' + u'v']dx

and (E, <, >) is a Hilbert space, the norm of u€E is |u|, = (||Du||5 +
|u|3)"/* where hereafter | f |, denotes the L(R") norm of the function f and
| £| denotes the Euclidean norm of the function f (possibly vector valued). For
simplicity, we denote |u| by |u| for u€E.

The main conditions imposed on (1.1) will be the following

() 2< p<2A/(A — 2) where /i = n if n > 2; and 2A/(A — 2) is any positive
number larger than 2 if n < 2.

(ii) a,50x, u) € CY(R" X RM), a,5 = ag, for any o, § and a; > 0, a, > 1 such
that for any (x, u, £) e R” x RV x R”

@.1) a, &> < o([uD)[E* < aupx, wéats < a0(|u]) €
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holds, where o(#) is a nonnegative nondecreasing continuous function on
[0, +o0) satisfying: for any /> 1, there exists C; > 0, such that

2.2) a(lt) < Go(t), forall t>0

and C; are bounded whenever / are bounded. Moreover, there is a con-
stant C > 0 with

(2.3) o(t) < C(1 + [¢]9)

where 0<g<4/(n-2)if n>2and 0K qif n 2.
(iii) a,g(x, u) = @,s(u) as [x| > +oo uniformly for u bounded.
(iv) There exists, s > 0, s < p — 2 such that

2.4 og(x, N)E, Eg < Naoe(x, W€, &g
2.5) dog (X, e < apg(U)énts

for any (x, u, £) € R" x R™ x R", where p is given in (i) and a,p are defined
in (iii), and \ > 1 is arbitrary.

(v) ke C(R") and there are A,c > 0 such that A(x) > c, h(x) <k for any
xeR" and Illim h(x) = h.

(vi) There is a constant ¢ > 0 such that

(2.6) |u'Dia,5(x, u)| < co(|ul)
2.7 |Dyia5(x, )| < en(|ul)

for any (x,u)eR" x RY, where n(f) is a nonnegative nondecreasing con-
tinuous function on [0, + ) and o(¢) is given in (ii).
(vii) There is a constant a; with 0 < a3 < 1 such that

(2.8) —%uiDuiach(x, Uk, &g < a3a,5(x, U &g

for any (x, u, £) e R" x RN x R".

Remark 2.1.  If a.g(x, u), h(x) satisfy (i)-(vii), then a,g(u), h satisfy (i)-(vii).
If a,p(x, u), h(x) satisfy (i)-(v), we set, for any u € E

(2.9) I(w) = jkn (@5 (X, WD u'Dgu’ + h(X)|u|?) dx
(2.10) I°(u) = LR" (@)D u'Dgu’ + hlul?) dx

For any A > 0, we set

(2.11) Ix=inf{l(u)|ueE, jmn|u|1’dx=>\}
(2.12) 1;°=inf[1°°(u)|ueE, jmn|u|ﬂdx=>\]
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It is clear that

(2.13) I, = inf {I(xlfpuﬂueE, fRn|u|de= 1}
(2.14) ¥ = inf [I”(xl/”u) |u€eE, IW |u|? dx = 1}
The pair (\, #) € R' X E will be called a weak solution of (1.1) if

LR,, [@45(%, )D ' D¢’ + ¢'Dyiag(x, )Du'Dyut’ + h(x)u'e'] dx
=\ Lpn |u|? ~2u'e’ dx

for any pe L, NE.
It is evident that u = 0 is a trivial solution of (1.1) for any A.
The main results of this paper are the following

Theorem 2.1. Suppose that (i)-(vi) hold, then for any \ > 0, Iy is achieved
by some uckE.

Theorem 2.2. Suppose that (i)-(vi) hold, then there is a Ny > 0 such that I)‘o
is achieved by some ueE. Moreover, if I, < Iy for any \ >0, then I, is
achieved by some u € E for any \ > 0.

Theorem 2.3. Suppose that (i)-(vii) hold, then (1.1) posesses at least a
nontrivial weak solution (\\,u) € R' X E and |u|, < .

Remark 2.2. By (iv)-(v), it is trivial that I, < Iy, and by Theorem 2.1,
I, < IY (for all A\ > 0) if

(2.15) jw [@,s(x, W)D u'Dgut’ + h(x)|u|*] dx < LR" [@.5(u)D,u'Dgu’ + h|u|*dx

holds for u€E, [g,|u|”dx =X\ with I”(u) = I,” < . (2.15) is valid, for
instance, when A(x) < /4 for any x € R”, or a,5(x, u)é, & < a,5(u)¢, &g for any
(r, u, §) e R* x (RV — {0}) x (R" — {0}).

ExampiE 2.1. In (1.1), if n =3, p = 5, h(x) satisfies (v), and
o6, u) = (1 + |u[Pbog(x)  (OF, @up(X, 4) = beg(0)/(1 + |u|?)
where b,;(x) € C'(R") and b,z = bg, (1 < «, B < n) satisfy
0 < M&* < bos@ELbs < MIE

for any (x, £) € R" X R" where \, M > 0 are constants, and lim ,,_,, b,s(x)
= 5,1,3, then, it is easy to see that a,g(x, u), A(x) satisfy conditions (i)-(vii), and
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thus we conclude that (1.1) possesses at least a nontrivial weak solution by
using Theorem 2.3.

The above is only a simple example, the theorems in this section are
applicable to many other cases.

3. Proof of Theorems 2.1 and 2.2

In this section, we prove Theorem 2.1 and Theorem 2.2. We need some lem-
mata and we always suppose that conditions (i)-(v) hold in this section.

