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Abstract

We study the Orlicz type spaces H,, defined as a generalization of the Hardy
spaces H? for p < 1. We obtain an atomic decomposition of H,, which is
used to provide another proof of the known fact that BMO(p) is the dual
space of H, (see S. Janson, 1980, [J]).

Introduction

The purpose of this work is to study the spaces H,, obtained as a generaliz-
ation of the Hardy spaces H” taking w(¢) = t”. For more general w, the space
H, was considered before by Janson in [J]. There, the author proves that
BMOX(p) is the dual space of H,,, with p and w related by t"p(f)w~*(1/¢t") = 1.
The main result of this paper is an atomic decomposition of H,,.

The atomic decomposition of H” spaces starts with the work of Hertz in
the martingale setting ([H]). Since then many authors have been studying the
problem in different situations: R. R. Coifman [CO], Latter [L], Latter and
Uchiyama [LU], Calderdén [C], Macias and Segovia [MS], etc. Since most of
the work in the atomic decomposition relies on Calderén-Zygmund type lem-
mas, we accomplish the problem in the setting of spaces of homogeneous type
for which the Calderdn-Zygmund method has been worked out by Macias [M]
and Macias and Segovia [MS].
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As corollary of the atomic decomposition we obtain another proof of the
fact that BMO(p) is the dual space of H,. As a by-product we get the
equivalence of BMO(p) and BMO(p, g) (1 < g < ) without using John-
Niremberg type Lemmas (see [A] for a proof of John-Niremberg lemma in
this context). We would like to point out that the atomic space is given by an
Orlicz type norm which in the case of p(¢) = #1/?~! provides the usual atomic
H? spaces.

In the first section we give the notation and definitions that we shall use in
the sequel. We introduce the atomic spaces H”'?, 1 < g < o, the maximal
spaces H, and the spaces BMO(p, g).

In Section 2 we state the main results: atomic decomposition, Theorem 2.1,
and duality, Theorem 2.2.

In Section 3 we prove the basic properties of the growth functions w and p,
in particular Lemma 3.1 provides the tool for further work with this type of
functions.

In Section 4 we prove Theorem 2.1. The key for this proof is the Calderén-
Zygmund type Lemma 4.9. Other important tools in the proof of Theorem 2.1
are interesting by themselves: the maximal space H, is continuouly included
in the Orlicz space L, for ¢ a Young function (Theorem 4.15). Theorem 2.1
also provides an important consequence namely, the spaces H”** and H”?
(1 < g < ) are equivalent.

Finally, Theorem 2.2 is proved in Section 5.

1. Notation and Definitions

Let X be a set. A function d: X x X—= R™ U {0} shall be called a quasi-
distance on X if there exists a finite constant K such that

(1.1 dx,y)=0 ifand onlyif x=y,
1.2) d(x,y) = d(y, x),

and

(1.3) d(x,y) < Kld(x,z) + d(z,)]

for every x,y, and z in X.
In a set X, endowed with a quasi-distance d(x,y), the balls

B(x,r) = {y:d(x,y) <r}, r>0,

form a basis of neighbourhoods of x for the topology induced by the uniform
structure on X.
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We shall say that a set X, with a quasi-distance d(x, y) and a non-negative
measure p defined on a g-algebra of subsets of X which contains the balls
B(x, r), is a normal space of homogeneous type if there exist four positive and
finite constans 4, 4,, K; and K, <1 < K, such that

(1.4) Ar <pBa,r) if r<KpX)
1.5) Bx,r)=X if r>KuX)
(1.6) Ayr 2 p(B(x, 1) if r>Kp({x})
1.7 B(x,r) = {x} if r<K,u({x}).

We note that, under these conditions, there exist two finite constants, a > 1
and A, such that

(1.8) 0 < w(B(x, ar)) < Au(B(x, 1))

holds for every x in X and r > 0.
We shall say that a normal space of homogeneous type (X, d, u), is of order
o, 0 < a < oo, if there exists a finite constant K; satisfying

1.9 |d(x, 2) - d(»,2)| < K3r'~*d(x, )%,

for every x,y and z in X, whenever d(x, z) < r and d(y, z) < r (see [MS]).
In this paper X = (X, d, n) shall mean a normal space of homogeneous type
of order o, 0 < o < 1, and we shall often refer to the constants that appear
in (1.3) to (1.9) as the constants of the space.
Let p be a positive function defined on R* . We shall say that p is of upper type
m (respectively, lower type m), if there exists a positive constants ¢ such that

(1.10) p(st) < ct™p(s)

for every ¢ > 1 (respectively, 0 < ¢ < 1). A non-decreasing function p of finite
upper type such that lim p(¢) = 0 is called a growth function.

t—=0+
We shall say that a positive function p is quasi-increasing if there exists a
constant ¢ such that

o(s) <co(t) for s<it.

Let p be a quasi-increasing function. We consider the function p ~(s) defined
by
p~1(s) = sup {#: p(t) < s}
for those values of s at which the supremum is a real number. Clearly p ™ (o(s))

> s. It is easy to see that if the function p(¢) is continuous and strictly increasing
then the function p ~!(¢) is the ordinary inverse function of p(?).
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We shall understand that two positive functions are equivalents if their quo-
tient is bounded above and below by two positive constants.

