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Global Models of
Riemannian Metrics
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Introduction

In this paper we give certain Riemannian metrics on the manifolds $” ! x §!
and S” (n > 2), which have the property to determine these manifolds, up to
diffeomorphisms.

The global expressions used for Riemannian metrics are based on the global
expression for exterior forms studied in [4]. In [3] one finds certain metrics
using global expressions that differ from the type we propose.

To some extent, Theorem 3 is a «generalization for metrics» in an arbitrary
dimension, of a theorem proved in [2] for certain volume forms on surfaces.

1. Examples and Theorems on Surfaces

The following example illustrates the context in which our statements are made.
Let us consider in R® — 0 the quadratic form:

m = (x,dx, — X, dx;)* + (x; dx; — X3 dx,)* + (%, dx3 — x5 dx,)>.

A simple calculation proves that a vector v is isotropic if and only if

a a a
= - — — ] ANeR.
v )\<x1 ox, + X, o, + X3 6x3> € (*)

Hence, m is a Riemannian metric over all surfaces in R® whose tangent
plane is transverse to the position vector field. In particular, if i: > —> R> - 0
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is the ordinary inclusion, the metric i *(7) on S? admits the global expression
i*(m) = (f1df, ‘fzdf1)2 + (frdfs — frdf)* + (S dfs “fsdfz)z
where f;: S>> R, j = 1,2,3 are global functions given by f; = x;- i.

As a consequence of (x) the following theorem is easily proved

Theorem 1. Let M be a compact connected surface having a Riemannian
metric m that admit the global expression:

m = (fdf, = f,df\)* + (fidfs — fdf)* + (Lo dfs — f3df)°
where fi: M, = R, i = 1,2, 3 are C™-global functions. Then M, is diffeomor-
phic to the sphere S%.

PRrROOF OF THEOREM 1. Given the metric m on M,, let us consider the map
o: M, —~ R? — 0 expressed by
e(p) = (f1(P), f2(P), f3(P)).

Lemma 1. The following statements are equivalent

(@) m is a Riemannian metric on M, .
(b) ¢ is an immersion transverse to the vector field
d

xli + X — + x3——a— on R
ax, 9x;, 9x;,

The proof of this lemma is basically the remark made in (x).

Let IT: R* — {0} — S be given by IT(x) = x/|x|. Lemma 1 proves that if m
is a Riemannian metric, 7 - ¢: M, — S is a covering map, hence 7 - ¢ is a
diffeomorphism. [

Let us now consider the metric

m; = (1 + 4sin® 6, cos>0,) do? + db3
on the torus 7% = S! x S! and
m2 = (x1 dxz - x2 dxl)z + (xl dX3 - 2.X3 dxl)z + (xz dX3 - ZX3 de)z

on the sphere S2.
An easy calculation proves that both metrics admit the global expression

m = (fidf, - f,df))* + [fi(fdg - gdf) - 2fgdfi)?
+ [o(fdg — gdf) - 2fgdf,)?

where f;, f,, f and g are global C”-functions.
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Theorem 2. Let M, be a compact connected surface having a Riemannian
metric that admits the global expression:

m = (fydf, — f,df\)* + Lfi(fdg — gdf) — 2fgdf,)
+ [f,(fdg — gdf) — 2f2df,]?
and let
H= {peM,|fi(p) =f(p)=0)}.
(@) If H# O then M, is diffeomorphic to the sphere S*.
(b) If H=  then M, is diffeomorphic to the torus T>.
PRrROOF OF THEOREM 2.

Lemma 2. (f;df, — f,dfi)(p) = 0if and only if p € H. Moreover, H is finite.