Lemma 3.1. L,, Iy are continuous functions of \ on [0, + ).

Proor. It is evident that L, Iy are all finite for each A > 0. Let \,, >\,
€ (0, + ). We may assume that \,, > 0 for any m > 0. Given € > 0 we have
by (2.13), that there are (4,,) C E such that [, |#,|”dx = 1 and

IO ug) <L+ e

We claim that |I)\m[ < C (hereafter C denotes a constant independent of m).
In fact, for fixed u, € Cj C E with IR,, |uy|? dx = 1, we have by (2.1), the fact
that |\,| < C and the continuity of o(¢), that

B, < IOPug) = NP [ [a0p06 My?uo)D, 16Dty + h(x)|ol*] dx
S NP LR" o((NYPuy|)| Dug|? + N2P jw R |up|? dx < C < +o.
Hence, by (ii) we get
(3.1) jw [0 P |th))| Dtk + B(X) 4|1 dX <, + € < C.
Since o(#) is nondecreasing in ¢, it is trivial that
[ [0 P |t )| D> + )|t *] dx < €

when M\, >\, while if \,, <Xy, we have by (2.2) and the boundedness of
(ho/A)"?, that

L OO 2|t Dtt ]2 + B0) 11| ]

)\0 1/p
= [l ) b + | a

<c, j O]t | Dt ? + Bt dx < C < +o0.
RA
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Thus, we always have
32 J e (9Ot DI Dt + )|t ") ix < C.
It is clear that

L+ e3> I0\"u,,)
= IO "t) = TN Ptt) + 10N t1)
2 I()\rln/pum) - I(>\fl)/pum) + I)\o s

but
IO 1) ~ TN Pth) = N [ 180506 M Pit) = @ (6, N Pt )ID i Dt
+ (P - \2'P) LR" o5 (%, N Pth) D uil, Dgutl, dx
+ (/P — \¥'P) j )| dx
=1L+ 1%L+ 1.

It is trivial that lim , _, 7, 3 = 0and by (2.1) and (3.2) we have that lim Iz,

= (0. On the other hand, by the mean value theorem, we have

m—o

[@s (s Ny Pt) — o, N P14, ) 1D i, Dgil)
= | = NPty Dy (X, £ ())D oty D gt

where £,,(x) is between \}/” and \}?, hence |£,,(x)| = C > 0. So, by (2.6), (3.1)
and (3.2) we have

‘ j hyD,10,5(X, £y (V) D ul, Dttty dx <Cf 0(£,0)|t4n]) | Dt | dx
Rn R~

< max CJ 0 (\rt?|tn)| Dty dx
Rn

O=m

<C

from which lim ,, 7}, = 0 and hence liminf,,_, , + e >, . Thus we have
lim inf m-mlx,,, > I)\o which shows that I, is lower-semi continuous on (0, + ).
On the other hand, it is trivial to see that lim supm_,wl)\m < I)‘O, which gives
that 7, is upper-semi continuous on (0, + ). So we see that 7, is continuous
on (0, +). It is trivial that I, is continuous at A = 0 and the lemma is

proved. [

Lemma 3.2. For any A > 0, we have



378 Li GONGBAO

(3.3) L <I3
(3.4) IR<IZ+I7_, forevery ae€(0,N)
3.5 L<I,+1I,_, forevery ae(0,N)

If I; < Iy for any 8> 0, then
(3.6) L<I,+I7_, forevery ael0,)).

Proor. By (iv) and (v), it is trivial that (3.3) holds. To prove (3.5), we only
need to show that

A
3.7 I,, < 6I for every ve(0,\),0¢€ <1 > 7)

(see Lemma II.1 of [4]). Given Y €(0,)\),0 € <1 ) A) > we have by (2.13) and
(2.4), that Y |

I, = (6v)*7 inf UR" 056, 07)Pu)D Dy’ + h(9)|u|] dx: u € E,

p —
[l dx = 1}
< 0%/Py2/PYs/P inf UR" [a,5(¢, Y'"Pu)D u'Dgu’ + h(x)|u|*1 dx: u € E,
P —
o7 dx = 1]

=9C*IPL <0,

here we have made use of Z, > 0 (for all v > 0) which can easily be derived
from the definition. Thus (3.7) holds and hence (3.5) holds. Similarly, by
Remark 2.1 we see that (3.4) holds. By (3.3), (3.5) and I < I'g (for all 8 > 0),
we see that (3.6) holds. [

PROOF OF THEOREM 2.1 AND THEOREM 2.2. Let (#,) C E be a minimizing
sequence of I, (or Iy) with

[ lumlPdx=2>0
Rn
and
Iu,) <L +1/m (or IY(u,,) < Iy + 1/m).
Since 7, is finite, by (ii) we have

(3.8) [ [0\ Dt + B ") dx < €
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(or
[ [0t DI D> + Bl *1dx < €
in the case of Iy) and |u,,| <C.
By the Sobolev embedding theorem, we may assume the existence of a
Uy = (up, u, ..., ud) e E such that
3.9 U,>u, in E
ul,—~ub in H'(R"), 1<i<N

u,—>u, ae. in R"

U=y 0 Lio(RY),  2<1<—

where « — » designates weak convergence, while « = » means strong con-
vergence.
Let

Pm = @og(Xs Up)D o Uy Doty + h(%)|thys|*
(respectively
Pm = Bog () Dty Dty + Rt
in the case of IY), and
)‘m = LR'I Pm dx,

we easily see that \,,, > C > 0. We need the following concentration compact-
ness lemma:

Lemma 3.3. Let u,,, p,,, \,, be as above, then there exists a subsequence of
(0,m), still denoted by (p,,), satisfying one of the three following possibilities:

(i) (Compactness) There exists y,, € R" such that p,,(x + y,,) is tight, i.e. for
every € > 0, there exists R such that

J de}l — ¢,
ym+BR )‘m

where

ym+BR= (XEfRn: |x_ym{ <RjJ.

