Global Models of Riemannian Metrics

J. Fontanillas and F. Varela

Introduction

In this paper we give certain Riemannian metrics on the manifolds $S^{n-1} \times S^1$ and S^n $(n \ge 2)$, which have the property to determine these manifolds, up to diffeomorphisms.

The global expressions used for Riemannian metrics are based on the global expression for exterior forms studied in [4]. In [3] one finds certain metrics using global expressions that differ from the type we propose.

To some extent, Theorem 3 is a «generalization for metrics» in an arbitrary dimension, of a theorem proved in [2] for certain volume forms on surfaces.

1. Examples and Theorems on Surfaces

The following example illustrates the context in which our statements are made. Let us consider in $\mathbb{R}^3 - 0$ the quadratic form:

$$m = (x_1 dx_2 - x_2 dx_1)^2 + (x_1 dx_3 - x_3 dx_1)^2 + (x_2 dx_3 - x_3 dx_2)^2.$$

A simple calculation proves that a vector v is isotropic if and only if

$$v = \lambda \left(x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3} \right), \qquad \lambda \in \mathbb{R}.$$
 (*)

Hence, m is a Riemannian metric over all surfaces in \mathbb{R}^3 whose tangent plane is transverse to the position vector field. In particular, if $i: S^2 \to \mathbb{R}^3 - 0$

is the ordinary inclusion, the metric $i^*(m)$ on S^2 admits the global expression

$$i^*(m) = (f_1 df_2 - f_2 df_1)^2 + (f_1 df_3 - f_3 df_1)^2 + (f_2 df_3 - f_3 df_2)^2$$

where $f_j: S^2 \to \mathbb{R}$, j = 1, 2, 3 are global functions given by $f_j = x_j \cdot i$. As a consequence of (*) the following theorem is easily proved

Theorem 1. Let M be a compact connected surface having a Riemannian metric m that admit the global expression:

$$m = (f_1 df_2 - f_2 df_1)^2 + (f_1 df_3 - f_3 df_1)^2 + (f_2 df_3 - f_3 df_2)^2$$

where $f_i: M_2 \to \mathbb{R}$, i = 1, 2, 3 are C^{∞} -global functions. Then M_2 is diffeomorphic to the sphere S^2 .

PROOF OF THEOREM 1. Given the metric m on M_2 , let us consider the map $\varphi: M_2 \to \mathbb{R}^3 - 0$ expressed by

$$\varphi(p) = (f_1(p), f_2(p), f_3(p)).$$

Lemma 1. The following statements are equivalent

- (a) m is a Riemannian metric on M_2 .
- (b) φ is an immersion transverse to the vector field

$$x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3}$$
 on \mathbb{R}^3 .

The proof of this lemma is basically the remark made in (*).

Let $\Pi: \mathbb{R}^3 - \{0\} \to S^2$ be given by $\Pi(x) = x/|x|$. Lemma 1 proves that if m is a Riemannian metric, $\pi \cdot \varphi \colon M_2 \to S^2$ is a covering map, hence $\pi \cdot \varphi$ is a diffeomorphism. \square

Let us now consider the metric

$$m_1 = (1 + 4\sin^2\theta_2\cos^2\theta_2) d\theta_1^2 + d\theta_2^2$$

on the torus $T^2 = S^1 \times S^1$ and

$$m_2 = (x_1 dx_2 - x_2 dx_1)^2 + (x_1 dx_3 - 2x_3 dx_1)^2 + (x_2 dx_3 - 2x_3 dx_2)^2$$

on the sphere S^2 .

An easy calculation proves that both metrics admit the global expression

$$m = (f_1 df_2 - f_2 df_1)^2 + [f_1(f dg - g df) - 2fg df_1]^2 + [f_2(f dg - g df) - 2fg df_2]^2$$

where f_1 , f_2 , f and g are global C^{∞} -functions.

Theorem 2. Let M_2 be a compact connected surface having a Riemannian metric that admits the global expression:

$$m = (f_1 df_2 - f_2 df_1)^2 + [f_1(f dg - g df) - 2fg df_1]^2 + [f_2(f dg - g df) - 2fg df_2]^2$$

and let

$$H = \{ p \in M_2 \mid f_1(p) = f_2(p) = 0 \}.$$

- (a) If $H \neq \emptyset$ then M_2 is diffeomorphic to the sphere S^2 .
- (b) If $H = \emptyset$ then M_2 is diffeomorphic to the torus T^2 .

Proof of Theorem 2.

Lemma 2. $(f_1 df_2 - f_2 df_1)(p) = 0$ if and only if $p \in H$. Moreover, H is finite.

PROOF. There is an obvious implication. If $f_1(p) df_2(p) - f_2(p) df_1(p) = 0$ with $f_1(p) \neq 0$ then

$$df_2(p) = \frac{f_2(p)}{f_1(p)} df_1(p),$$

and substituting in the expression for the metric m at that point, we obtain

$$m(p) = \left(1 + \frac{f_2^2}{f_1^2}\right) [f_1(f dg - g df) - 2fg df_1]^2(p)$$

which admits isotropic vectors. Hence $f_1(p) = 0$ and likewise $f_2(p) = 0$. Finally, if $p \in H$, then

$$m(p) = 4f^2g^2(df_1^2 + df_2^2)(p)$$

and therefore $(df_1 \wedge df_2)(p) \neq 0$, hence H is finite. \square

We define

$$\omega_1 = f_1(f dg - g df) - 2fg df_1$$

and

$$\omega_2 = f_2(f dg - g df) - 2fg df_2.$$

Lemma 3. $\omega_1 \wedge \omega_2 = 0$ if and only if fg = 0.

PROOF. From the definition of ω_1 and ω_2 , if fg = 0 it is obvious that $\omega_1 \wedge \omega_2 = 0$. Conversely, if $\omega_1 \wedge \omega_2 = 0$, from the relation $2fg(f_1 df_2 - f_2 df_1) = f_2\omega_1 - f_1\omega_2$ we obtain

$$2fg(f_1 df_2 - f_2 df_1) \wedge \omega_1 = 0$$

2fg(f_1 df_2 - f_2 df_1) \lambda \omega_2 = 0.