Let Y(x) be an integrable function on bounded subsets of X. For any ball
B, we denote

my(¥) = w(B) ™" | ¥ du(x)
and, as is usual, the Hardy-Littlewood maximal function by

M®)(x) = sup my(|¥]),

where the supremum is taken over all balls B containing x.

Definition 1.11. Let 1 < g < « and p a growth function plus a non-negative
constant or p = 1. A function f(x), integrable on bounded subsets, belongs to
BMO(p, q) if there exists a constant c such that the inequality

[1B) " [, 170 = mp(DI*du ()] < colu(®)

holds for every ball B. The least constant c satisfying the inequality above
shall be denoted by | f | gpoq,, 4 When p is the constant function p = 1 and
1< g< o, the space BMO (1, q) coincides with the space of functions of
bounded mean oscillation BMO. The space BMO (p, 1) shall be denoted by
BMO (p).

Let p be a growth function. We shall say that a function J(x) belongs to
Lip (o), if there exists a finite constant c such that

(1.12) [¥(x) — ¥(»)| < co(d(x, )

for every x and y in X. The least constant c satisfying this condition shall be
denoted by || Lip(oy- When p(2) is the function 8, 0 < B < «, we shall say
that Y(t) is in Lip (B) and, in this case, || indicates its norm.

In [MS], Macias and Segovia introduce the space of distributions (£%)’ as
the dual of the space E“ consisting of all functions with bounded support,
belonging to Lipschitz 3,0 < 8 < a.

For xin X and 0 < ¥ < o we consider the class 7., (x), of functions y belonging
to E“ satisfying the following condition: there exists 7 such that r > K, u({x}),
supp ¥ C B(x, r) and

(1.13) rivle<1 and Pyl <1

Given v, 0 < v < «, we define the y-maximal function f¥(x) of a distribution
fon E* by

(1.14) f300 = sup {|f(W)|: ¥ e T, (x)}.
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Definition 1.15. Let p be a growth function plus a non-negative constant or
p=1. A (p,q) atom, 1 < g < =, is a function a(x) on X satisfying:

(1.16) [ a0 dutx) =0,

(1.17) the support of a(x) is contained in a ball B and

(1.18) [,;(B) - fB la(x)| dﬂ(x)] Y4 < [wB)p(u(B))] !
if g< o or

la)w < [BoW®B) ', if g=co.

If w(X) is finite, we may assume that u(X) = 1. In this case, we also suppose
that p(1) = 1 and we consider the characteristic function of X as a (p, g) atom.
Clearly, when p(7) = t*?~!, p< 1, a (p, q) atom is a (p, g) atom in the sense
of [M].

Definition 1.19. Let 0 < v < a.. Assume that w is a growth function of lower
type | such that I(1 + v) > 1. We define

H, = H,(X) = {f€ E*Y: [0l f3()] du (x) < ]
and we denote
Fx)

”f"Hw = inf z)\> 0: jw<v> dp (x) < 1} .

It is easy to see that H, is a complete metrizable topological vector space with
respect to the quasi-distance induced by | |, . Moreover, H,, is continuously
included in (E%)'.

Definition 1.20. Let w be a growth function of positive lower type . If
o) =t Y (¢t™Y), we define H>9(X)=H"9, 1< q< », as the linear
space of all distributions f on E* which can be represented by

(1.21) f@) = 2b:(9),

Sfor every y in E%, where {b;}; is a sequence of multiples of (p, q) atoms such
that if supp (b;) C B; then

(1.22) 21 wBo(| by gu(B) 1) < oo,
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We introduce a quasi-distance in H”?. Given a sequence of multiples of
(p, @)-atoms, {b;};, we denote

; B) V4

and we define

(1.24) | 1 zz0.o = iInf Ay ({B;}),

where the infimum is taken over all possible representations of f of the form

(1.21).

2. Statement of the results

The main theorems in this work are the following.

Theorem 2.1. Let w be a function of lower type | such that I(1 +v) > 1,

0< vy < a. Assume that w(s)/s is non-increasing. Let p(t) be the function

defined by to(t) = 1/w~*(1/t). Then H,= H*? for every 1 < q < .

Theorem 2.2. Let p(t) and w(¢) as in Theorem 2.1. Then, (H,) = BMO (p).
We observe that from Proposition 3.10, it turns out that the function p(¢)

defined in Theorem 2.1 satisfies the conditions of Definitions 1.11 and 1.15.

3. Basic Lemmas on Growth Functions

Proposition 3.1. Let w be a function of positive lower type | such that w(s)/s
is non increasing. Then the following properties hold

(3.2) <1,
)
(3.3) o

is quasi-increasing for p < |,

3.4 a(r) = jt&ds

o S

is a continuous function of positive lower type | < 1 equivalent to v,
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 (3.5) lim &(@) = 0,

t=>0+

(3.6) @ is strictly increasing.
(3.7) @ is subaditive,

a(s)
3.8) S
is non-increasing and

a(5)
3.9 2

is quasi-increasing for p < I.