(ii) (Vanishing) lim sup J Pm(X)dx =0 for all R < +co.
y+Bg

m—w yeRn
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(iii) (Dichotomy) There exist o€ (0,1) and a positive function u(e), with
lim__, , u(e) = 0, such that for every e > 0 there exist my > 1 and u,, u, € E
with |ub,), |u%] < C, so that

(3.10) "11120 dist (supp uL,, supp u2) = 4+
(3.11) |t = (Wt + ) |2 < 0e)
(3.12) |ty = (Wt + i) | < (€)
(3.13) I(;‘j") —a| < ue)
(3.14) *I%z”l —(I =) <ue)
(3.15) H(t) > Ittyy) + I(uf) — ple)

or, respectively, in the case of Iy,

o 1
(3.16) Wm) _ ol < we)
0, 2
(3.17) d ;"”) -(1-o<ue
(3.18) IP(uy) = IP(uy,) + I°(uZ) — w(e).

Proor. For any ¢ > 0, let

O,.(t) = sup J ﬁ'ldx.
yeRn y + B, )\m

Then Q,,(¢) is nondecreasing in ¢ and |Q,,(?)| < 1, so by Helly’s principle there
is a subsequence of Q,,(¢), still denoted by @, (¢) with lim , _ _ Q,,(¢) = O(t)
for any ¢ >0, where Q(¢) is a nondecreasing function on [0, +o) and
o] < 1.

Let lim,, Q@) = € [0, 1]. If @ = 0, then Q(¢) = 0, hence lim , ,  O,,(?)
= 0 and (ii) (vaninshing) occurs.

If @ = 1, we can easily show that (i) (compactness) occurs by using the same
method as in the proof of Lemma I.1 of [4].

Now, letting « € (0, 1), we want to show that (iii) (dichotomy) occurs.

Given € > 0, there exists Ry = Ry(e) > 0 such that

a—e< QRy) <a+e
o— 26 < QQRRy) < o + 2¢
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hence there exists mgy(e) > 0 with

(3.19) a—€e< O,(Ry) <a+e
(3.20) o—26<0,2Ry) <o+ 2¢

whenever m 2> m,.
We may choose R,, = + such that

(3.21) 0.CR,)<a+ 1/m.
By the absolute continuity of Lebesgue integrals, there are (z,,) C R" such that
(3.22) 0, (Ro) = j P .
Z,, + BRQ krn

Let £, e C3z(R™), 0< ¢, o<1, é=1land o=0if |x|<1; E=0and p =1
if |x| >2 and set &, = £[(x — 2,)/R1/R(R > R, is to be determined) ¢,, =
el(x — 3m)/R,,] and u}, = &, u,,, U2 = @pU,,. It is trivial that (3.10) holds and
that |u,|, Jun] <C.

By (3.22) we have

(3.23) Om(Ro) = —l—j [0 (¥s Un) Do Ui Dgthzy + ()|t *] dx
>‘m zm+BRo

1 . .
=5 [@0p (X, Emttm)D o (§mttm) Dg (£ tim)
m JZ,,+ BRO

+ B(X)|Emth| ] dx

1
= ﬂl(u,l,,)

1 ) )
- j‘ [@0s(X, Un) D, () Dg(uy,)
[x—z,|=R,

A
+ h(x)|up,|*1 dx
We want to show that

1

B2 N Jae o s ® Un)D o (U3) Dg(uy)' + h(x)|up,|*) dx < p(e).
m - Zm 0
Since
1 . '
3.23) TJ\ s 0D, (k) Dy () +
m JIx=z,l =R,
! i iy, i i
S )\— j‘R | |s2R [auﬁ(x, urln)(umDot Em + EmDaum)(umDﬁ Em + EmDBum)
m 0 < |x- Z,,

+ h(0)|up|*] dx
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1 . .
=< j Emaaﬁ(xs ulln)Dau;nDBu;n dx
)‘m slx-z, | <2R

2 d

+ — E,,,u a,p(x, ,,,)D S,,,DBu dx
)‘m JRys|x-z, |s2R
1 n

+ — _a,(x, u,,,)D EnDgkn - u u dx
m JRy=<|x-z,|<2R
1 2

+ — _h(x)|u,|*dx

M JRyslx-z,,| =28
=JL+ T+ T+ T
By (3.19), (3.21) and the fact that Q,,(¢) is nondecreasing, it is evident that

[T € Om@R) — Qu(Ro) <a +1/m —(a— ) = 1/m + e < p(e)

(for m large enough).
By (2.1), (2.2) and (2.3) and since |u,,| < C, we have that

5 < 2azj ot DI D it
Rysix-z,|=

c 2
m m dx
Dl

N H2
R Ry<|x-z,|=s2

3 O

Sz | (unl® + |u,|7* %) dx
R Jgn

Q

< -a < u(e),
for R(e) large enough. In the same way, using (2.3) and (3.8) we have that

