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Introduction

In the theory of automorphic forms, it is a basic result due to Hecke [1] that
the space of elliptic modular forms of integral weight is the direct sum of the
space of cusp forms and the space of Eisenstein series. This has been expected
to be true in general and in fact it has been proved for Hilbert modular forms
and for modular forms of half integral weight by several people, such as
Kloosterman [2], Petersson [4], Pei [3], Shimizu [5], [6] and Shimura [9].
Especially Shimura [9] investigated automorphic eigen forms, which includes
holomorphic automorphic forms, in great detail and proved that in most cases
the orthogonal complements of (eigen) cusp forms in the spaces of the
automorphic eigen forms of Hilbert modular groups are generated by Eisens-
tein series (and some other forms derived from Eisenstein series in certain
special cases). There he omitted the case when the set of eigen values of dif-
ferential operators is multiple in his sense. The purpose of the present paper
is to prove that his result, which is the generalization of the classical fact men-
tioned in the beginning, is true without any restriction on eigenvalues.
Here we explain our result breifly restricting ourselves to only the case of
integral weight, though our result includes also the case of half integral
weight. Let F be a totally real algebraic number field, and a the set of all
archimedian primes of F. Let H be the upper half plane. By Z?, C* and H?,
we understand copies the product of a of Z, C and H, respectively. Then
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SL,(F) acts on H? in the usual way. For ¢ € Z* and v € a, we define the dif-
ferential operator L) on H® by

Ly = —4y2~°%8/0z,)y3%(3/97,),

where z = (z,) is the variable on H#* and y, = Im (z,). Let A = (\,) € C*. For
each congruence subgroup I' of SL,(F), we denote by Q(o, A\, I') the set of all
C*”-functions f on H?® satisfying the following conditions:

(1) f(vz) = I (cu2, + d.)7f(2) for every v = [: z] el

y€Ea
(2) Ly f=\,f for every vea;
(3) fis slowly increasing at every cusp.

We also denote by 8(o, A\, I') the space of cusp forms in ®(o, \,I') which is
defined by the condition at cusps as usual. Then our main result is that the ortho-
gonal complement of 8(o, \, I') in (o, \, I') with respect to the Petersson inner
product is generated by the special values of Eisenstein series with parameters
(and some other functions derived from Eisenstein series in some special cases).

Recently Shimizu proved that it is also valid for automorphic eigen forms
on GL, over any algebraic number field in the case of integral weight using
representation theory ([6]).

1. Automorphic Eigen Forms

Let F be a totally real number field and a the set of all archimedian primes
of F. For each set X, we denote by X* the product of a copies of X or the set
{(x,),| vea}. For each element x of X, we denote by x, the v-component
of x. For two elements ¢ and x of C*, we put

cr= I ey
v

whenever each factor is well defined.
Let H be the upper half plane {z € C|Im(z) > 0}. For each g e SL,(R) and
ze H, we put

az+b
b
cz+d

g(@) =

. . a b
jg, ) =cz+d if g—[c d]'

By z~ g(2), SL,(R) acts on H and therefore SL,(R)*® acts on H®. For
geSL,(R)?, z=(z,)e H* and ¢ = (0,) € Z*, we put

@)’ =je,2)° = IUI J(8v, 2,)7"
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We shall define automorphic forms of integral weight and half integral weight.
Putu=(,1,...,1)eR® A weight will be either an element of Z* (Case I,
integral weight) or an element of (1/2)u + Z?* (Case II, half integral weight).
For each weight o, we denote by G, the set of all pairs (g, /(z)) with an element
g€ SL,(F) and a holomorphic function /(z) on H?® such that

Iz’ =t-j(g,2)° teC, |tf|=1.
The set G, is a group by the group law defined by
(g, 1), ") = (gg’, I(g'))]'(2)).