Proor. Since w(s)/s is non-increasing and w(s) is of lower type /, we have

for s < 1, and (3.2) holds. To prove (3.3) take s < f and p < /. From the lower
type property of w, we obtain

w(s) <c<i>l w(t) <e w(?)

sP t) sP T tP

Let us prove (3.4). Clearly w(¢) < @(#). On the other hand using the lower type
I of w, we get

1 1
&) = j w(st) ds < co(t) j s'~lds = ol 'w(t).
0 S 0

Properties (3.5) and (3.6) follow immediately from the definition fo &. In
order to prove (3.7), let us observe that

a a+b
&+ b) = j <6 gs + j i"—iﬂds
0

s a

b
< @(a) + j‘ iJo—gﬂds

0
= a(a) + a(b),

where the inequality follows from the fact that w(s)/s is non-increasing. Let
t 1 = tz , then
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@) _ 1 j’l o) g1 [Pebt/t) 1 [2el o 8)

L tiJo s T hJo st/ ShJo s o

which proves (3.4). Finally, (3.9) can be proved as (3.3) using (3.8). O

Let us observe that the results stated in Section 2 are invariant under change
of equivalent growth functions. So that, there is no loss of generality in
assuming that w satisfies all properties of @ in Proposition 3.1, that is, we shall
suppose that w verifies (3.4) to (3.9).

Proposition 3.10. Given w(t), let p(t) be the function defined on R* by
-1
£)=—1—7
o(?) o l(t_ 1)
Then p(t) is a positive non decreasing function of upper type [~* — 1 > 0.

Proor. In order to prove that p is non-decreasing, let us take #; > ¢, > 0.
Since w ™ (t7 ) < @ !(t; 1) and w(s)/s is non-increasing, we have

0 ') | oG )
PRI ERCE)

p(t) = = p(t).

On the other hand, it is easy to check that w is of lower type / if and only if
w1 is of upper type /~1. So that, »~! satisfies

o X1 = e wi(s)
for every se R* and 7 < 1. Therefore, for se R* and ¢ > 1, we obtain

st < s
w_l(S_lt_l) =X ct-—l/fw—l(s—l)

p(st) = =ct’' " 1p(s),

which proves that p(¢) is of upper type /"1 —1. O

4. Atomic Decomposition

In [MS], Macias and Segovia obtain the atomic decomposition of H,, with
w(t) = t*, on spaces of homogeneous type. In this section we shall adapt to
our situation their scheme of proof. Therefore we shall prove only the
technical lemmas which require suitable modifications, the results that we
state without proof can be found in that paper.

In this and the following section we shall assume that  satisfies (3.4) to
(3.9) with /(1 + v) > 1 for some v, 0 < ¥ < «. The first two lemmas deal with
geometric properties of the space.
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Lemma 4.1. Letr>0, x,e X and p > 1. Then

le (XO’ ne [r/d(x, xO)]p d# (x) g CI‘L(B(XO; r)))

where c¢ depends only on p and the constants of the space.

Lemma 4.2. Let 0< B3, 1< qg(l + B) and M a positive integer. There exists
a finite constant c, g »r such that given any sequence of points {x,}, and any
sequence of positive numbers {r,}, satisfying the condition that no point in
X belongs to more than M balls B(x,, r,), then

B(x,, 1, 1+8)q
j {%;[u(B(x’:fr:));n:;zx,xn)] } d"(")S"q.ﬁ,Mﬂ<LnJB(xmrn)>-

The following lemma and its corollary show that (p, g) atoms are in H,.
Lemma 4.7 is a technical result to be used in Theorem 2.2.

Lemma 4.3. Let b(x) be a function in LY(X, du), 1 < g < «, with support
contained in B = B(x,, R) and j b(x) du (x) = 0. Then, there exists a constant
¢, independent of b(x), such that

[ wlb2e)1 du () < cuB)a|b] 4u(B)~9).

Proor. Let Y(x) e T, (») such that supp () C B(», r). Then, from (1.6) and
(1.13) it follows that

| [ 0000 du) | < 4:M@BY).

Therefore, b*(y) < A,M(b)(»). Let m = |b| u(B)~/?. Thus, using (3.6) and
(3.8), we have

w[bF(M] < colMB)W)] < cwlM(b)(y) + m]
< C<M + 1>w(m).
m

Integrating on B(x,, 2KR), by (1.8) and the L?-boundedness of M, we get

1
4.49) j w[bXN] du(y) < cw(m) [—— |M(®)| ,u(B) ~ 7 + #(B)}
B(xy, 2KR) m

< cw(m)u(B).

On the other hand, let y ¢ B(x,, 2KR) and y € T, () as before. We can assume
that B(x,, R)NB(y,r) = . Consequently, R < r and d(y, x,) < 2Kr. Then,
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| [ ) du)| = | [, b0) ~ $x dut) |
< 101 ( ], 190 — 90| du) )
<16l 1¥1,R'uB)"

2KR
d(ya xO)
B [ 2KR

d(y, Xp)

1+
< ubn,,[ ] R-1(B)

1+«
] R™'u(B).