IJ | J Iaaﬁ(x’ Em m)D u, DBumldx
Ry=|x—z,,|=2R

N

N
MO Mn MO

1Dt
f o[t Dit]? + |10

< me)
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for R(e) large enough. By (2.1), (3.19), (3.21) and (3.22) we have that

0<JL < CJ‘ _0(|t4))| Dty |*
Ry=<|x-z,|=<2R

Scj _8,5(X, U,,)D,u}, Dgu,
Ryslx—z,|=s2R

< Om(R,) — On(Ry) <o + 1/m— (o — ¢

=1/m+ e < p(e)
(for m large enough).
Combining the above estimates, we see that (3.24) holds and (3.13) holds

by (3.23). Similarly, (3.16) holds.
It is easy to show (see e.g. Lemma I.1 of [4]) that

(3.26)

j L {00006 4Dt Dyt + R\t dx — (1 — @) < e
[x—z,|=2R,, )‘m

On the other hand, we have

L ey - ij (00506, U2ND L (2 D2 + R[] dx
)‘m )‘m lx-z,|=R,,
= if [0 (X, up) Dy (U5 Dg(u)' + h(X)|ub|*1 dx
Nn JR_s|x-z |<2R
(3.27) + 1 j [@,s(x, ) D ul,Dgutly, + h(x)|t,,|*] dx
>\m |x—z,,| =2R

Similarly to (3.24), we can prove that

(.28 j (80605, 42)D, (2 Do) + h()| ] dx < pe)
A R, =sl|x-z,|=<2R,

m

Thus (3.26) and (3.27) imply that (3 14) holds. Slmllarly, (3.17) holds.
By (3.19) and (3.21) we have that

i = G+ 313 = [ 11 = ot

<c| 4
R=sl|x-z,|=2R,,

< C[Qm(ZRm) - Qm(Ro)] < [l.(é).
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So we have (3.11). Similarly, by |u,,| < C and |uk| < C, |uZ| < C, we see
that (3.12) holds.
Finally we prove (3.15). Since

I(u,) > j [a,5(x, )DupDgutl, + h(x)|u|*1 dx
R

|x—z,|l=

+ j (005X, Up)D o i Dttty + h(X) |14, |*] dx
[x~z,|=2R,,

= Iup) + I(uy,)

- J [@as (X, Un)D, (Un)' Dg(up) + h(x)|up|*1 dx
Rslx-z,|s2R
—~ J [@os (X, um)Dq (un) Dp(un) + h(x)|ub|?) dx
R,slx-z,|=<2R,,
and because of (3.24) and (3.28), we deduce that
I(uy) = Iuy,) + I(ub) — ple).

Thus (3.15) holds. Similarly (3.18) holds. [

Lemma 3.4. (¢f. Lemma 1.1 0f[5].) Letl <p<o,1<qg< o, withq+ Np/
(N — p) if p < N. Assume that (u,,) is bounded in LY(R"), |Du,,| is bounded
in LP(R™) and

sup ‘f |u,|?dx—0 as m— o, forsome R >0.
yeRN y +Bp

Then u,,—~ 0 in L'(R™) for any t between g and Np/(N — p).

We now turn to prove Theorem 2.1 and Theorem 2.2. We already know that
there is a minimizing sequence (u,,) of I, (or IY) such that Lemma 3.3 holds.
If «vanishing» occurs, then

(3.29) lim sup j [@,5(%, Up)DyulyDatthy, + h(x)|t4,|*1dx = 0
m—o yeRn Jy + By

for all R. We know also that (Du,,) is bounded in L2(R") and by (3.29) we know
that

lim sup j |u|>*dx=0  (for any R > 0).
y+ By

m—o yelRn
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So Lemma 3.4 gives that

lim J‘ |u,|Pdx =0
Rn

m— +
and this contradicts
JRH |th,| P dx = N.

Thus we have ruled out «vanishing.

If «dichotomy» occurs, then Lemma 3.3 shows that for any e > 0, there are
ul,, u%, € E such that (3.10)-(3.15) hold (or (3.10), (3.12), (3.5) and (3.18) hold
in the case of Iy). Therefore we would have that

(3.30) K+ e Iuy)
> I(uk) + I3) — 1o
2L ipax T, g e ar = MO

We may assume that

lim | |ul|?dx =\(e), lim | |uZ|?dx = \(e).
Rn m-o JRR

m—
Now

N= LR" |, |? dx

and
H O M M
Rn Rn Rn

<1 on- el ax

< Cj |t4,| P dx
Rysl|x-z,|=s2R,,

p/2
<C<j |um|2dx>
Ry=<l|x-z,|=<2R,,

< u(e),

(where we have made use of notations in the proof of Lemma 3.3.)
We conclude that

(3.31) N = () + M (9)] < ple)
Letting m — o in (3.30) and using Lemma 3.1 we obtain that

L+ ezl o+ Lo~ e
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We assume now that \;(€) = \;, \,(¢) 2>\, as e = 0. Then we have by Lemma
3.1, that

(3.32) I, > IN + I)\z.
By Lemma 3.3 and the fact that \,, = ¢ > 0 we have that

|[I(u}) — &| < ue), where a@>0
|I(uZ) — B] < u(e), where B> 0.

Thus, if \; = 0 then by (3.31) A, = \. Since
L+ € 2 1(u,,) > I(uy,) + I(ub) — ple)
we obtain that
LZza+ 1~ me.
Hence
L>za+1.