The fact that m is a metric implies that two of the three forms $f_1 df_2 - f_2 df_1$, ω_1 , ω_2 must be independent at each point, then either $(f_1 df_2 - f_2 df_1) \wedge \omega_1 \neq 0$ or $(f_1 df_2 - f_2 df_1) \wedge \omega_2 \neq 0$, hence fg = 0. \square

Remark 1. From the expression for m, it is deduced that f and df (g and dg, respectively) cannot have common zeros, and either the set f=0 (g=0 respectively) is empty or it is made up of a finite number of disjoint circles. Hence ω_1 and ω_2 are independent in a dense open set.

Let us now define $\omega = f_1 \omega_1 + f_2 \omega_2$. We have

Lemma 4. $\omega(p) = 0$ if and only if $p \in H$.

PROOF. If $p \in H$ obviously $\omega(p) = 0$. If $\omega(p) = 0$ and $f_1^2(p) + f_2^2(p) \neq 0$, Lemma 3 implies that fg = 0. Moreover,

$$\omega = f_1 \omega_1 + f_2 \omega_2 = (f_1^2 + f_2^2)(f dg - g df) - 2fg(f_1 df_1 + f_2 df_2)$$

which implies $0 = (f_1^2 + f_2^2)(f dg - g df)(p)$ and then (f dg - g df)(p) = 0 and the expression for the metric at this point would be $(f_1 df_2 - f_2 df_1)^2$, which is a contradiction. \Box

Remark 2. Since H is finite (Lemma 2), ω has a finite number of singularities.

Let us consider on M_2 the vector fields X, Y which are dual, with respect to the metric m, of the 1-forms $f_1 df_2 - f_2 df_1$ and ω . Lemma 2 and Remark 2 imply that X and Y have a finite number of singularities.

Lemma 5. X and Y are orthogonal with respect to the metric m.

PROOF. The vector fields are defined by the relations

$$m(X, \bullet) = f_1 df_2 - f_2 df_1$$

$$m(Y, \bullet) = \omega.$$

Lemma 5 is equivalent to proving that $\omega(X) = 0$. From the expression for m, it is deduced that

$$m(X, \bullet) = (f_1 df_2 - f_2 df_1)(X)(f_1 df_2 - f_2 df_1) + \omega_1(X)\omega_1 + \omega_2(X)\omega_2$$

which implies

$$[1 - (f_1 df_2 - f_2 df_1)(X)](f_1 df_2 - f_2 df_1) = \omega_1(X)\omega_1 + \omega_2(X)\omega_2$$

and from the relation used in Lemma 3 we have

$$[1 - (f_1 df_2 - f_2 df_1)(X)] \frac{f_2 \omega_1 - f_1 \omega_2}{2fg} = \omega_1(X)\omega_1 + \omega_2(X)\omega_2.$$

From Lemma 3 it is deduced that in the dense open set $fg \neq 0$ the following relations are satisfied:

$$\lambda f_2 = \omega_1(X)$$
$$-\lambda f_1 = \omega_2(X)$$

where

$$\lambda = \frac{1}{2fg} \left[1 - (f_1 df_2 - f_2 df_1)(X) \right].$$

By multiplying the relations above by f_1 and f_2 respectively, and adding we obtain $(f_1\omega_1 + f_2\omega_2)(X) = 0$ and therefore $\omega(X) = 0$ if $fg \neq 0$.

Since the function $\omega(X)$ is defined on all of M_2 and it is zero in a dense open subset, we obtain $\omega(X) \equiv 0$ on M_2 . \square

Corollary 1. M_2 is orientable.

PROOF. From Lemma 5 it is concluded that $X \wedge Y$ is a 2-vector field on M_2 with a finite number of singularities, hence M_2 is orientable. \square

2. Conclusion

(a) Let $H \neq \emptyset$ and $p \in H$. From the global expression for m it can be deduced that $df_1 \wedge df_2(p) \neq 0$ and hence f_1 and f_2 can be taken as coordinates in a neighbourhood of p. Therefore the vector field $f_1 \frac{\partial}{\partial f_1} + f_2 \frac{\partial}{\partial f_2}$ is well defined in a neighbourhood of each singularity of the vector field Y.

As the equality

$$(f_1 df_2 - f_2 df_1) \left(f_1 \frac{\partial}{\partial f_1} + f_2 \frac{\partial}{\partial f_2} \right) = f_1 f_2 - f_2 f_1 = 0$$

is satisfied in each of these neighbourhoods, the vector field $f_1 \frac{\partial}{\partial f_1} + f_2 \frac{\partial}{\partial f_2}$ is orthogonal to X and it follows from Lemma 5 that

$$Y = \mu \left(f_1 \frac{\partial}{\partial f_1} + f_2 \frac{\partial}{\partial f_2} \right)$$

in a neighbourhood of each singularity of Y.

Consequently, Y has a finite number of singularities (Remark 2), every singularity has an index of +1 (following from before), M_2 is orientable (Corollary 1) and hence M_2 is diffeomorphic to the sphere S^2 .

(b) If $H \neq \emptyset$, according to Remark 2 Y is a vector field without singularities, hence the Euler characteristic is $\chi(M_2) = 0$. As M_2 is orientable, it is deduced that $M_2 = T^2$.