We can suppose that R > K,u({x,}), since otherwise b = 0. Thus, by (1.6), we
have

bx(») < Azm[

2KR }”7
d(y,xp)

Applying w to both sides, since w is of lower type / and w(s)/s is decreasing,
we obtain

2KR }“ 0l

4.5) w[b3(M] < cw(m)[ a0, x)
s 40

for y ¢ B(xy, 2KR). Integrating (4.5) on the complementary set of B(x,, 2KR),
since /(1 + v) > 1, by Lemma 4.1, we get

»[B(XO,ZKR)C w[b‘t(y)] dl" (y) < Cu(B)w(m),

which together with (4.4) completes the proof of the lemma. [

Corollary 4.6. Let p(t) be the function defined in (3.10). If a(x) is a (p, q)
atom, 1 < q < «, then there exists a constant c, independent of a(x), such that

lalg, <e
Lemma 4.7. Set p(f) =t~ '/w ™ '(t™Y). Let (b;}; be a sequence of multiples of
(0, q) atoms, 1< q< o, such that A,({b;}) < o and o;= |b;|,mB)~ 4
/o~ Yu(B) ™), where B; D supp (b;). Then there exists a contgnt ¢ indepen-
dent of the sequence {b;} such that 3 o; < c(A,({b;}) + DV

Proor. By definition of «;, we get

(4.8) w(B) ™" = w(|bil u(B) ™).
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We first note that {«!} is bounded. In fact, for those i such that o; > 1, since
w is of lower type / with constant ¢,, by (4.8), we have

af = p(B)aiw(| by (B~ Va1
< cou(Byw (] by M(B)~ va)

~1/q Bg({bi}) + 1)“’)
(A (1B:}) + D

<o B w( 15,1 1(B)

< o8 ({B:)) + DV = a.

Applying again (4.8) we obtain

-1/
= 135 i 108

i Q;

Using that w(s)/s is non-increasing, this is bounded by

. y—Va
al/l Z /.I,(Bi)w<|—|bl " ql"(lﬁl) > < al/l

a
since w is increasing and a' > A ({b;}). O

One of the main tools in the proof of atomic decomposition of Hardy spaces
is provided by a Calderén-Zigmund type lemma which allows us to split a given
function into «good» and «bad» parts. In order to do this, let us take f belonging
to H,. Consider w(?) > [w[f} ()] du(x)/w(X) and @ = (x:f}(x) > ¢}. By a
Whitney’s type lemma applied to the open set Q, following [MS], we get a
sequence of balls B, = B(x,, r,) and a partition of the unity {¢,} associated
to it. For each n, the expression

S, = 6,09 [ a2 )] * [ [¥0) — YN (2) dn(e)
defines a continuous operator from E into itself.

Lemma 4.9. Calderén-Zygmund type. Let fin H, and b,(y) = f(S,(¥)) for
Y C E® Then

* T'n Ty *
(4- 10) (bn)'y (X) S Ct|: W};] XB(xn,4K,-n)c(x) + cf—y (x)XB(x",4Kr") (X)
and
@.11) Jolpr@dey<ef ol f3ldne).
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Moreover, the series Y, b, converges in (E*Y to a distribution b satisfying
n

1+%
4.12) bt <ty [E(;xr—):r_} + o F(Ixg ™
and
(4.13) [wlby 1dp () < [ wlf 301 (9,
The distribution g = f — b satisfies
r 1+
.19 gyt <ct 2 [W] + of F(D)Xge (%)

Proor. We shall only prove (4.11) and (4.13). To obtain (4.11), we first apply
w to inequality (4.10) and then we integrate on X. Thus, since w is of lower
type ,I(1 + v) > 1, by Lemma 4.1 we get

. r, a+yl
Lr wl[(b,)7 ()] dp (x) < cw(?) jB(xn.4Krn)° [ m} dp (%)

+c j w[f3 ()] dp (x)
B(x,,4Kr,)

<c j wlf5 ()] dp ().
B(x,,,4Kr,)

Applying w to (4.12), using the sub-additivity of w and proceeding as above,
(4.13) follows. [J

The next result which shall be often used in the sequel, is also an statement
of the inclusion H, C L, where ¢ is a Young function, i.e. a convex, positive
and increasing function on R* such that ¢(0) = 0 and ¢() = . Its proof
is similar to that of Theorem 3.25 in [MS].

Theorem 4.15. Let f be a distribution on E* and assume that f (x) belongs
to Ly(X, dp). Then, there exists a function f(x) such that | f(x)| < cf (x) and

S = [ £ 00) i),

for every y in E°.

Applying the preceding theorem with ¢(¢) = 19, 1 < g < o, we obtain the
density of L? in H,.
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Theorem 4.16. Let f be a distribution on E* belonging to H,,. Then fore > 0
and 1 < g < o given, there exists a function h(x) in LY(X, dyp) such that

[ol(f - mWEelde) < e
PRrOOF. There exists w(f) > p(X) ™! j' w[f% ()] dp (x) such that the inequality

(4.17) [ ol dne) <e

holds for @ = {x: f i‘,‘ (x) > t}. For this value of ¢, by lemma (4.9), we get the
decomposition

f=g+b.