We denote the projection of G, to SL,(F) by pr, or pr((g,!)) = g. For
o =(g,1(z)) €G,, we denote /() also by /,(z) and put «(z) = g(z) for ze H*
and jg, = jg. For a function fon H* and o € G,, we define the function f | « by

(f| @) =1, flaR), zeH"

For z = (z,) e H?, we put y, = Im(z,) and y = (»,), and consider y as an
R®-valued function on H®*. Then

(1.1) Yla=17"j"%y" (peR*aeg,).

For vea and o € R®, we define differential operators ¢,, 6; and L}, operating
on C”-functions f on H® by

(1'2) ev-f= _ylzi af/azv’
(1.3) o0y = =y’ 0(y3¥ f)/0z,,
(1.4) L=48c,  o,=g,—2.

Let W be the subset of SL,(F) defined by [9, (1.10)] and 4, the holomorphic
function on H?® for each g € W given in [9, Prop. 3.2]. For each weight o, let
A, be the injection

Ay SL,(F)— G, (Case 1),

A W-G, (Case II)
given by
A (g) - (gajg)a gESLz(F) (Case I),
’ (8 hji™"?, geWw (Case II).

Let g be the maximal order of F, ¢* the unit group of g and b the different
of F. For each integral ideal ¢ of F, we put

I'(0) = {0 e SLy(F)NM,(g) | o — 1 €M, ()}
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We call a subgroup A of G, a congruence subgroup if it satisfies the following
two conditions:

(1.5) A is isomorphic to a subgroup of SL,(F) by pr,

(1.6) A contains A,(I'(c)) as a subgroup of finite index for some ¢ (c C 85!
in Case II).

A real analytic function f on H? is called an automorphic eigen form with
respect to a congruence subgroup A of G, if it safisfies the following three
conditions:

(1.7) f| o = f for every a € A;
(1.8) Ly f=\,f with N\, e C for every vea;

(1.9) for every a € G, , there exist positive numbers 4, B and C (depending on
fand «) such that

Yl )x + i) <Ay if y*>B.

For A = (\,) e C*, we denote by Q(o, \, A) the set of all such f and by ®(o, \)
the union of Q(o,\, A) for all congruence subgroups A of G,. We know
Q(a, \, A) is finite dimensional and @(o, N) is stable under the actionof ¢ € G, .
If fe@(a,\, A), then it has a Fourier expansion of the form

S+ iy) = b(y) + 03,3 by W(hy; o, Ne(hx)

with m a lattice of F, b, € C, b(») a function on R?, e(z) = exp 2wiXz,) for
z€C?, and W the Whittaker function defined by [9, (2.19) and (2.20)]. We
call b(y) the constant term of f and call f a cusp form if the constant term
of f|  vanishes for every o € G,. We denote the set of all cusp forms in
Q@(a,\) by 8(o,\) and put 8(g, \, A) = G(o, N\, A)N 8(a, ).
For two continuous functions f and g satisfying (1.7), we put
(frgy=pA\HY [  Feydu(2)

A\ HA
where

du(z) = y~** I] dx,dy,.

vea

This does not depend on the choice of A. We define subspaces 91(o,\) and
(o, N\, A) of @(o,N) by

Mo, N\, ) = {ge @0, N, )| (f,8) =0 forall feS(o,\A)},
Mo, N\) = {ge(o,\) |(f,g>)=0 forall feS(o,N)}.

Then (o, N, A) = (o, N) NC(a, N, A).
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Let U be a subgroup of g™ of finite index. We call 7 = (7,) € R* U-admissible
if

(1.10) L7,=0 and |a|/"=1 forall aecU.

We call 7 (€ R*) admissible if it is U-admissible for some U and denote by T,
the set of all U-admissible 7.

Hereafter we fix a weight ¢ and write G = G, and A = A,. We call \e C*
critical if 4\, = (1 — 0,)* for all vea, and call N\ non-critical if it is not
critical.

Proposition 1.1. ([9, Prop. 3.1]). The constant term b(y) of an element
feQ(a,\) has one of the following forms.