This is a contradiction and so \; > 0; similarly A\, > 0. And now A\; + \; =\
and (3.32) contradict (3.5). Thus we have ruled out the «dichotomy» for Z,.
Similarly we can rule out the «dichotomy» for Iy using (3.4).

So we only have «compactness» i.e. there exists (¥,,) C R” such that for any
e > 0 there exists R = R(e) > 0 with

[@o5(X, Um)Dottl, Dgily + h(x) |1 dx = Np(1 = €).

Jlx—ymlsR

Hence

(33) [ Va6 UmDott Dyttyy + H\ ] dx < N

j|x—yml =R [ Dtt|? + [t]*1 dx < ()

or, in the case of Iy, we have

(3.34) [ () Dy sy Dgthyy + h|ths]*] dx < Nt

jlx -YalZR
2 2
Jiomy o UDml® + It 6 < (@
We first prove Theorem 2.1. Let #,,(x) = u,,(x + Y, then |i,| S C< +
and by (3.34) and the Sobolev embedding theorem we may assiime the existence
of au= (', u?...,u"N)eE such that
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#,~u in E
al,—~u' in H'R"
(3.35) im0 HAR) -
Up—u in L'(R") 2<t<2i/(Ai-2)
#,—u ae. in R",
for 1 <i< N, and
>‘=I,R,,|“m|pdx=fr,e,,lﬁml"dx*jwlul”dx (as m— ).

Also

I = lim | [@,s(#,,)D, i Dsitly, + h|u,,|*] dx.
Rn

m—wo
By g3.35) and (ii), (iii) of Section 2 we see that
Anp(idy,) — d,g(u) a.e.in R
So for any bounded domain @ C R” and 6 > 0, there is a Q; C Q with
|2 -Q <6
and
o (tm) = A,p(u)

uniformly for x € ; where |A| denotes the Lebesgue measure of A for any
A C R". So that for any € > 0 and m large enough we have, by (2.2), that

J (i) D, 015, Dgitl, dx > J‘ @.,(#m) D, i1k, Dyitl, dx
Q Q

&

> L [@,s(,) — @,w)]D, i1, Dgitl, dx
8
+ j a,5W)D, i1k, Dgiiy, dx
na

> —ej |Dit,,|* dx + J a,sW)D, i1t Dgits, dx
Rn 2

8

> —eC+ J. a,5(u)D, i}, Dgii}, dx.
96
By (3.35), Mazur’s theorem (see [6]) and Fatou’s lemma, we see that

lim inf{ a,5(U)D, it} Dyitl, dx > f a,5(u)D, u'Dgu’ dx,
Q, Q

m— o 5
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and hence we get, for any N, that

lim infj @,5(#l,) D, i1, Dgitl, dx > j a,5(u)D u'Dgu’ dx
Q Q

m-— o 5
> jl [@,5(u)D, u'Dgu'l, dx
nB

where the function [f], for any f> 0 is given by

_{f if fEN
[f]N_{N if f>N

Since [@,5(u)D,u'Dgu'l, € L'(), and since |Q;| — |Q| we have that

liminfj 8.,5(#,)D i1, Dyitl, dx > j [@,5()D,u'Dgui'],y dx.
Q Q

m—

Letting N — o, we have that

(3.36) lim inff @,p(#,)D ul, Doutly, > J a,5W)D u'Dgu’ dx
Q Q

m—»

Thus, since the supremum of any sequence of lower-semicontinuous functions
is still lower-semicontinuous, we have that

(3.37) lim inf J 8,5 (#)D Ul Dy, dx > j a,5(u)D, u'Dgu’ dx
Rn Rn

m— o

On the other hand, by (3.35) we have that
lim | A&|u,|>dx = J~ h|u|*dx
m—w JRn Rn

and so we get that

I;f;liminfj @g(#h) Dy liy Dt} dx + lim J h|u,|*dx
R Rn

m —>co m—co
> j [@,5(u)D u'Dgu’ + h|u|*] dx.
Rn
But

J |u|Pdx =\
Rn
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i

and so
2= j . [@,5(u)D u'Dgut’ + h|u|*]dx

so Iy is achieved and Theorem 2.1 is proved.

In the case of I, by (3.33) we still have (3.35) with #,,(x) = u,,(x + y,,). If
there is \ € (0, \] such that Ixo =7 ;°0 , then by Theorem 2.1 there exists ¥, € E
with (o, |to|” dx =\, and such that I n, = I7(uo), and hence 5, < I(u) <
I%(up) = I, = I, implies that I(uo) = I, and therefore I, is achieved by u,
Theorem 2.2 is proved.

Now we assume that for any 0 < u <\ we have I, < I';;. If (¥,,) is unbounded,
say |y, = o, we have, by (ii) of Section 2 and (3.35), that

Aog(X + Vs ) = g(u) a.e. in R".