Moreover, from (4.14), (4.2) and the fact that w(s)/s is non-increasing, we have

jgt (97 (x) < ct%u(@) + ¢ ch’: (0 dt (%)

q
w(?t)
19
w(t)

Consequently, g7 (x) belongs to L(X, du). Hence, Theorem 4.15 with ¢() = #7
implies that there exists a function A(x) such that |A(x)| < cg5(x) and the
distribution on E“ induced by A(x) coincides with g. Therefore A(x) € LY(X, dy).
On the other hand, from (4.13) and (4.17) it follows that

<c

f W[ fXO) dp () + ct?? ‘ch ¥ () dp(x)

J @[ £ ()] dp (x).

<c

[l(f = W3 du) = [l(f ~ DT W dr () = [ wlb} I dp ()
<cf olftWld® <ce. O

The analogue to Lemma 4.9 in the case that fis a function is contained in
the following Lemma.

Lemma 4.18. Let f(x) e LY X, du), 1 < g < ©. Assume that the distribution
fon E® induced by f(x) belongs to H, and | f(x)| < cf (x) almost everywhere
on X. With the same notation used in Lemma 4.9, let

my= ([ 6D @)~ [70)6,0) dp ().
We have

(4.19) |m,| < ct.
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(4.20) The distribution on E° induced by the function
bn(x) = (f(x) — my)d,(x),

coincides with b,,.
(4.21) The series 2 b,(x) converges for x € X and in LY(X, dp). Its sum induces
a distribution on E* which coincides with b and shall be denoted by b(x).
(4.22) The function g(x) = f(x) — b(x) satisfies
2(0) = FX)Xge(®) + 2 mu$,(%)

and
lg()| < ct

Moreover, g(x) induces a distribution on E® which coincides with g.
We shall need the following lemma, which is a consequence of Lemma 4.7.

Lemma 4.23. Let p(t) and {b;}; as in Lemma 4.7. Then the series Zb
converges in (E%) .

Proor. Let us first assume that / < 1. Let D be a bounded subset of E¢,
therefore there exists a ball B(x,, R) and a constant c such that R > K, u({x,})
and for every Y € D we have supp ¢ C B(xo, R), |¥|o < cand |¥],.,_, <c.
Observe that Lip(/~! — 1)N.D C Lip (p) and

(4.24) llwlfup(p) cD)[¥];-1-, < ED),

because p(¢) is of upper type /=" — 1. From (4.24) and the definition of p(¢)
we get

i

sup <sup D, j |b: ()| [¥(x) — ¥(x)| dp (%)
ye yeD m JB;

< C‘Sblélg " ‘1’" Lip (p) Z n b,- ”‘Ip(l”(Bi))lL(Bi)l/q'
; I binqﬂ(Bi)‘l/q
<c w_l(u(B,-)‘l)

=C2a,-.

m

Applying Lemma 4.7 we obtain the desired result. If / =1, the series Zb
actually converges in L, since p = constant. []
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In order to prove Theorem 2.1 we shall need the following lemma, which
gives a (p, ) decomposition for a suitable function.

Lemma 4.25. Let p(t) be the function defined by 1/p(t) = tw~'(1/t). Let
h(x) be a function in (L>* NL*)(X, dy). Suppose that for some p, such that
1+7)'<p<l, 0<Y<a, the y-maximal function h(x) belongs to
LP(X, du). Then there exists a sequence {b,(x)} of multiples of (p, ) atoms
such that

h=3b, in E*

and

(4.26) 22 #BRo(|byl ) < cw(| 1)) llhlls"jhi‘(x)" dp (%),
where c is a constant independent of h(x).

PRroOOF. Let € be any number, 0 < e < 1. We shall construct, by recurrency
a sequence of functions, { H;(x)} in the following way: H,(x) = H(x). Suppose
that H;_,(x) is defined. Then, if

(A€ < [ 0l(H; - )} 0] dps (9/wX),
we stop the construction obtaining a finite sequence. If on the contrary

w(1hlo€’) > [@I(H; - )309) dp (0)/u(X),

we choose H;(x) to be the function g(x) associated in Lemma 4.18 to f(x)
= H;_;(x) and t = |h|.€'. Thus, for those values of i > 1 for which H;(x) is
defined, we have

(4.27) Hi(x) = H;_{(x) — B;(x) = H;_{(x) — Zbi,n(x),

and, by (4.22),
(4.28) |H,(x0)| < €.

Moreover, using (4.12), (4.27), (4.28) and proceeding by induction, it can be
proved that

(4.29) HY; 0 Sh3 () + ¢ 3, [hloe’ 2, [ dx, x; ) + rj,n}
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First, we shall study the case when the sequence { H;(x)} is infinite, this is
the case if u(X) = . From (4.27) it follows that

h(x) = Hi() + 23 315,0).
=

n

Using (4.28) we obtain that
h= >, ij,,, in E<.
Jj=1n

Now by (4.19), (4.20) and (4.28) with i = j — 1 we have that b, , are multiples
of (p, ) atoms with supp (b;,,) C B(X; ,7;,,) = B; , and

(4.30) 15j,nle S clhlwe’ ™1
Let us prove (4.26). Denoting
Q= (xeX: (H;_ )5 (0> |h].€'),

from (4.30) and the fact that w(s) is of lower type /, we get

(431) j=Zl ; /‘(Bj, n)w(“ bj,n " oo) < jgl (;J(C" h " ooej_ l) znj I*"(Bj,n)

< £ Z ej(l_p)ejpw("h " w)ﬂ-(ﬂj)-
€j=1

On the other hand, applying Lemma 4.1 and (4.29), we have
432) W@ hIL < [ (H; )36 dul) < (e + 2 [ 3007 du ().