(1) If X\ is critical then
b(y) = a1y? + a,y?1og y*,

where q = (q,) and q, is the multiple root of X* — (1 — 6, )X + \, = 0.
(2) If \ is non-critical then b(y) is a linear combination of y* with p = (p,) €
C*? satisfying

(1.11) p, is a root of ¥,(X) = X% — (1 — 6,)X + \,,
(1.12) p = su — (o — ir)/2 with s € C and an admissible T € R®.

When X\ is non-critical, an element p € C* is called an exponent attached to
\ if it satisfies (1.11) and (1.12). We denote by C(o, \) the set of all exponents
attached to \. For p = (p,) €C? we put p=(p,)€C? Then C(s,\) =
{p|lpeC(o,\)}. We note if C(a,\) = ¢, then Q(o, ) = 8(o,\). We call A
simple either if \ is critical or if \ is non-critical and C(o, \) consists of exactly
two elements. We also call A multiple if C(o,\) has more than two elements.

Lemma 1.2. Assume \ is non-critical. For p e C(o,\), put p' =u — o — p.
Then p' € C(o, \) and p' # p. Furthermore \ is non-critical and p’ = p’' € C(a, ).

Proor. Since p, is a root of ¢,(X)=0, 1 —o0,—p, is also a root of
¥,(X) = 0. As ¥,(X) = 0 has simple roots for at least one v, we have p’ # p.
Further since p’ = (1 — s)u — (o + i1)/2, p’ satisfies also (1.12). The last state-
ment is obvious. [

2. A Bilinear Relation of Coefficients of Constant Terms

The purpose of this section is to generalize [9, Theorem 6.1] to multiple A.
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Hereafter we assume \ is non-critical. Let A be a congruence subgroup of G
and put I' = pr(A). Put

b
P= H: d] eSL,(F) | c = o}. ® = {aeG|pr@)eP).
Then ®\ G/A is a finite set. We call classes of @\ G/A cusp classes. Take
a complete set of representatives X for ®\ G/A. For each £e X, we put
Q:= PNpr(¢At~1). Let © be a subgroup of P of the form

o-{[s 2]

with a fractional ideal m of F and a subgroup U of ¢* of finite index. Take
U, and m so that A(©) C ¢A¢~! for all £€ X and every a (€ U)) is totally
positive. For 0 < re R, put

anl,bem}a

T,={zeH*|y*>r]}, M,={zeH*|y*=r).

Put U= {a@*|aeU,;}. Then ©\M, is isomorphic to the product of R*/m
and {yeR*|y*=r,y>>0}/U up to the difference of orientations of
(-1)"® -1’2 For a fixed vea, we put

w=y"2 T] dx,Ady,,

vea

g-v = (I/Z)yu_2ud2u H dxw/\dyw'

wFEv

Since [9, Lemma 6.2] holds only when 7 = 0, its proper statement should be
the following

Lemma 2.1. For seC and 7€ T, we have

j - {(—i/z)y(rR"/mRUr“ (r=0)
o\ M, * (o (r#0),

where R, = R.[¢*: U- { +1}] with the regulator Ry of F and w(R*/m) is the
volume of R®/m.

Let fe G(o, \, A) and g € @(a, \, A). For each £ e X, we write
f| & '=Za, . »” + (non-constant terms)

and

g| £ ' = Eb, y? + (non-constant terms),
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where p is taken over the elements of C(g,\). Let C; = C;(0, \) be a subset
of C(s,\) such that

Clo,N) = Ci(@,NU (p'|peCi(0,N}  (disjoint).

Then we can generalize [9, Theorem 6.1] to the following

Theorem 2.2. We have

2 (=P 2 vil@y by — @y, b5 ) = 0,
pPeC, teXx

where v, = [Q;- {£1}:0 - {£1}]7L.

Proor. Take a positive number r so that any two sets & 'IQ;_E\S ~T)
(CT\H? £eX) have no intersection points. Let J be a union of small
neighbourhoods of elliptic points on I'\ H®, which are compact manifolds
with boundary. Inducing a natural orientation into each set, we see that

0K = 3 60\ E7H(T) - 0.