Proor. There is an obvious implication. If f;(p) df,(p) — f(p)dfi(p) =0
with f;(p) # 0 then

£2(p)
f1(p)

and substituting in the expression for the metric m at that point, we obtain

df»(p) = df,(p),

2
m(p) = <1 ¥ %) f,(fde — gdf) - 2f2 df,P(p)
1
which admits isotropic vectors. Hence f(p) = 0 and likewise f,(p) = 0.
Finally, if p € H, then
m(p) = 4f*g*(df? + df)(p)
and therefore (df; Adfy)(p) # 0, hence H is finite. [J

We define
wy; = f1(fdg — gdf) — 2fg df;
and
wy = fo(fdg — gdf) — 2fgdf,.
Lemma 3. w;Aw, =0 ifandonly if fg=0.
Proor. From the definition of w, and w,, if fg =0 it is obvious that

w; Aw, = 0. Conversely, if w; Aw, = 0, from the relation 2/g(f; df, — f>df1)
= fow; — f;w, We obtain
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2fg(frdfy - fodf)Aw; =0
2fg(f1df, — fodf)) Aw, = 0.

The fact that m is a metric implies that two of the three forms f; df, — f, df,
w; , w, must be independent at each point, then either (f; df; — f,df;) Aw; #0
or (fidfs — fodf;)Aw, #0, hence fg=0. O

Remark 1. From the expression for m, it is deduced that f and df (g and dg,
respectively) cannot have common zeros, and either the set f=0 (g=0
respectively) is empty or it is made up of a finite number of disjoint circles.
Hence w; and w, are independent in a dense open set.

Let us now define w = fjw; + fw,. We have
Lemma 4. w(p)=0 if and only if pe H.

Proor. If pe H obviously w(p) = 0. If w(p)=0 and f2(p) + f3(p) #0,
Lemma 3 implies that fg = 0. Moreover,

w = fio, + Lo, = (fF + f)(fdg — gdf) — 2fg(f,df, + £, df»)

which implies 0 = (f% + f2)(fdg — gdf)(p) and then (fdg — gdf)(p) =0
and the expression for the metric at this point would be (f,df, — £, dfi)?,
which is a contradiction. O

Remark 2. Since H is finite (Lemma 2), w has a finite number of singularities.

Let us consider on M, the vector fields X, Y which are dual, with respect to
the metric m, of the 1-forms f, df;, — f> df; and w. Lemma 2 and Remark 2
imply that X and Y have a finite number of singularities.

Lemma 5. X and Y are orthogonal with respect to the metric m.

Proor. The vector fields are defined by the relations
m(X, «) = f1df, — f,dfy
m(Y, ) = w.

Lemma 5 is equivalent to proving that w(X) = 0.
From the expression for m, it is deduced that

m(X, *) = (f1df, — L, df)X)(f1df, — £, df1)
+ (l)l(X)wl o wz(X)wz
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which implies

[1 - (fidfy = LA )XW dfs - fodf) = w1 (X)w; + 0 (X)w,

and from the relation used in Lemma 3 we have

Sawr — fiw,

[1 = (fi1df, = fodf)X)] 27z

= w;(X)w; + 0, (X)w,.

From Lemma 3 it is deduced that in the dense open set fg # 0 the following
relations are satisfied:

)\fz = w;(X)
=M1 = w(X)
where
1
= EE[I = (f1dfy — £, df X))

By multiplying the relations above by f; and f, respectively, and adding we
obtain (fiw; + f,w,)(X) = 0 and therefore w(X) = 0 if fg #O0.

Since the function w(X) is defined on all of M, and it is zero in a dense open
subset, we obtain w(X)=0on M,. [

Corollary 1. M, is orientable.

Proor. From Lemma 5 it is concluded that XA Y is a 2-vector field on M,
with a finite number of singularities, hence M, is orientable. [

2. Conclusion
(@) Let H# @ and p € H. From the global expression for m it can be
deduced that df; A df,(p) # 0 and hence f; and f, can be taken as coordi-
] a
nates in a neighbourhood of p. Therefore the vector field f; — + f, —
afy af

is well defined in a neighbourhood of each singularity of the vector
field Y.
As the equality

idfy — 1 dfl)(fl 5;— + a%) —fifs—Fofy =0
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ad
is satisfied in each of these neighbourhoods, the vector field f; ? +
1

fzﬁ?f— is orthogonal to X and it follows from Lemma 5 that
2

0
Y="<f‘a—ﬁ+fzaiﬁ>

in a neighbourhood of each singularity of Y.

Consequently, Y has a finite number of singularities (Remark 2), every
singularity has an index of +1 (following from before), M, is orientable
(Corollary 1) and hence M, is diffeomorphic to the sphere S2.