So that (4.31) is bounded by

o

© T+ DVl Al DIAIS? [ 36 d ).
Choosing e small enough, (4.26) holds and the proof of the lemma finishes
for the case when {H;(x)} is an infinite sequence.

Assume now that the sequence { H;(x)} is finite, in this case u(X) < «, and
we can suppose without loss of generality that u(X) = 1. Let H,,(x) be the last
function of the sequence, thus

(4.33) w(|h]ee™ ) < jw[(Hm)f(x)] dp. (x).

Moreover, for j < m, the function H(x) satisfies (4.27) through (4.29).
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Therefore, as before, we get that
m
(4.34) h(x) = H,,(x) + Zl 22bj,n (),
J= n

where b; , are multiples of (p, ) atoms for every j < m. Let

b s 1,1 = [ Hu(9) G ()X ()
and
bs1,20) = Hp() ~ [ Hp () du ().
These functions have their supports contained in
X = B(xy,2K,) and jbm 12du () =0.

Therefore, both functions are multiples of (o, ©©) atoms. Hence, by (4.34)

m+1

ho) = 3 2 b;00-
Jj=1 n

In order to prove (4.26), we first observe that by (4.28) and (4.33)
(4.35) O[O s 1,11w) + O[O 11,2 00) < wlc|h] ™)

<ce™! [WlHyp)3 (0] dp ().
In view of (3.3) and (4.28), it follows that (4.35) is bounded by

¢ w(|h]ee™

e (|h]oe™” j (Hom)y (X)* dp (x)

Sce el PMo(|h|) | h]2” j (H,)5 () dp ().

On the other hand, as in (4.32) we get
| EY; 0P du @) < (€ + 2" [ B3 00 dps ().
Then, (4.35) is less than or equal to
e ele!~Pc + DN"w(| Al S [ 0 du ().

Thus, arguing as in the case of an infinite sequence, we have

m+1

3 S8, 0e18;010 < callAlA1? [ B3y dun. O
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We are in position to prove Theorem 2.1. The inclusion of H**? in H,, is,
as we shall see, an immediate consequence of Lemma 4.3. The proof of the
converse is based on the Calderén-Zygmund type Lemmas 4.9 and 4.18,
which are applied to obtain the atomic decomposition of a distribution
belonging to H,,.

Proor oF THEOREM 2.1. First inclusion: H”? C H,,. Let f be a distribution
in H”?. So, by (1.24), for every e > 0 there exists a sequence {b;(x)}; of
multiples of (p, g) atoms such that f= >, b; in (E®)’ and

i

(4.36) A+ O fgo.a > Ag({Di}).

On the other hand, let # be a positive real constant. Then, by Lemma 4.3, we
obtain

__fﬂﬁ_h] J [_&&}
J ,“’[(nAqab,-}))“’ MO L | | Gh((BayT ) # O

CI/I” bj"ql"(Bj) - l/q} .

<2 (B")"’[ iy (B}

Taking 5 = ¢, by (1.23) and (1.19) we get

1 £, < cBg(ibi)),
which by (4.36), is bounded by c| f| 4., as we wanted to prove.
Second inclusion: H, C H"9. Since H*** is continuously included in H**9,
1 < g < oo, it is enough to show A, C H***. Assume that u(X) = o, the case

m(X) < « follows the same lines. Given fe H,, we shall prove that there
exists a sequence {b,(x)}, of multiples of (p, ©) atoms satisfying

(4.37) f=2b,

in the sense of (E%)', and

(4.38) [ flgo.e <l flg s

where c is a constant independent of f.

We first assume that f is a distribution in H, such that 7 (x) belongs to
L?(X, dy). Thus, by Theorem 4.15, f can be represented in (E*)’ by a function
f(x) belonging to L*(X, du) satisfying | f(x)| < cf(x). For ke Z, let us con-
sider @ = {x:f%(x) > 2¥}. Applying Lemma 4.18 with ¢ = 2K and t = 2%+ 1,
we obtain
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S&) = Bi(x) + Gi(X) = B 1. 1(X) + G 1.1(%).
So, we can write
4.39) Gi+1(0) — Gi(%) = Bi(X) — By 1 (x) = Hy(%).
Then, from (4.22) we have
(4.40) |H(0)] < 2%

Therefore, the inequality
k+1

(4.41) (Hk):(x) < c2* ‘Zk Z [rj,i/(d(x, X; ) + 1, i)]1 7,
j= i

follows from (4.12) if x ¢Q, and from (4.40) if x € Q,. Consequently, by
Lemma 4.1, for any p satisfying (1 + v)~! < p < 1, we obtain

(4.42) [ HY3 097 dn (9 < c2*7u(@y).