Therefore for a I'-invariant C®-form ¢ on H?* of codegree 1, we have
— -1 _
jKd(b—E;‘,vsJBécbOE JaJd)’

where B, = £ '0£\ £7'(M,). We put ¢ = f(e,8)y°¢, and ¢’ = g(e,S)¥°¢,.
Then

1. — ,
do = ZfLZgy”w — (/)8 w (0" =0—-20)
and

_ 1 [
di¢ — ¢') = z(fLZg - Ly f8)y°w

1 =.,0
= 7O =N Bw =0,

This implies that
g n o Y, -1
@)= D[, G-erot

teX

Now we have the expansions

1 r  p+givto
$of 1=§unap,sba,eyp+q”+ Sotns
p,q
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and
' - l - D+q o
¢t = _72Pvap,£br7,s}’p+q+"+ Sot oo
p,q

where p and g are taken over C(o, \). Though the unwritten terms also contain
terms which do not contain e(fx), they tend to 0 in our later process of letting
r — oo since they decrease rapidly by [9, Prop. 2.1(2)]. Applying Lemma 2.1,
we obtain

31(5 -¢) = IL([Ra/m)RU Z (py — PV Z VE(ap,EEﬁ',E - ap',fl;ﬁ,g) +oeey,
peCl teX

where C; = C;(g,\). Since the unwritten terms tend to 0 when r — o as we
mentioned above and j' a7 (¢ — ¢") > 0 when J — ¢, we have the assertion. [J

3. Eisenstein Series

Let p be an element of C® such that
p=(0—1)/2
with an admissible 7. A cusp class ®£A (£€ X) is called p-regular if
y Pla=y~* forevery ae®NEAt™ L.

We denote by Y(p) the subset of X that represents all p-regular cusps. We also
denote by x(p) the number of elements of Y(p). For each congruence
subgroup A, we define its Eisenstein series by
Yl o if ®A is p-regular,
E@z,s;p,A) = {ac®nana
0 otherwise.

The series is convergent for Re (s) > 1 and can be continued as a meromorphic
function in s to the whole s-plane. If A D A’, we see that

(3.1) [PNA:®NANEE, s;0,4) = 2, Ez, 550,477
yeEA\ A’

For each cusp class ®£A, we put
E(z,5;p,8) = E(z,s;p, EAE ™) | £.
Then we see

(3.2) Ey(z,5;p,4) | a = Eg(z,5;p,A) for every ae€A.
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We denote by &[p, A] the complex vector space generated by the functions
E,(z,s;p,4) for all £eX. Using (3.1), we can prove that if A D A’, then
&Elp, A] C &[p, A’] and

(3.3) &[p, Al = (g = g(z,5) € &[p, Al | g | @ = g for every a € A}.
Now by [9, Prop. 5.2], we have for £, 7 € Y(p),

(3'4) EE ll 77_1 = 6Enysu_p +.f$17(s)yu—su—5 + 0?5% gE'q(h! S,y)e(hx)
€n

where f;, and g;, are meromorphic functions in s, d;, is the Kronecker’s delta
and n is a lattice in F.

For s, € C, we denote by &l[s,, p, A] the subspace of &[p, A] consisting of all
functions g(z, s) that are holomorphic at s,. We put

8(SO, P A) = {g(zs SO) ] ge 8[‘SOs P, A]}
Then by [9, Prop. 7.1],
8(S()s I A) - @(0, )\, A)

with A = (\), N\, = (So — Pu)(1 — so — P,)-

The following lemma is stated in [9, Prop. 7.2] under the assumption that
\ is simple, but the assertion holds also for multiple A\ without any changes
of the proof.

Lemma 3.1. (1) dim &[p, A] = x(p).
(2) The map g(z,s)— g(z,s,) gives an isomorphism of &[s,, p, Al onto
&(so, 0, A).