So we have, as in (3.37), that

(3.38) lim infj Ao (X + Vs Bp)Do il Dl dx > j a,s(u)D u'Dgu’ dx.
Rn R

i— o

By (v) of Section 2, (3.35) and the Lebesgue’s theorem we have that

(3.39) lim h(x + y)| i) dx = j h|u|*dx.
n Rn

m—oo JR

Combining (3.38), (3.39) and
J |u|Pdx =\
Rn

we have that

I, = lim | [a.g(x, u)D,ubDgtly + h(x)|u,|*] dx
Rn

m— oo

= Wm | [0us(X + Vs ) Dyiliy Dl + h(x + y,p)|ih|*1 dx
Rn

m-—>c
> j [@,5(W)D,u'Dgu’ + h|u|*] dx
Rn

2I7

which contradicts that 7, < I, for any 0 < g < \. Thus we have |y,,| < C and
by (3.34) we see that for any e > 0, there is a R(e) > 0 such that

(3.40) iy o g [1Pttml* + "1 d < €
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and hence we may assume the existence of a u, € E such that

(u,,,—‘uo in E

up, ~uy in H'[RY), (1A<i<N),
27
A-2

(3.41) Jup,~uy in L'(RY)  2<1< (1 <i<N),
u,—>u, ae. in R"

U|Pdx =\
ol

Thus, similarly to (3.38) and (3.39) we can prove that

lim inf j og(X, Up)D Ul Doty dx > j o5(x, uo)D,ub Dguth dx
Rn Rn

m—o

im h(x)lumIde= j h(x)|u0|2dx.
n Rn

1
m—co JRi

Since jmn |up|? dx = N\ we have

I, > lim infj [@0s (X, U)D, ul, Dgutly, + h(x)| 14| dx
Rn

m-—x
> j [0,5(x, ug)DoubDgith + ()|t |?] dx
Rn

> 1,

and hence 1, is achieved by u, € E. Theorem 2.2 is proved. []

4. Proof of Theorem 2.3

In this section, we prove Theorem 2.3. The main difficulty is that £, is in
general not in C!(E, R). To overcome this difficulty, we first prove that

d 1< MNu + to) )

dt \ |u+tel,/|i-0

exists for special ¢ € E and then show that | u|, is finite where u is a minimizer
of I, for some \ > 0. Finally we prove the theorem.

ProoF oF THEOREM 2.3. By Theorem 2.2 we may assume without loss of
generality the existence of u € E, with (g, |#|”dx = 1 and such that

I = |, 12050, 0D u'Dgut* + h(x)|ul’] dx.
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We first prove that for any 7> 0,

.1 _‘i I<_“_+_’|‘4i‘_)

=0
dt \ |u+ tlul ul,

t=0

where

], = lu| if |u|<L
L™ L if |ul>2L

It is easy to see that u + t|u|;u = (1 + t{u|])u e E for any ¢ > 0 and since
u achieves I;, (4.1) will hold if

d < u+tlulju )

— L

dt \ |u+ tlu| u|,
exists. V

Because 0 < |u|; < L7, there is a M > 0, depending on 8 and L, such that

t=0

4.2 3 < lu+tluljul, <M

for ¢ small enough.
It is easy to prove that

d
- T - p T
@3) o dulul)| = [ ax
and hence
T 2
sy & [ j hOOJu + ]l u] dx]
dt | Jrn Ju+tlulzul, t=0

=2 I hx)|u|?|u|7 dx — ZJ. h(x)|u|2dxj |u|Pul] dx.
Rn Rn R
On the other hand
I< u+ t|u|12u > _ J aa6<x’ u+ t|u|TZu > Dau"Diu" dx
lu + tlulzul, R lu + tlulzul, ) |u+ tlulzul;

u+tlu>u \ D u'Dglul’u’
+2tj aa5<x, | I,L > x B','L 5 dx
Rn ||u+t|u|Lu||p ||u+t|u|Lu||p

5 u+ tlu|Ju '\ Dy(|ulju)Dg(|u|u)
+1 off H + tl T ¢ T 2
R u ulLqu “u + lulLu"p

hQo)|u + t|u|jul?
+ T 2
Rn |]u+t|u|Lu|]p
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u+tulju
[u + tlulzul,

_ 7! 2 3 hG)|u + tlu|zul?
> =I't)+ I’(t) + P’(t) + L,, lu + tluljul}

4.5 I <
Using (ii), (iii) of Section 2, (4.2) and (2.1), the inequality

u+ tlulpu \ w'tlu|"" D, u*Dglul,
adﬁ X T T 2
Ju+ tlulz], lu+ tlulzu|,

< C|Du'Dglul, |ul™|, L'(R™)

(which holds if |u| < L) and the Dominated Convergence Theorem, we have that

d 2 . Iz(t) i T,,0
4.6) — ()] = lim =2 | a,s(x, u)D u'Dg(|u|ju’)dx.
dt t—=0 t [Rn

t=0
Similarly, we have that

=0

t=0

“.7 dit [P@)]

On the other hand

d 1| u+tullu
— [\ =lim| —|a <x,——L—— u+ tu|tu|;?
dt [ ( )] o =0 Jrn ! i aff "u + t|u|2"p “ I |L “p

— a5(x, u)]DauiDBuidx

1 u+ tlul|lu >
=lim | —|aulx,~—E— | —aglx,u
t-0 Jrn £ | “B< lu + tlu|pul, as (> ¥)

|u + t|u|ju|, *Dyu'Dgu’ dx
1 . .
+ lim7(||u + tlulju|, ? - I)J‘ a,5(x, u)D u'Dgu’ dx
t—0 Rn
= lim I*() + lim I°(?).
t—0 t—0
By (4.3), we have

4.8) lim I°(¢) = —ZJ |u| P|ul] dle a,5(x, u)D u'Dgu’ dx.
t—0 Rn Rn

Using the mean value theorem we get that

u+t'ulju >

im7*(#) = lim | Dya, (x, e
re B\ w4 lullu],

t—0 t—-0

lu|?u’ w +t'ultu d
I: L £ "u + tlulzu"plmt'

lu+ tlulpul,  Ju+tulpul; dt

lu + t|u|ju|; 2D, u'Dgui’ dx
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. u+t'ulju ul7u!
= llmj D,,,-aa3<x, ,l |,-L ) | |,L T
t-0 JR2 lu+t |u|Lu"p lu+t 'ulLu“p

|u + tlu|ju| ;D u'Dgu’ dx

u+tulju
I P ALY
t=0 JR7 lu+ t'|ulzul,

w + tlulu’ d

_ L u+ tlulmul e, lu+ tlultu| ;2D u'Dgu’ dx
||u+t'|u|2u||12, dt " i ‘L "p|t—t" I |L "p o B8