Let us see that >, H, converges to f in (E®)'. In fact, by (4.39) we have
keZ

f— Z Hk=f—Gn+1+G—n=Bn+l+ G—n'

k=-n

From (4.13) it follows that
[olBr i de@ <[ olf3Mdu .

Thus, B, converges to zero in H, when #n tends to infinity and consequently, B,
converges to zero in (E®)'. On the other hand, since by (4.22) |G_,(¥)| <277,
G _, converges to zero in (E®)’ as n tends to infinity. Then,

(4.43) f=2Hy, in (E%.
k

Let us now observe that H, satisfies the hypothesis of Lemma 4.25. Since f(x)
belongs to L*(X, dp), Hy(x) is in L*(X, dp) and by (4.40), H,(x) also belongs
to L®(X, dp). Furthermore, from (4.42), (Hk);“ (x) is in L?(X, dy), for any p
satisfying (1 + v) ™! < p < /. Then, Lemma 4.25 implies that there exists a
sequence [bf }; of multiples of (p, ) atoms such that

H,=bf in (E%
and

> wBHw(|bf =) < coll Hel ) [ Hi| 27 [ (HF 97 d ).
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Therefore, using (3.3), (4.40) and (4.42), we get

(4.44) > u(Bh(|bf]) < cole2*)(e2) ™7 [ HYF P dp (0
< w(e2)@y).

On the other hand, from (4.43), we have

(4.45) f=3 (Z bf).

Let 7 > 1 be a constant to be determined later, and denote N = 7| f|, . We
now estimate the sum

o e A

By (4.44) applied to A~ 1’H,, this sum is bounded by
c2k c2k
Z M(Qk)w< 1/1'> = Z w<—1/,> J\ dp (x)
kez A Kez \ A [/ 30 > 24}

c2k
< j Z w(_)\l/_l>’
X k<log, (/30

applying that w(s)/s is non increasing this is bounded by

o Vik ©)
w
<2 —>ds|du(x)
= JX |:k<log§f::(x)) jcx-l/IZk-l N ]

N2 16)]
<2 J [ j @) ds} du (%),
X S

0

which by (3.4) is less than or equal to

Lw[ cf;\sz) } dn ().

Choosing 7 = ¢', we get

k *
2 Zu(Bf‘)w<—”l—)"—"§,—> < Lw(—ﬂ’f—w du (0 < 1.

kez i C[!f”Hw “f”Hw

This proves that A,({b¥); ) <c|f|, - Applying Lemma 4.23 and using
(4.45), the Theorem follows under the assumption that f;“(x) belongs to
L*(X, dp). Next, we shall remove that assumption. Let f be a distribution, in
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H,. In view of Theorem 4.16, we have that, for any positive integer k, there
exists a function f,(x) in L*(X, dp) such that

(4.46) If =Sl e, <271 f |-

Defining f,(x) = 0, since H, is immerse in (E“)’, we get that
f= kzlfk —fk—l’

in (E*)'. On the other hand, since f; — f;_, is a distribution in H, satisfying
that (fy — fi— 1);" (x) belongs to L*(X, dp), we have an atomic decomposition
for fi — fu_1, i.e. fu = fe—1 = 2, b¥, where {b¥}, is a sequence of multiples
of (p, ) atoms such that !

A({bF}) S A + O fi = feo il oo < €l Si _fk—IHHw
for every e > 0. Therefore, by (4.73),
A((b}) < 278 S|, -
Thus

2 e e (1B ) S _k< |51 >
22 (B')°’<(c|1f||Hw)1/’ S & B G p 7

© bk -
<2 2~kzi:#(3f)w<‘x“”{l;7"}.)—17r>

k=1 o
This implies that

in (E*) and | f| 4.« <c|f|g > as we wanted to prove. [

Remark. Observe that the statement of the theorem implies in particular
that all the spaces H*? are equivalent, for 1 < g < . In fact the original
proof of the first inclusion was obtained by proving directly this equivalence
and using the inclusion H”** C H_ proved by applying Lemma 4.3 restricted
to g = . This path is longer than the approach presented here. I want to
thank the referee for suggesting this shortcut based on the extension of Lem-
ma 4.3 to the general case 1 < g < .
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S. Dual Spaces

In this section we use the atomic decomposition obtained in Theorem 2.1 to
show that BMO (p) is the dual space of H,,. Let us point out that as by product
of the proof of this characterization we get that BMO (p) coincides with
BMO (p, g) for 1 < g < 0.

We shall work, as before, on a normal space (X, du) of order oo with the
additional assumption that u is a regular measure. It is well known the density
of Lip(B), 0 < B < ain LP(X, dp), 1 < p < « (see [MS]). Consequently, if g
belongs to BMO (p), for every ball B and e > 0 there exists a bounded con-
tinuous function A4 satisfying

¢.1) [, 1800 — )| du () <e.
We shall denote by g,(x) the function defined by
(5.3) g() = [o(x,, 8 du (),

where ¢(x, y, t) is the function constructed in Lemma 3.15 of [MS]. In the pro-
of of Theorem 2.2 we shall need the following two lemmas.