The proof of the Theorem is complete. \Box

3. Examples of Metrics in Arbitrary Dimension

The generalization of Theorem 2 to an arbitrary dimension is motivated by the following examples

(a) Let us consider the mapping

$$h_r: S^{n-1} \times S^1 \to \mathbb{R}^n \times \mathbb{R}^2$$

given by

$$h_r(p,\theta) = (p,\cos r\theta,\sin r\theta); \qquad r = 1,2,3,\ldots$$

and the quadratic form in $\mathbb{R}^n \times \mathbb{R}^2$:

$$m = \sum_{\substack{i=1,j=2\\i < j}}^{n-1,n} \omega_{ij}^2 + \sum_{k=1}^{n} \left[x_k (y_1 \, dy_2 - y_2 \, dy_1) - 2y_1 y_2 \, dx_k \right]^2$$

where $(x_i)_{i=1,\ldots,n}$, $(y_i)_{i=1,2}$ are the coordinates in \mathbb{R}^n and \mathbb{R}^2 respectively, and $\omega_{ij} = (x_i dx_j - x_j dx_i)$ for i < j.

A simple calculation proves that $h_r^*(m)$ is a Riemannian metric in $S^{n-1} \times S^1$.

For r = 1 and n = 2, the metric $h_1^*(m)$ in $S^1 \times S^1$ is the metric m_1 that appears in Section 1.

(b) Let us consider in \mathbb{R}^{n+1} the quadratic form

$$m = \sum_{\substack{i=1,j=2\\i\neq i}}^{n-1,n} \omega_{ij}^2 + \sum_{k=1}^{n} \left[x_k (y_1 \, dy_2 - y_2 \, dy_1) - 2y_1 y_2 \, dx_k \right]^2,$$

with $y_1 = 1$, $y_2 = x_{n+1}$. If $i: S^n \to \mathbb{R}^{n+1}$ is the ordinary inclusion, it can easily be proved that $i^*(m)$ is a metric in S^n .

In the case where n = 2, we have the metric m_2 of S^2 from Section 1.

(c) Let us consider in \mathbb{R}^{n+1} and for each $r=0,1,2,\ldots$, the quadratic form

$$m_r = \sum_{\substack{i=1,j=2\\i < i}}^{n-1,n} \omega_{ij}^2 + \sum_{k=1}^n \tau_k^2$$

where

$$\omega_{ij} = x_i dx_j - x_j dx_i \quad \text{for} \quad i < j$$

$$\tau_k = [x_k (\cos f(x_{n+1}) d \sin f(x_{n+1}) - \sin f(x_{n+1}) d \cos f(x_{n+1})) - 2 \sin f(x_{n+1}) \cos f(x_{n+1}) dx_k].$$

$$\pi = (\pi) (x_{n+1} + 1) \pi$$

$$f(x_{n+1}) = \frac{\pi}{4} + \left(\frac{\pi}{2} + r\pi\right) \left(\frac{x_{n+1} + 1}{2}\right) + \frac{\pi}{2}$$

In the following remark we show that for every $r \in \mathbb{N}$, $i^*(m_r)$ is a Riemannian metric on S^n .

Remark 3. If we define

$$\alpha = \frac{df}{dx_{n+1}} = \frac{1}{2} \left(\frac{\pi}{2} + r\pi \right), \qquad \beta = \sin 2f(x_{n+1}),$$

then

$$\tau_k = x_k \alpha \, dx_{n+1} - \beta \, dx_k, \qquad k = 1, \dots, n.$$

To see that $i^*(m_r)$ is a metric on S^n it is enough to check that at every point of S^n one can choose n independent 1-forms among the ω_{ij} 's and τ_k 's. To do this we shall calculate the external product of certain n 1-forms by the form

$$\Omega = x_1 dx_1 + x_2 dx_2 + \cdots + x_n dx_n + x_{n+1} dx_{n+1}.$$

(1) If $\beta \neq 0$.

$$\Omega \wedge \tau_1 \wedge \cdots \wedge \tau_n = \beta^{n-1} [\alpha(1-x_{n+1}^2) + \beta x_{n+1}] dx_1 \cdots dx_{n+1}$$

and the expressions for α and β imply that

$$\alpha(1 - x_{n+1}^2) + \beta x_{n+1} = 0$$

has no solution for $r = 0, 1, 2, \ldots$ with $-1 \leqslant x_{n+1} \leqslant 1$ [1].

(2) It $\beta = 0$, then $\tau_k = x_k \alpha dx_{n+1}$ and we calculate the following exterior products

$$\Omega \wedge \omega_{12} \wedge \omega_{13} \wedge \cdots \wedge \omega_{1n} \wedge \tau_1 = x_1^{n-1} \alpha (1 - x_{n+1}^2) dx_1 \wedge \cdots \wedge dx_{n+1}$$

$$\Omega \wedge \omega_{12} \wedge \omega_{23} \wedge \cdots \wedge \omega_{2n} \wedge \tau_2 = x_2^{n-1} \alpha (1 - x_{n+1}^2) dx_1 \wedge \cdots \wedge dx_{n+1}$$

$$\Omega \wedge \omega_{1n} \wedge \omega_{2n} \wedge \cdots \wedge \omega_{n-1n} \wedge \tau_n = x_n^{n-1} \alpha (1 - x_{n+1}^2) dx_1 \wedge \cdots \wedge dx_{n+1}$$

Consequently, since $\alpha \neq 0$ and $x_{n+1}^2 \neq 1$ (because $x_{n+1} = \pm 1$ implies that $\beta \neq 0$), if $x_j \neq 0$ then $\omega_{1,j}$; $\omega_{2,j}$; ...; $\omega_{j-1,j}$; $\omega_{j,j+1}$; ...; $\omega_{j,n}$ are independent. On the other hand, if all the x_j 's are zero then $x_{n+1} = \pm 1$ and therefore $\beta \neq 0$.

4. The Theorem in Arbitrary Dimension

Theorem 3. Let M_n be a compact connected n-dimensional Hausdorff manifold, having a Riemannian metric m that admits the global expression

$$m = \sum_{\substack{i=1,j=2\\i< j}}^{n-1,n} (f_i df_j - f_j df_i)^2 + \sum_{k=1}^{n} [f_k (f dg - g df) - 2fg df_k]^2$$

where $f_1, f_2, \ldots, f_n, f, g$ are global C^{∞} -functions. Let $H = \{ p \in M_n | f_i(p) = 0 \mid i = 1, \ldots, n \}$. Then

- (a) $H = \emptyset$ implies that M_n is diffeomorphic to $S^{n-1} \times S^1$.
- (b) $H \neq \emptyset$ implies that M_n is diffeomorphic to the sphere S^n .