Conversely for a fixed non-critical A\, we express p € C(o,\) as

D = Spu— (0 —it,)/2

with s,€C and an admissible 7,. We put p, = (¢ — i7,)/2 and also set
Y(p) = Y(pp) and x(p) = x(p,). We note

p'=(=s)u—p, and x(p")=x(p)
by [9, Prop. 7.5].

Theorem 3.2. Suppose \ is non-critical, &[p,, A] = &[s,, p,, A] and &[p,, Al
= &[5y, pp, A] for any pe Cy(o,N). Then

m(gs )\, A) = @ S(Sps pp’ A) (Cl = Cl (0’ )\))

peC;
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ProOF. It is easy to see that the right-hand side is a direct sum and is contained
in 9(o, N\, A) by [9, Prop. 7.1]. Therefore we have
dim (9(o, N, 4)) = 3 x(D).
pPeC, )
For each p € Cy, let Y'(p) be the set of all £ € X such that ®£A is p,-regular.

Then the number of elements of Y'(p) is »(p) by [3, Prop. 7.5]. For
feQ(a, N\, A) and £ € X, write

flet= Z; (@, :y? + apllgy”') + (non-constant terms).
pec,

Then the map V:f— ((apig)pecpzey(p),(ap,,z)peCI,EEY,(p)) gives an injection
of @(a, \, A)/S(a, \, A) into C**(p = Zpecl x(p)). For each pe C;, take vea
so that p, # p;,. Let g € &(5,, pp, A) and £ € Y'(p). Denote the Fourier expan-
sion of g | £~ by

gl &' =bpy?+ by 7 + (non-constant terms).
The using Theorem 2.2, we have a linear relation

> 2@y by s —ay by ) =0
te¥ip) £E\%p, 5P, P, EYD, ¢
among (@, ;, a4, ;) for each g. Since these linear relations are independent if
p's are different, we have at least u independent linear relations. This implies
the dimension of the image of ¥ is at most u and therefore is equal to . [

If \ is non-critical, by [9, Remark 7.4 (1), (2)], we can take the set C, (g, \)
and s, for each p € C; (o, M) so that they satisfy the conditions of Theorem 3.2,
except for the case when\ = 0,0 =0(p =u, p’' =0, s, = 1) in Case I and the
case when o, — 1/2 is either an even non-negative integer or an odd negative
integer for everyvea (p = 3/4 — (1/2)o, p’' = 1/4 — (1/2)0, 5, = 3/4) in Case
II. To discuss these cases, we denote by E*[s,, p, A] the set of elements of
&lp, A] that have at most a simple pole at s, and by &*(sy, o, A) the set of
residues of elements in &*[s,, p, A]. The following theorem is a generalization
of [9, Theorem 7.9], which can be proved similarly as [9, Theorem 7.9] together
with the modification used in Theorem 3.2.

Theorem 3.3. Suppose \ is real and non-critical. Suppose also for all
p€Ci(a,N), Elpp, Al = E*[s,, pp, Al and a cusp class of A is p,-regular if and
only if it is p,-regular. Then (o, \, A) has dimension 2, »x(p) and is the
direct sum

peC,

@ (8(Sp! pp’ A) @ 8*(Sp’ pp! A))’ (Cl = Cl (G’ )\))

peC,
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Using Theorem 3.2 and Theorem 3.3, we obtain the following

Theorem 3.4. If \ is non-critical, then Y(o,\, A) is generated by special
values and the residues of Eisenstein series and has dimension 3, pecC, x(p)
(€, = Ci(o, N).