Lemma 5.2. Let g belongs to BMO (p). Then

(5.3 “ 8t " BMO(p) < C”g" BMO (p)

and for every ball B
(5.4 }irrg L |lg:(x) — g()| du(x) =0,

Proor. The proof is similar to Lemma 5.3 in [MS] and it makes use of
remark 5.1. [

Lemma 5.5. Let {(b;}; be as in Lemma 4.7 with g = « and such that 2, b;
converges to zero in (E®). Then 2, b; converges to zero in BMO (p).

Proor. Following the same argument given in Theorem 5.9 of [MS], it is
easy to see that we only need to prove the convergence for functions g in
BMO (p) with bounded support and non-negative. In fact, by Lemma 4.7, for
any e > 0, there exists N such that 3, ,o; <e. Let B = B(x,,r) be a ball
containing the support of b;(x) for every 1 <i < N. Now, if g is as above, g,
is in E® for 0 < ¢ < 1, so that 2] b;(g) = 0. Thus,

2bi(g) = Z bi(g—g) = iSZNbi(g - g)+ ,-;vb"(g - 8)-
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By (1.16) and (1.11), we get

= 2 Jbi(x)[g(x) — &%) — mp (g — g)1dp (x)

i>N

<& - &lemow .gN,“'(Bi)p(/‘(Bi)) 16i]e-

]g%mw—go

Using (5.3) and the definition of p(¢), we have

Z bi(g — &)
i>N

<clel BMO (p) ‘>2Nai <c|gl BMO (o) €
1

On the other hand, we obtain

I_Z bi(g - g,)l <2l bille le(x) — ()| du (),
isN isN B
which by (5.4), tends to zero with ¢. This proves the lemma. [

PROOF OF THEOREM 2.2. First inclusion: BMO (p) C (H,)'. Let fbe a distribu-
tion in H, with | f|,;, <1, represented by f = 2. b;, where b; are multiples of
(p, ©) atoms. Given ‘e in BMO (0), we first prove that the series 2 b;(g) is
absolutely convergent. By (1.16), (1.11) and Lemma 4.7, we get

(5.6) Z Ib,-(g)l < el BMO (p) Zi:ai <clgl BMO (o) *

On the other hand, by Lemma 5.5, 2 b;(g) is independent of the representa-
tion of f. Therefore, we obtain that the linear functional

L,(f) = 2 bl
is well defined and from (5.6) it satisfies
ILeN| < clglamoe 171"

Second inclusion: (H,) C BMO (p). By Hoélder inequality, we have that
BMO (p, g) C BMO (p), for every 1 < g < co. Thus, it is enough to prove that
(H,) € BMO (p, q). Let us only consider the case u(X) = . Let 1 <g< o
and q¢' = q/(q = 1). Given a ball B, we define

Li(B) = [feLQ(B): jBf= o}.
Therefore, if f is in L{(B), then

SuB)? Nits)

b — = 7
O = 71 BB ~ 17T B o u®)
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is a (p, @) atom. Let L be an element of (H,). Hence, for fin L(B), we have
that L(f) is defined and

(5.3 ILON < L] gy (B "0 (BN S | 4-

Consequently, L is a bounded linear functional on LZ(B). Applying the Hahn-
Banach Theorem L can be extended to L7(B) with the same norm. By the
Riesz’s Representation Theorem there exists a 7 € L7 (B) such that

(5-4) L) = [, f0h() du ),

for every fin LY(B). It is easy to check that 4 is determined in L?'(B) up to
constants. Let C(B) be the space of constant functions on B. Then, there exists
g in L7 (B)/C(B) such that (5.4) holds for every 4 € g and every f in Li(B).
Consider now an increasing sequence of balls, {B;}5.,, such that{J, B, = X
and denote by 7, the operator which takes a function on X and restrict it to
By. Thus, if g, , ;€ LY(By,,)/C(By. ) and for every heg; ., (5.4) holds
with B = B, , , then

L(f) = jﬂk hf dy,

for every fin L{(B,). Consequently T, (g, ) = & . Therefore, there exists g
in L] (X)/C(X) such that T,(g) = g, for every k. Let L, be the operator

loc

defined on atoms by
L@ = | h(x)a(x) du (),

for every h € g. From Lemma 4.7 we see that L, is continuous on the space
spanned by the set of atoms. So that there is only one continuous extension
of L, to the space H*?. Clearly L, = L.

It remains to show that every 4 € g belongs to BMO (p, ¢’). Let B be a ball,
then, using (5.3) we have

(g — my(g)xgly = sup

I rxply=1

L (g —my(g))fdu

sup
Irxgly=1

L (g — mp(@)Sf — mg(f)) dp

sup |LI(f — ma(S)x]]

| fxgl, =1

sup  |L| gy wB) T 0(WB | (f — mp( X5,

1 7xgl, =1

<2 H L " @Y P"(B)l/qlp(#(B)) .

N
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Consequently,

lgl BMO (p,q) S 2|L] @) O
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