4.9) = lim I%(¢) — im I'(¢) O<t'=tMx@<i)
10 10

By (vi) of Section 2 and (3.2) we have that

u+t'ul” u|"u’ . : _
Jufp )l Wi’ p Dy + tuljul

u+ lulul, ) Tu+ lulful,

D,,,-a,,,,3<x, |

cof e ) W
lu+tlulzul, /) 1+ 2ul}

< Co(|u)|Dul* € L'(R™),

hence by the Dominated Convergence Theorem

(4.10) }ijt; I%Gt) = L" |u|3u/D,;a,5(x, u)D u'Dgu’ dx.
Similarly, by (vi) of Section 2, (4.2) and (4.3) we get

4.11) }1_{1(1; I'(t) = Ln |u|?|u|7 dx Lﬂ u/D,;a,5(x, u)D u'Dgu’ dx.

Combining (4.4)-(4.11) we see that (4.1) holds and that

0=il< u+ tlulju )

dt\ |u+tlu|jul,

t=0
=2 j - @6, Do Dy(|u| u) dx
+ L?n |u|7u’D,ia,5(x, WD, u'Dgu’ dx
- LRn |ul?|u|] dx JRH u'D,ia,5(x, u)D,u'Dgu’ dx
=2 |ul?lul; dx jw op (6, W)Du'Dgutdx +2 [ hGO|ul*|ul7 dx

= ZIRnh(x)|u|2dij" |u|P|ul] dx
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which implies that
4.12) [ aus(x, 0)Dou'Dy(|ulpu’) dx +} [ |ul74/D,jaug e, WD, u'Dyu’ dx
+ LR" h(o)|u|*|ul7 dx =\ LR" |u|P|u|;, dx (for every >0 and L > 0),
where
A= LR,. [@ap(x, )Dou'Dg’ + 34D, ;a,,6(x, WD u'Dgu’ + h(x)|u|?] dx.

Now we are ready to prove that |u|, < +. By (4.12), we have for any
7> 0, that

(4.13) LR" |u|} @ng(x, uD,u'Dgu’ dx + 7 J‘Rn lul} ™ "u'a,g(x, w)D,u'Dglul, dx
+ %IR,, |u|;u/D,ia.5(x, WD, u'Dgu’ dx + jmn h(x)|u|?|u|] dx
= XJW |u|?|ul|; dx.
It is easy to see that
JRH lu|7™ "Wa,5(x, wD,u'Dg|u|, dx = LRn |u|] @ug(x, D, |u|Dglu|, dx
|u|] a,s(x, w)D, |u|Dg|u| dx

= Jul =1y
=0.

So by (2.8) we have
(4.14) (1 -ay) jm |u]? @5 (x, u)D u'Dgtt’ dx < N jmn |u)?|ul? dx
hence

w(l — as) LR" |Du?|u|] dx <\ LR" || ?|ul] dx.

It is easy to see that
|Dlu|[* < |Duf?

and from this and (4.14) we get that

w( = a5) [ 1Dl Plulg dx <\ [ |ul?|ul] dx.
Thus, there is a C > 0 such that for any 7> 0
(4.15) jw |Djul [u|7?dx < cjw |u|?|ul7 dx

holds.
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By (4.15) we have, for any 7> 1, that
(4.16) [ IDlul jul; "2 dx < chn || ?|u 20D dx.
Let w, = |u| |u|7"", then we have
Dw, = Dlul |ul;™" + (v — D|ul;"*Dlul;~*Dlul |u|.
Thus

[l DI dx < C[ [, 1Dlul lul; ™" P dx + (7 = 12 [ | |wl;~ || Dlu] | e

< CUnen |Dlul |ulz™ |*dx + (r — 1) J{lulsL} |Dlul |“|7—1|2dx]
<Ccl+ (-1? JR" Dl |u|z_1|2dx
<Cr? LR" |u|?|u|27~2 dx.

So we get

@17 LR,, |Dw, |*dx < Cr* JRH |u|P=2|w, |2 dx

By (4.17), the Sobolev embedding theorems and Holder’s inequality we
have that

(4.18) |w.[3. < C|[Dw, |3

oy 2% p-2 2% 2%~ (p-2)
<C12<I P = dx)—z* <J |w,|>*7=e-> a'x) 2
Rn Rn

= Crul | w, e,

where 2qg/(q —2)=2-2*¥/2* — (p — 2)), i.e. g=2-2*%/(p — 2). It is easy
to see that ¢ > n when n > 2 or n < 2 by choosing 2* large enough, hence
2% > 2% > 2g/(q — 2). If |u|* € L**@~D(R"), letting L — +oo in (4.18) and
using the Dominated Convergence Theorem and Fatou’s lemma together with
the fact that |w,| < |u|” we get that

[el130 < Cr* [ ][ 22q, -

Thus u € L*?/@~(R") implies that u € L*(R"). If we set g* = 2q/(q — 2),
X = 2*/q* then 7xg* = 72* and we have that

Hullngs < Crl |u| |74+
that is

[l g < €777 ]|

7q*-



396 L1 GoNGBAO

Let r=x", m=0,1,..., then we have
N-1 m
(4.19) ] S HO(CX'")”‘ lu] g« < CXT| | | g < Cllu| g+
m=
where
N-1 N-1
o= Z X_m, T = Z mX_m
m=0 m=0

and Cis independent of Nfor >, x~™, >, mx~ ™ are all convergent. Letting
N— oo in (4.19) we get m=0 m=0

(4.20) [ < Clulys < +oo.