(b) If H # ), according to Remark 2 Y is a vector field without singularities,
hence the Euler characteristic is x(M,) = 0. As M, is orientable, it is
deduced that M, = T2,

The proof of the Theorem is complete. [

3. Examples of Metrics in Arbitrary Dimension
The generalization of Theorem 2 to an arbitrary dimension is motivated by
the following examples
(@) Let us consider the mapping
h:S"71 x ST> R x R?,
given by
h.(p,0) = (p, cos ro, sin ro); r=1,2,3,...

and the quadratic form in R" x R?:

n-1,n n
m = Wi+ 2 (i dy, — y,dy) — 20 dx ]
i=1,j=2 k=1
i<j

where (x;);= 1,...,»» ()i=1,2 are the coordinates in R" and R? respectively,
and w; = (x,dx; — x;dx,) for i <.
A simple calculation proves that A*(m) is a Riemannian metric in
st1x st
For r = 1 and n = 2, the metric 2} (m) in S' x S is the metric m, that
appears in Section 1.
(b) Let us consider in R"*! the quadratic form

n-1,n n
m=_ 2 Wl + 2 O dy, = 2d1) = 213, dx %,
i=1,j= =

i<j
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with y; = 1, y, = x,, ;. If i 8" = R"*! is the ordinary inclusion, it can
easily be proved that i*(m) is a metric in S”.

In the case where 7 = 2, we have the metric m, of S? from Section 1.

(c) Let us consider in R”*! and for each r = 0, 1,2, . . ., the quadratic form

n—-1,n n
_ 2 2
mo= 2 wy; + 2 Tk
i=1,j=2 k=1
i<j

where

Wi = Xidxj - xja'x,- for l<j
T = [Xx(COS f(X, 4 1)d SIN f(X, 1 1) — sINS(x, 4 )d COS f(X, 4 1))
— 2sinf(x, 1 1) cOS f(X, 1 1) dxi].

L Xaprt 1) T
PRIREE SY C O L HESN IS

In the following remark we show that for every re N, i*(m,) is a
Riemannian metric on S”.

Remark 3. If we define

df 1 /= .
== —\| — 4 ’ = s
o &, 2 <2 r1r> B =sin2f(x,.1)
then
Ty = XpadX, .1 — Bdxy, k=1,...,n.

To see that i*(m,) is a metric on S” it is enough to check that at every point
of S" one can choose 7 independent 1-forms among the w,’s and 7;’s. To do
this we shall calculate the external product of certain n 1-forms by the form

Q =x.dx; +x,dx, + - + X, dX, + X 10X 11 -
1) IfB#0.
QAT A AT =B" ol — x5 4 )) + BXyy il dXy - - dXy sy
and the expressions for o and 8 imply that
a(l = X5, 1) +Bx,s1 =0

has no solution for r=0,1,2,... with -1<x,,,; <1 [1].
2) It B =0, then 7, = x adx, ., and we calculate the following exterior
products
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QAW A AN @y ATy =X ol = X2, )dx A AdX, .,
Q/\wlz/\w23/\--'/\ Wyy /\7‘2=xg_10t(1—xf,_‘_l)dxl/\---/\dx,,_,_l

QAW Awgp A+ Ay 1q ATy = X2 1ol — X2, )X A+ - Ndx,, ,

Consequently, since o # 0 and x2, , # 1 (because X,,,; = =1 implies
?hatB # 0), iij¢0then @ s wz.,j; G @iy Wi g e ), ATE
independent. On the other hand, if all the x;’s are zero then x,, , ; = *1

and therefore 8 # 0.

4. The Theorem in Arbitrary Dimension

Theorem 3. Let M, be a compact connected n-dimensional Hausdorff
manifold, having a Riemannian metric m that admits the global expression

n-1,n n
m = i=§_2(f,-df} - f;df) + kZI Lfe(fdg — gdf) — 2fe dfi]?
isj B
where fi, fo, . . ., Ju, J> & are global C*-functions.
Let H= {peM,|fi(p)=0 i=1,...,n}.
Then

(@) H= & implies that M, is diffeomorphic to S"~' x S*.
(b) H# J implies that M,, is diffeomorphic to the sphere S".