Remark 4. Examples (a), (b) and (c) of Section 3 prove that on $S^{n-1} \times S^1$ and S^n there are metrics that admit the expression above.

Before beginning the proof of the Theorem, we include some comments on the quadratic form of example (a) which are essential for the proof.

Let us now consider in $\mathbb{R}^n \times \mathbb{R}^2$, with coordinates $(x_1, \ldots, x_n, y_1, y_2)$ the quadratic form

$$m_0 = \sum_{\substack{i=1,j=2\\i < j}}^{n-1,n} (x_i dx_j - x_j dx_i)^2 + \sum_{k=1}^{n} [x_k (y_1 dy_2 - y_2 dy_1) - 2y_1 y_2 dx_k]^2$$

and the vector fields

$$X = y_1 \frac{\partial}{\partial y_1} + y_2 \frac{\partial}{\partial y_2}$$

$$Y = -2y_1 \frac{\partial}{\partial y_1} + \sum_{i=1}^n x_i \frac{\partial}{\partial x_i}$$

By a simple calculation it can be proved that X and Y are isotropic and independent in the open set U of $\mathbb{R}^n \times \mathbb{R}^2$ where the following inequality is satisfied

$$y_1^2 y_2^2 + (y_1^2 + y_2^2) \left(\sum_{i=1}^n x_i^2 \right) \neq 0.$$

If $p \notin U$ the quadratic form m_0 reduces to

$$m_0 = \sum_{i=1, j=2}^{n-1, n} (x_i dx_j - x_j dx_i)^2,$$

its rank being less than n because

$$X \rfloor m_0 = 0$$
 if $X = \sum_{i=1}^n x_i \frac{\partial}{\partial x_i}$

Lemma 6. Let $p \in U$ and let v_p be a vector where $v_p \rfloor m_0 = 0$ (i.e. $m_0(v_p v_p) = 0$ as m_0 is semidefined positive). Then $v_p = \lambda Y + \mu X$.

PROOF. Let $v_p = v_1 + v_2$ be a vector where $p \in U$ and

$$v_{1} = \sum_{i=1}^{n} \lambda_{i} \frac{\partial}{\partial x_{i}},$$

$$v_{2} = \mu_{1} \frac{\partial}{\partial y_{1}} + \mu_{2} \frac{\partial}{\partial y_{2}}$$

$$\left\{ (1) \ v_{1} \right\rfloor \left(\sum_{\substack{i=1, j=2 \\ i < j}}^{n-1, n} (x_{i} dx_{j} - x_{j} dx_{i})^{2} \right) = 0$$

$$\Leftrightarrow v_{1} = \lambda \sum_{i=1}^{n} x_{i} \frac{\delta}{\partial x_{i}} \Leftrightarrow \lambda_{k} = \lambda x_{k}$$

$$\left\{ (2) \ x_{k} [v_{2} \mid (y_{1} dy_{2} - y_{2} dy_{1}) - 2y_{1} y_{2}] = 0; \ k = 1, 2, \dots, n. \right\}$$

If $x_k(p) = 0$ for all values of k, then $y_1y_2(p) \neq 0$ and (1) implies that $v_1 = 0$. Hence

$$v_p = \mu_1 \frac{\partial}{\partial y_1} + \mu_2 \frac{\partial}{\partial y_2}$$
 with $X = y_1 \frac{\partial}{\partial y_1} + y_2 \frac{\partial}{\partial y_2}$ $Y = -2y_1 \frac{\partial}{\partial y_1}$

and therefore v_p satisfies Lemma 6.

Τf

$$\sum_{k=1}^{n} x_k^2(p) \neq 0,$$

we would have from (2) that

$$v_2 \rfloor (y_1 dy_2 - y_2 dy_1) - 2y_1 y_2 \lambda = 0,$$

whence

$$v_2 = -2\lambda y_1 \frac{\partial}{\partial y_1} + \mu \left(y_1 \frac{\partial}{\partial y_1} + y_2 \frac{\partial}{\partial y_2} \right).$$

Since

$$v_1 = \lambda \sum_{i=1}^n x_i \frac{\partial}{\partial x_i},$$

we have

$$v_p = \lambda \left(-2y_1 \frac{\partial}{\partial y_1} + \sum_{i=1}^n x_i \frac{\partial}{\partial x_i} \right) + \mu \left(y_1 \frac{\partial}{\partial y_1} + y_2 \frac{\partial}{\partial y_2} \right) \cdot \quad \Box$$

Corollary 2. The quadratic form m_0 has constant rank n in U. If $p \notin U$ the rank of m_0 is less than n.

The vector fields X, Y define (Lemma 6) a completely integrable 2-dimension ditribution $\mathfrak F$ in the open set U. Given also that [X,Y]=0, the leaves of $\mathfrak F$ are the orbits of the Abelian group action $\mathbb R^2$ on the open set U, defined $\mathbb R^2 \times U \to U$ by $(s,t,p) \to \psi_s \cdot \varphi_t(p)$ where ψ_s and φ_t are the one-parameter group generated by Y and X respectively.

The relation between the manifold M_n , the metric m and the space \mathfrak{F} is expressed by the Lemma below, which follows directly from Lemma 6.

Lemma 7. Let M_n be a compact connected Hausdorff manifold, having a quadratic form that admits the global expression:

$$m = \sum_{\substack{i=1,j=2\\i < j}}^{n-1,n} (f_i df_j - f_j df_i)^2 + \sum_{k=1}^{n} [f_k (f dg - g df) - 2fg df_k]^2$$

and let $\varphi: M_n \to \mathbb{R}^n \times \mathbb{R}^2$ be given by $x_i = f_i$, $y_1 = f$, $y_2 = g$, i = 1, ..., n. The following properties are equivalent

- (a) m is a Riemannian metric.
- (b) φ is a transverse immersion with respect to the distribution \mathfrak{F} .