Thus ue Lo NE.
Finally, we show that for any ¢ € L,NE, we have

d u+te >
4.21 ety ( I
@20 w<w+wm
Note that we only need to show that
11< u+te >
dt \ |u+te,

exists for any ¢ € L, NE. (4.21) can be proved by using the same method for
proving (4.1). In fact, similarly to (4.2), (4.3), (4.4) and (4.5) we may obtain

t=0

t=0

1

4.22) > Slu+to], <M (for ¢ small enough)
d p—2,,i i
(4.23) i 1+ telpi=0= R"M u'p' dx
1 h(x)|u + to|* j o
4.24) — — e dx =2 h(x)u'e' dx
( ’wL PET7I i P

—Zj h(x)lulzdxj |u|? ~*u'p dx
[Rn [Rn

429 I< u+te >=J‘ aaﬁ<x, u+to >D,,luDBu2 dx
lu+ tol, R lu+tol,) |u+te|;

+ ¢ D_u'Dg¢!
+ ZtJ aa,3<x, urlte ) " "8 ¢2 dx
Rn lu+tel,/) |u+tel,
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t? u+tep : .
+ a Xy ——— |D 'D ’dx
[u+ tol? j “‘*( ||u+t¢||p> L
j h(X)|u + to|*

Rn

dx
lu+te]}

ho)|u + to|?

dx.
lu+ o]}

=J'(@) + J2@) + J}@) + j
Rn

Using that |u|., < C, |¢|~ < C, (4.22) and (ii) of Section 2, and similarly to
(4.6) and (4.7) we obtain that

d

2
—d—t_J ®

=0.
t=0

. d
=2 WO WD U Dgo dx,  —Jt
=2 aumwpanla 5T

On the other hand, we have that

: 1 u-+te > s
=lim | | e\ X | lu+ ¢ = upX, U
t=0 t~0Jrnl [ ﬁ( lu+ te|, " els 6%, u)

d .
EJ ®

D, u'Dgu’ dx
] 1 u+te
= lim — | @up| X0 —————— | — aup(x, 1)
t-0 JRn T Ju+ to],
|u + to| ; 2Dyu'Dgu’ dx
1 . .
+ lim7(||u +to|, % - l)‘f @,s(x, u)D u'Dgu’ dx
t—0 Rn
= lim J4(¢) + im J3(¢).
t—0 t—0
By (4.23) and similarly to (4.8) we obtain that
lim J°(¢) = —zj lu|?~2u'p dx j a,5(x, u)D, u'Dyu’ dx.
t—0 Rn Rn
Using the mean value theorem we have that

) u+te
limJ*¢) =lim | D,a <xs ——)
t-0 ® t~0 JRn u/Taf ||u + t'(Pup

- — lu+tel,

[ o’ w4+t d
luttol, |u+tol, at

t=t':|

|u + to|, D, u'Dgu’ dx
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=lim | D,a (x utle > ¢’
10 Jrn TR lu+tel,) |lu+tel,

|u + to| ; 2Dyu'Dgu’ dx

. u+te uw + 'y’
—lim | Dyja,gl x ; 3
150 JRn lu+tol,/ |u+tel,

dx

i d
|u+ tol ; DouDotd - |u + o],
dr o

= lim J&(¢) — lim J7(¢),
t—=0 t=0

where 0 < #'(x) < ¢. By (2.7) and (4.22) we see that

u+to ¢’ _
U+t
uu+f¢m>nu+pr" els

D, jaa5<x’ D, u'Dgu’

ul + ']l > 2y 12
<Oyl ————— )|u + to|; *|Du
< C|Dul* e L'\(RY).

So, by the Dominated Convergence Theorem we have that

t—=0

(4.26) lim J8(¢t) = Ln ¢'D, ja,5(x, YD u'Dgu’ dx.
Similarly to (4.11), we have that
4.27) }13; J(@t) = j . |u|? ~2u'o dx L" u'D, ja,5(x, u)D u'Dgu’ dx.
Combining (4.24)-(4.27) we have that
0=2 LEH a,5(x, WD u' Dy’ dx + LR" ¢'D, ja,5(x, u)D ,u'Dgu’ dx
- LR" |u|? ~*ulo' dx LE" u/D,,;a,5(x, u)D u'Dgu’ dx
-2 JW |u|?~2u'o’ dx JR" ,5(x, u)D u'Dgu’ dx
+2 LR" hGOu'o dx — 2 JW h(x)|u|? dx Jnan |u|?~ %'y’ dx
which implies that
(4.28) j - os(x, u)D u'Dg’ dx + %LR" ¢’D,;a,5(x, u)D u'Dgu’ dx

+ [ huietdx =\ [ |ulPPulet dx
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for every ¢ € L,NE where
A= jnen [a.s5(x, u)Dau"DBu" + %ujDujaaﬁ(x, u)DauiDBui + h(x)|u|2] dx

i.e. uis a weak solution of (1.1) with |u|, < 0 and Theorem 2.3 is completely
proved. [
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