Remark 4. Examples (a), (b) and (c) of Section 3 prove that on " ! x S* and
S” there are metrics that admit the expression above.

Before beginning the proof of the Theorem, we include some comments on
the quadratic form of example (a) which are essential for the proof.

Let us now consider in R” X R?, with coordinates (1, ..., x,, 1,7, the

quadratic form

n-1,n

my= 12 i, = x;dx;)* + kZIka(yl dy, = y2dy)) — 201y, dxJ?
i=1,j= =
i<j

and the vector fields

a
X=y—+V—
'y, 2 oy,
a “ 0
Y= 29—+ ) x—-
71 3y1 i=1 Bx,-
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By a simple calculation it can be proved that X and Y are isotropic and inde-
pendent in the open set U of R” X R? where the following inequality is satisfied

n
Vivi+ O+ y%)(,Zl X?> # 0.
i=

If p ¢ U the quadratic form m, reduces to
n—-1,n
my= 3 (X dx; — xjdxi)Z’
i=1,j=2

its rank being less than »n because

r d
X = .f = f————
|1my=0 if X i;l X; ox;

Lemma 6. Let p € U and let v, be a vector where v, | my = 0 (i.e. my(v,v,) =0
as my is semidefined positive). Then v, = \Y + pX.
Proor. Let v, = v; + v, be a vector where p e U and

a
ax; ’

n
v = Z \;
i=1

] d

v2=l‘«1"a7+l‘«zw
1 2

( n—-1,n

(1) v, | ( 2 (x,-dxj—xjdx,-)2> =0

'=i1'<1j=2

my(v,,v,) =0 & { n

i <=>01=)\Zx,-§®)\k=)\xk
i=1 i

L) x¢[v2] (1A, — ,dy) = 29,0l =0k =1,2,...,n.

If x,(p) = 0 for all values of k, then y,y,(p) # 0 and (1) implies that v; = 0.
Hence

d 0 2 0 d
=p—+p-— Wwith X=y,—+y,— Y= -2y ,
p = M1 v, |15) 7, )1 a, Y2 3y, 1 .

and therefore v, satisfies Lemma 6.
If

> xi(p) #0,
k=1
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we would have from (2) that

Uz_] 1 dy, —y,dy) — 21,0 =0,

whence
v = —2N + #<J’1 V2 i >
ay ay ay,
Since
v, = )\i;lx, aii )
we have

i) n d ] d
”y‘“(‘”la‘y:ﬂ-?"fa—x,)*”(yla”za—yz)' -

Corollary 2. The quadratic form m, has constant rank n in U. If p ¢ U the
rank of my is less than n.

The vector fields X,Y define (Lemma 6) a completely integrable
2-dimension ditribution ¥ in the open set U. Given also that [X, Y] = 0, the
leaves of F are the orbits of the Abelian group action R? on the open set U,
defined R* x U~ U by (s,t,p) = ¥, - ¢,(p) where y, and ¢, are the one-
parameter group generated by Y and X respectively.

The relation between the manifold M,,, the metric m and the space & is
expressed by the Lemma below, which follows directly from Lemma 6.

Lemma 7. Let M, be a compact connected Hausdorff manifold, having a
quadratic form that admits the global expression:

n—-1,n

n
m= 5, (idfi=fidfy* + 3 Ulfdg - gdf) - 2/g dfi?
T -
and let ¢: M, > R" x R* be given by x; = fi, yi=f, =& i=1,...,n.
The following properties are equivalent

(a) m is a Riemannian metric.
(b) ¢ is a transverse, immersion with respect to the distribution ¥.

Remark 5. As aresult, if m is a Riemannian metric on M,, expressed as above,
and IT: U — U is the quotient mapping to the leaf space of ¥, Lemma 7 proves
that if U admits a quotient manifold structure, « - ¢: M, — U is then a local
diffeormorphism.
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5. The Leaf Space U

The orbit passing through a point p = (x;, ¥, 3,) i =1, ..., n, is expressed by
Ys0:(Xi Y1, ¥2) = (AX;, A~ *By,, By,) where A = e* and B = e’. In order to
calculate a model of the quotient of U by the action ¥ ¢,, we consider the
open sets

n
z;lx,?;z 0,73+ y3 ¢o}
i=

U1= {pGU
and
Ui={peU|yy, #0]}.