Remark 5. As a result, if m is a Riemannian metric on M_n expressed as above, and $\Pi: U \to \bar{U}$ is the quotient mapping to the leaf space of \mathfrak{F} , Lemma 7 proves that if \bar{U} admits a quotient manifold structure, $\pi \cdot \varphi \colon M_n \to \bar{U}$ is then a local diffeormorphism.

5. The Leaf Space \bar{U}

The orbit passing through a point $p = (x_i, y_1, y_2)$ i = 1, ..., n, is expressed by $\psi_s \varphi_t(x_i, y_1, y_2) = (Ax_i, A^{-2}By_1, By_2)$ where $A = e^s$ and $B = e^t$. In order to calculate a model of the quotient of U by the action $\psi_s \varphi_t$, we consider the open sets

$$U_1 = \left\{ p \in U \,\middle|\, \sum_{i=1}^n x_i^2 \neq 0, y_1^2 + y_2^2 \neq 0 \right\}$$

and

$$U_1' = \{ p \in U \mid y_1 y_2 \neq 0 \}.$$

It is obvious that $U_1 \cup U_1' = U$, $U_1 \cap U_1' \neq \emptyset$ and both U_1 and U_1' are stable due to the action of \mathbb{R}^2 .

In U_1 , let us consider the submanifold

$$S^{n-1} \times S^1 = \left\{ p \in U_1 \mid \sum x_i^2 = 1, y_1^2 + y_2^2 = 1 \right\}.$$

Lemma 8. The leaf passing through $p \in U_1$ cuts $S^{n-1} \times S^1$ transversely at a single point, hence the mapping $\alpha: U_1 \to S^{n-1} \times S^1$,

$$\alpha(p) = \psi_s \cdot \psi_t(p) \cap (S^{n-1} \times S^1)$$

is a submersion.

Direct calculation proves that for

$$p = (x_i, y_1, y_2), \qquad \alpha(p) = (Ax_i, A^{-2}By_1, By_2)$$

where

$$A = \frac{1}{\sqrt{\sum_{i=1}^{n} x_i^2}} \quad \text{and} \quad B = \frac{1}{\sqrt{A^{-4}y_1^2 + y_2^2}}$$

The fact that the intersection is transversal follows immediately since these relations

$$\left(\sum_{i=1}^{n} x_{i} dx_{i}\right) (\lambda x + \mu Y) = 0 \qquad (y_{1} dy_{1} + y_{2} dy_{2}) (\lambda x + \mu Y) = 0$$

imply that $\lambda = \mu = 0$. \square

Remark 6. The mapping $p \to (\alpha(p), A, B)$ of $U_1 \to (S^{n-1} \times S^1) \times \mathbb{R}^2_+$ is a diffeomorphism.

The open set U'_1 has four connected components:

$$V_1 = \{ p \in U_1' \mid y_1 > 0, y_2 > 0 \}$$

$$V_2 = \{ p \in U_1' \mid y_1 > 0, y_2 < 0 \}$$

$$V_3 = \{ p \in U_1' \mid y_1 < 0, y_2 > 0 \}$$

$$V_4 = \{ p \in U_1' \mid y_1 < 0, y_2 < 0 \};$$

in each of which the following manifolds are considered

$$\Pi(1,1) = \{ p \in V_1 \mid y_1 = 1, y_2 = 1 \}$$

$$\Pi(1,-1) = \{ p \in V_2 \mid y_1 = 1, y_2 = -1 \}$$

$$\Pi(-1,1) = \{ p \in V_3 \mid y_1 = -1, y_2 = 1 \}$$

$$\Pi(-1,-1) = \{ p \in V_4 \mid y_1 = -1, y_2 = -1 \}.$$

Lemma 9. The leaf passing through $p \in V_i$, (i = 1, 2, 3, 4) cuts $\Pi_{(k, l)} \subset V_i$ (k = 1, -1; l = 1, -1) transversely at a single point. Consequently, the mapping $\beta: U'_1 \to \bigcup_{k, l = 1, -1} \Pi_{(k, l)}$, defined by

$$\beta(p) = \psi_s \varphi_t(p) \cap \Pi_{(k,l)}, \text{ for } p \in V_i \supset \Pi_{(k,l)}$$

is a submersion.

PROOF. The same calculation mentioned in Lemma 8 proves that

$$\psi_s \varphi_t(p) \cap \Pi_{(k,l)} = (Ax_i, A^{-2}By_1, By_2)$$

where

$$A = \left| \frac{y_1}{y_2} \right|, \qquad B = \frac{1}{|y_2|},$$

and $p \in V_i \supset \Pi_{(k,l)}$ (k, l = 1, -1).

The transversality is now a consequence of the fact that the relations

$$dy_1(\lambda x + \mu Y) = 0$$

$$dy_2(\lambda x + \mu Y) = 0$$

imply that $\lambda = \mu = 0$ when $|y_1| = 1$ and $|y_2| = 1$. \square

Due to the fact that $U_1 \cap U_1' \neq \emptyset$ the quotient \bar{U} is obtained by identifying

$$(U_1 \cap U_1') \cap \left(\bigcup_{k,l=1,-1,-1} \Pi_{(k,l)}\right)$$
 with $(U_1 \cap U_1') \cap (S^{n-1} \times S^1)$

by means of the diffeomorphism which associates to each point of $U_1 \cap \Pi_{(k,l)}$,

the intersection of the leaf passing through the point and $V_i \cap (S^{n-1} \times S^1)$, $\Pi_{(k,l)} \subset V_j$, i.e.