Proor. This is a direct result of Theorem 3.2 and Theorem 3.3 together with
[9, Remark 7.10]. The only thing we would like to mention here is that in
Theorem 3.3, we have assumed a cusp class of A is p,-regular if and only if
it is p,-regular for all p € C,. To avoid this restriction, take a subgroup A’ of
A of finite index so small that any cusp class of A’ is p,-regular and also p,-
regular for all p e C;. Then by (3.3), we have the result. [

4. Remarks on Multiple \

In [9, Remark 5.5], Shimura gave an example of multiple A, when the field Fis a
quadratic field. We explain it in a slightly more general situation, because it
seems to be the only case when multiple A appears. Let F be a totally real number
field of degree 2n containing a quadratic field L as a subfield. Denote by {v, w}
the set of archimedian primes of L and by a = {vy, ..., 0, W, ..., W,} the
set of archimedian primes of F of which vy, ..., v, are lying over vand w, . . .,
w, are over w. Let U, be a subgroup of the unit group of L of finite index
and take 6 so that TU1 = 7Z6. Let U be a subgroup of the unit group of F of finite

index such that {N,,(¢e)|ee U} C U,. Let 7 be an element of R* such that

Ty, = 0,, Tw, = 0, forany i(1<i<gn).

Then |e|” = [N, (e)|"” = 1 for any e e U. Put for integers m, n (m # n),
p={Q +2nib ) )u — (c — 2mir)}/2,
g = ((1 +2mibyu — (o — 2nin)}/2.

Then p, p, q, g are all distinct and are exponents belonging to C(o, \) with
A= ()‘”1’ e ,)\U", )‘Wx’ e ’)‘Wn) given by

4\, = (1 ~0,)" +(m+n)?05, 4\, =(-0,)+(m—nh,.

Therefore )\ is multiple.
Now we return to the general situation and assume X\ is multiple. Then by
[9, Prop. 3.2] )

(4.1) \is real and X* — (1 — 0,)X + \, = 0 has either a multiple root or two
simple roots which are complex conjugate.
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Therefore if p is an exponent attached to A, then p’ = p and for any other
exponent g € C(o, \), we see that g, is either p, or p, for all v € a. The following
proposition suggests that even for multiple A, C(c, \) cannot contain so many
exponents.

Proposition 4.1. Let F be a totally real number field of degree (n = 3).
Assume X\ is multiple. Let p = (py,...,0,) (Di= Py, for v; e a) be an expo-
nent attached to \. Assume p; # p; and put q = (D1, ...,Dis---sPn). Then g
is not an exponent attached to \.

Proor. We may assume i = 1 by changing the indices. Assume g is also an
exponent attached to A and put

p=su—(oc—in/2, q=s'u—(o—ir)/2 (s,s'eC)

with admissible 7 and 7’. Since Re(s) = Re(s’) = 1/2 by (1.11) and (4.1), we
can write

s=1/2 +it, s'=1/2+ it
with ¢, ¢’ € R. Then we see
'+7i=—-({+ 1), v+r=t+m; 2<j<n).

Therefore T-T=t—t for all j (2 <j < n). Putting a = ¢ — ', we obtain
n n
=TI = —<ZT— ZT'>=(H—1)(1.
ji=2 ji=2

This implies
7T— 7= —au + (na,0,...,0).

Take a subgroup of the unit group of F of finite index such that 7, 7’ are
U-admissible. Then we see for any e € U,

1= Ieli(r—‘r’) — Ifi[ina-

Since the rank of Uis n — 1, we see ¢ = 0 if n > 3. This implies t = ¢t', 7= 7'
and therefore p; = p;, which is a contradiction. [J

It is an interesting problem to determine whether all multiple A\ can be
obtained as Shimura’s example mentioned in the beginning of this section or
not, though it is a problem solely on the structure of the unit group of number
fields.



ON THE SPACES OF EISENSTEIN SERIES OF HILBERT MoDULAR GROUPS 369
Corollary 4.2. If[F: Q] = 3, then there exists no multiple \ for any weight o.

Proor. Assume X\ is a multiple eigenvalue and let p be an exponent attached
to A. Then p is also an exponent. If g is an exponent attached to A, then g
is obtained by changing p or p at only one prime v. But this is not allowed
by Proposition 4.1. [
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