$$(**) U_1 \cap \Pi_{(k,l)} \to V_i \cap (S^{n-1} \times S^1)$$

given by

$$(x_i, k, l) \rightarrow \left(\frac{x_i}{\sqrt{\sum_{i=1}^n x_i^2}}, \frac{k \sum x_i^2}{\sqrt{\left(\sum_{i=1}^n x_i^2\right)^2 + 1}}, \frac{l}{\sqrt{\left(\sum_{i=1}^n x_i^2\right)^2 + 1}}\right)$$

with $\Pi_{(k,l)} \subset V_j$ for j=1,2,3,4 and k,l=1,-1. The fact that \bar{U} is obtained by identifying open sets of the manifolds $S^{n-1} \times S^1$ and $\bigcup_{k,l=1,-1} \Pi_{(k,l)}$ by means of a diffeomorphism proves that \bar{U} is a manifold. Moreover, the canonic applications

$$\alpha^1: S^{n-1} \times S^1 \to \bar{U}, \qquad \beta^1: \bigcup_{k,l=1,-1} \Pi_{(k,l)} \to \bar{U}$$

are diffeomorphic to their image.

Remark 7.

(a) \bar{U} comprises $S^{n-1} \times S^1$ and four points

$$p_1 = \beta^1((0, \dots, 0, 1, 1)),$$

$$p_2 = \beta^1((0, \dots, 0, 1, -1)),$$

$$p_3 = \beta^1((0, \dots, 0, -1, 1)),$$

$$p_4 = \beta^1((0, \dots, 0, -1, -1)),$$

because

$$\Pi_{(k,l)} - (U_1 \cap \Pi_{(k,l)}) = (0, \dots, 0, k, l), \text{ for } k, l = 1, -1,$$

where $S^{n-1} \times S^1$ has the usual differentiable structure.

- (b) A base of open neighbourhoods of
 - p_1 is $p_1 \cup (S^{n-1} \times W^1)$ where W^1 is an open interval of S^1 with extremes (0, 1) contained in $y_1 > 0$, $y_2 > 0$.
 - p_2 is $p_2 \cup (S^{n-1} \times W^2)$ where W^2 is an open interval of S^1 with extremes (0, -1) contained in $y_1 > 0$ and $y_2 < 0$.
 - p_3 is $p_3 \cup (S^{n-1} \times W^3)$ where W^3 is an open interval of S^1 with extremes (0, 1) contained in $y_1 < 0$ and $y_2 > 0$.
 - p_4 is $p_4 \cup (S^{n-1} \times W^4)$ where W^4 is an open interval of S^1 with extremes (0, -1) contained in $y_1 < 0$, $y_2 < 0$.

See Fig. 1.

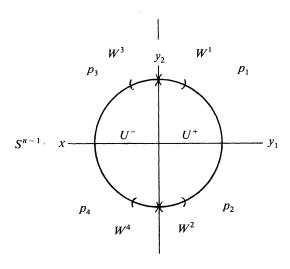


Fig. 1.

In fact, since β^1 is an open map it is sufficient to calculate

$$\beta^1[(B_{\epsilon}(0)-0)\times(k,l)]$$

where $B_{\epsilon}(0)$ is the open ball of \mathbb{R}^n , centred at the origin with radius ϵ . This is obtained directly from the diffeomorphism (**) which transforms $(B(0) - 0) \times (k, l)$ into

$$S^{n-1} \times \left\{ \left(\frac{k \sum x_i^2}{\sqrt{\left(\sum x_i^2\right)^2 + 1}}, \frac{l}{\sqrt{\left(\sum x_i^2\right)^2 + 1}} \right) \, \middle| \, \sum x_i^2 < \epsilon \right\} = S^{n-1} \times W^i$$

where W^i is an interval in S^1 contained in the quadrant corresponding to the point $\beta^1(0, \ldots, 0, k, l)$, of extremes (0, l).

- (c) $\alpha'\alpha: U_1 \to \bar{U}$ and $\beta'\beta: U_1' \to \bar{U}$ constitute the composition of the submersions α, β (Lemmas 8 and 9) with the diffeomorphisms α', β' respectively, $\alpha'\alpha$ and $\beta'\beta$ coincide on $U_1 \cap U_1'$ and define the quotient application $\Pi: U \to \bar{U}$, hence Π is a submersion.
- (d) It should be noted that \bar{U} is a compact, connected, non-Hausdorff manifold because p_1 and the points of $S^{n-1} \times (0, 1)$ do not have disjoint neighbourhoods. The same occurs with p_2 and $S^{n-1} \times (0, -1)$, p_3 and $S^{n-1} \times (0, 1)$ and p_4 and $S^{n-1} \times (0, -1)$.
- (e) Note that $p \in M_n$ and $f_i(p) = 0$ for all i = 1, ..., n is equivalent to $\pi \cdot \varphi(p)$ being equal to some p_i , (i = 1, 2, 3, 4).
- (f) Finally, $p \in M_n$ and f(p) = 0 is equivalent to $\pi \cdot \varphi(p) \in S^{n-1} \times (0, l)$, for l = 1, -1.

PROOF OF (a), THEOREM 3. From (e) of Remark 7, it is deduced that if $H = \emptyset$, $\pi \varphi$ is a local diffeomorphism from M_n onto $S^{n-1} \times S^1$ and consequently it is a covering map. From the classification of covering maps and since M_n is connected and compact, it is deduced that M_n is diffeomorphic to $S^{n-1} \times S^1$.

PROOF OF (b), THEOREM 3. For this proof it is necessary to assume that n > 2. Let

$$U^+ = S^{n-1} \times \left(\frac{3\pi}{2}, \frac{\pi}{2}\right)$$
 and $U^- = S^{n-1} \times \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

(see Fig. 1) be open subsets of \bar{U} and let $\pi \varphi: M_n \to \bar{U}$ be the local diffeomorphism obtained in Remark 5 of Lemma 7.

For the following we shall be using the next lemma, which is easy to prove.

Lemma 10. Let $\tau: M_n \to M'_n$ be a local diffeomorphism between two compact connected manifolds. Let U be an open set of M'_n satisfying the following conditions

- (a) $\tau^{-1}(U) \neq \emptyset$.
- (b) For all values of $x \in U$ and $y \in M'_n$ there are disjoint open neighbourhoods of x and y, U^x , U^y .

Then if C is a connected component of $\tau^{-1}(U)$, the mapping $\tau_{|C}: C \to U$ is a covering map with a finite number of folds.

Corollary 3. If C^+ (C^- respectively) is a connected component of $(\pi\varphi)^{-1}(U^+)$ ($(\pi\varphi)^{-1}(U^-)$ respectively), then $\pi\cdot\varphi_{|C^+}\colon C^+\to U^+$ ($\pi\cdot\varphi_{|C^-}\colon C^-\to U^-$ respectively) is a diffeomorphism.

This follows directly from n > 2 and the fact that the open set U^+ (U^- respectively) of the manifold \bar{U} fulfills the conditions of Lemma 10. \square

Lemma 11. Let $p \in M_n$ such that $\pi \cdot \varphi(p) = p_1$ or p_2 . There exists a unique connected component C^+ of $(\pi \varphi)^{-1}(U^+)$ such that

- (1) $p \cup C^+$ is open.
- (2) $\pi \cdot \varphi_{|p \cup C^+} : p \cup C^+ \to p_1 \cup U^+ (p_2 \cup U^+ respectively)$ is a diffeomorphism.

(If $\pi \cdot \varphi(p) = p_3$ or p_4 , an analogous statement is obtained by substituting C^+ by C^- and U^+ by U^- .)

PROOF. Let us assume that $\pi\varphi(P)=p_1$ and that W^p is an open connected neighbourhood of p such that $\pi\varphi_{|W^p}\colon W^p\to V^{p_1}$ is a local diffeomorphism, where

$$V^{p_1} = p_1 \cup \left(S^{n-1} \times \left(\frac{\pi}{2}, \frac{\pi}{2} - \epsilon\right)\right)$$

and $\epsilon > 0$ (see Fig. 1). Since $\pi \cdot \varphi(W^p - p) \subset U^+$ and $W^p - p$ is connected, there is a unique connected component C^+ of $(\pi \cdot \varphi)^{-1}(U^+)$ such that $W^p - p \subset C^+$. Hence, $p \cup C^+$ is open.

Part 2 of Lemma 11 results from Corollary 3.

Let us suppose that the function f appearing in the global expression for the metric m, satisfies $f(p) \neq 0$ for every $p \in M_n$ (this is the case of the metric on S^n in (b) of Section 3 where $f \equiv 1$). If f(p) > 0 for every $p \in M_n$ as $\pi \varphi(M_n)$ is compact, it follows from Lemma 11 that there will be points $p, q \in M_n$ such that

- (1) $p \cup C^+ \cup q$ is open in M_n .
- (2) $\pi \cdot \varphi_{|p \cup C^+ \cup q}: p \cup C^+ \cup q \rightarrow p_1 \cup U^+ \cup p_2$ is a diffeomorphism.

Since $p_1 \cup U^+ \cup p_2$ is diffeomorphic to the sphere S^n (see Fig. 1) and M_n is compact and connected, we conclude that M_n and S^n are diffeomorphic. Likewise, if f(p) < 0 for every $p \in M_n$. This proves Theorem 3(b) in the case where $f(p) \neq 0$ for every $p \in M_n$.

The metrics constructed on S^n in (c) of Section 3 have the property $\{p \in S^n | f(p) = 0\} \neq \emptyset$.

From the global expression for the metric in Theorem 3, we conclude that $df(p) \neq 0$ in the case f(p) = 0, hence $f^{-1}(0)$ is the union of a finite number of (n-1)-dimension compact manifolds. Moeover,

$$f^{-1}(0) = (\pi \cdot \varphi)^{-1} \left(S^{n-1} \times \frac{\pi}{2} \cup S^{n-1} \times \frac{3\pi}{2} \right)$$

(see Fig. 1).

We will denote by $M_{n-1}^{\pi/2}$ a connected component of $(\pi\varphi)^{-1}(S^{n-1}\times \{\frac{\pi}{2}\})$ and by $M_{n-1}^{3\pi/2}$ a connected component of $(\Pi\varphi)^{-1}(S^{n-1}\times \{\frac{3\pi}{2}\})$.

Lemma 12.

$$\pi \varphi_{|M_{n-1}^{\pi/2}|}: M_{n-1}^{\pi/2} \to S^{n-1} \times \frac{\pi}{2}$$

$$\pi \varphi_{|M_{n-1}^{3\pi/2}}: M_{n-1}^{3\pi/2} \to S^{n-1} \times \frac{3\pi \pi}{2}$$

are diffeomorphisms.

Moreover, for each $M_{n-1}^{\pi/2}$ $(M_{n-1}^{3\pi/2} \text{ respectively})$ there are unique connected components C^+ and C^- of $(\pi \cdot \varphi)^{-1}(U^+)$ and $(\pi \cdot \varphi)^{-1}(U^-)$, such that

$$\pi \cdot \varphi_{|C^- \cup M^{\pi/2}_{n-1} \cup C^+} \colon C^- \cup M^{\pi/2}_{n-1} \cup C^+ \to U^- \cup \left(S^{n-1} \times \frac{\pi}{2}\right) \cup U^+$$

$$\left(C^+ \cup M^{3\pi/2}_{n-1} \cup C^- \to U^+ \cup \left(S^{n-1} \times \frac{3\pi}{2}\right) \cup U^- \text{ respectively}\right)$$

is a diffeomorphism.

PROOF. The first statement of this lemma results from $\pi \varphi$ being a local diffeomorphism and from n > 2.

The second statement follows from Lemma 11 and the compactness of $M_{n-1}^{\pi/2}$ ($M_{n-1}^{3\pi/2}$ respectively). \square

Remark 8. If $p \in C^+$ (C^- respectively) we have the relations

$$\sum_{i=1}^{n} f_i^2(p) \neq 0 \quad \text{and} \quad f(p) \neq 0,$$

(see Fig. 1). Hence the closure \bar{C}^+ (\bar{C}^- respectively), according to Lemmas 11 and 12, is one and only one of the following sets:

$$p \cup C^+ \cup q; \qquad p \cup C^+ \cup M_{n-1}^{3\pi/2}; \qquad M_{n-1}^{\pi/2} \cup C^+ \cup M_{n-1}^{3\pi/2}$$

$$(r \cup C^- \cup s; \ r \cup C^- \cup M_{n-1}^{\pi/2}; \ M_{n-1}^{\pi/2} \cup C^- \cup M_{n-1}^{3\pi/2} \text{ respectively})$$

where $\pi \varphi(p) = p_1$, $\pi \varphi(q) = p_2$ ($\pi \varphi(r) = p_4$, $\pi \varphi(s) = p_3$ respectively).

The final part of the proof of b) in Theorem 3 now follows from previous lemmas.

Let us assume that $\pi \varphi(p) = p_1$ and let C^+ be the unique connected component of $(\pi \varphi)^{-1}(U^+)$ such that $p \cup C^+$ is open and $\pi \varphi_{|p \cup C^+}: p \cup C^+ \to p_1 \cup U^+$ is a diffeomorphism (Lemma 9). In the closure of C^{+} there can be either points or spheres (Remark 8). If there are only points in \bar{C}^+ , then $\bar{C}^+ = p \cup \bar{C}^+ \cup q$. This case has already been considered and hence M_n is diffeomorphic to S^n .

Let us assume that $\bar{C}^+ = p \cup C^+ \cup M_{n-1}^{3\pi/2}$ where

$$\pi\varphi_{|p\cup C^{+}\cup M_{n-1}^{3\pi/2}}:p\cup C^{+}\cup M_{n-1}^{3\pi/2}\to p_{1}\cup U^{+}\cup \left(S^{n-1}\times \frac{3\pi}{2}\right)$$

and

is a diffeomorphism and let C^- be the unique component of $(\pi\varphi)^{-1}(U^-)$ (Lemma 10) such that

(a) $C^+ \cup M_{n-1}^{3\pi/2} \cup C^-$ is open

(b)
$$\pi \cdot \varphi_{|C^+ \cup M_{n-1}^{3\pi/2} \cup C^-} \colon C^+ \cup M_{n-1}^{3\pi/2} \cup C^- \to U^+ \cup \left(S^{n-1} + \frac{3\pi}{2}\right) \cup U^-$$
 is a diffeomorphism.

If

$$\bar{C}^{-} = M_{n-1}^{3\pi/2} \cup C^{-} \cup q,$$

all previous diffeomorphisms produce a single diffeomorphism

$$\pi\varphi\colon p\cup C^+\cup M_{n-1}^{3\pi/2}\cup C^-\cup q\to p_1\cup U^+\cup \left(S^{n-1}\times\frac{3\pi}{2}\right)\cup U^-\cup p_3$$

(see Fig. 1) where the second member is a manifold diffeomorphic to the sphere S^n . As M_n is connected it is diffeomorphic to S^n .

$$\bar{C}^- = M_{n-1}^{3\pi/2} \cup C^- \cup M_{n-1}^{\pi/2},$$

Lemma 12 proves that here is a component C^{+1} of $(\pi\varphi)^{-1}(U^+)$ such that $C^- \cup M_{n-1}^{\pi/2} \cup C^{+1}$ is open and

$$\pi \varphi_{|C^{-} \cup M_{n-1}^{\pi/2} \cup C^{+1}} \colon C^{-} \cup M_{n-1}^{\pi/2} \cup C^{+1} \to U^{-} \cup \left(S^{n-1} \times \frac{\pi}{2}\right) \cup U^{+1}$$

is a diffeomorphism $(U^{+1} = U^{+})$ but it is now diffeomorphic to C^{+1}).

Let us assume that $\bar{C}^{+1} = M_{n-1}^{\pi/2} \cup C^{+1} \cup q$ where $\pi \varphi(q) = p_2$. We have the diffeomorphisms

$$p \cup C^+ \cup M_{n-1}^{3\pi/2} \cup C^- \xrightarrow{\pi\varphi} p_1 \cup U^+ \cup \left(S^{n-1} \times \frac{3\pi}{2}\right) \cup U^- = U_1.$$

$$C^- \cup M_{n-1}^{\pi/2} \cup C^{+1} \cup q \xrightarrow{\pi\varphi} U^- \cup \left(S^{n-1} \times \frac{\pi}{2}\right) \cup U^{+1} \cup p_2 = U_2.$$

By pasting the manifolds U_1 and U_2 through the identification of $U^- \subset U_1$ with $U^- \subset U_2$, the sphere S^n is obtained and consequently $\pi \varphi$ is a diffeomorphism

$$\pi \varphi$$
 $p \cup C^+ \cup M_{n-1}^{3\pi/2} \cup C^- \cup M_{n-1}^{\pi/2} C^{+1} \cup q \to S^n$.

Because the number of C^+ and C^- components is finite, the above process would use up these components and by Lemmas 9 and 10 would end in a single point. As M_n is connected, it would be diffeomorphic to S^n .

The proof of the theorem is complete. \Box

References

- [1] Gonzalo, J. Classification results for contact forms, *Indag. Math.* 48(1986), 289-312.
- [2] Gonzalo, J., Varela, F. Some surfaces that are distinguishable by the global expression of their volume elements, *Math. Ann.* 267 (1984), 199-212.
- [3] Gromov, M. Partial Differential Relations, Springer Verlag, Heildelberg, 1986.
- [4] Varela, F. Formes de Pfaff, classe et perturbations, *Annales Inst. Fourier*, XXVI, 4(1976), 239-271.

J. Fontanillas and F. Varela*
Departamento de Matemáticas
Universidad Autónoma de Madrid
28049 Madrid, SPAIN