It is obvious that U; U U} = U, U, N U} # & and both U, and U} are stable
due to the action of R2.
In U;, let us consider the submanifold

§" xSt = [peU1|Zx,?=1,yf+y§=l}.

Lemma 8. The leaf passing through p € U, cuts S"~ ' x S* transversely at a
single point, hence the mapping o: U; —> 8"~ ! x S?,

oAp) = s b(P)N(S" ™ x 81
is a submersion.
Direct calculation proves that for

p=»y1¥),  op)=(Ax;, A"*By; By))

where
1
and B =

1
xl; Y1 Y2
i=1

The fact that the intersection is transversal follows immediately since these
relations

A=

<_Zl X; dx,->(xx +pY) =0  (1dy; + Y, dy)Nx + pY) =0
i=
imply that A\=p=0. O

Remark 6. The mapping p — (a(p), A, B) of U, > (S" ! x S) x R% is a
diffeomorphism.
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The open set U} has four connected components:

Vi={peUi|[y>0,9,>0]}
V,={peUi|y>0,y,<0]}
Vi={peUi|»<0,5,>0]
Vi={peU;|y,<0,y,<0};

in each of which the following manifolds are considered

0a, ) = {peVi|yn=1y$=1}
0a, - = {peVy |y =1Ly = -1}
(-1, ={peVs|y= -1y, =1}
(-1, -1) = {(peV4|y = —-1,y, = —1}.

Lemma 9. The leaf passing through peV;, (i=1,2,3,4) cuts Il , CV;

k=1, —1;1=1, —1) transversely at a single point. Consequently, the mapping
B: U~ . I_L_lj 1l'I(k,,), defined by

B(p) = Y50 (p) NIy, ;, for peV; DIl

is a submersion.

Proor. The same calculation mentioned in Lemma 8 proves that

Yo (D) N,y = (Ax;, A 2BJ’1, By,)
where
1
= T.;zT’

B 41
Y2

A= ) B

andpE I/, D H(k,l) (k,l= 1, _1).
The transversality is now a consequence of the fact that the relations

dyy(Ax+pY)=0
dy,(\x +pY)=0

imply that A = p =0 when |y;| =1and |y,| =1. O

Due to the fact that U; N\ U # & the quotient U is obtained by identifying

U,NUHN M, ,) with (U,NUYNE""!x SY
1 *,0)

kil=1,-1,-

by means of the diffeomorphism which associates to each point of U; NIl ,y,
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the intersection of the leaf passing through the point and ¥;N(S” ! x SY),
g,y CVj, e

(%) Uy NIy, = V;N (8" 1 x 87

given by

X; k> x? [

B e J5)

with Il ,CV; for j=1,2,3,4 and k,/I=1,-1.

The fact that U is obtained by identifying open sets of the manifolds
S" !x S'and U k,1=1, -1 1,1 by means of a diffeomorphism proves that U
is a manifold. Moreover, the canonic applications

aiS" xS0, gt U Hg,—U
k,i=1, -1

ik, 1) =

are diffeomorphic to their image.

Remark 7.
(@) U comprises $”~! x S! and four points

p1=BY0,...,0,1,1),
p2=BY0,...,0,1, -1)),
ps=BY0,...,0,-1,1)),
ps=BY0,...,0, -1, -1)),

because
H(k,l)—(Ulﬂn(k',))=(O,...,O,k,l), for k,l=1, —'1,

where S"~! x S! has the usual differentiable structure.
(b) A base of open neighbourhoods of

p; is p,US" ! x W) where W' is an open interval of S*
with extremes (0, 1) contained in y; > 0, y, > 0.

D, is p,U(S" ! x W? where W2 is an open interval of S’
with extremes (0, —1) contained in y; > 0 and y, < 0.

p; is pyUS" ! x W3 where W3 is an open interval of S*
with extremes (0, 1) contained in y; < 0 and y, > 0.

Py is p,US" ! x W* where W* is an open interval of S’
with extremes (0, — 1) contained in y; <0, y, <O0.

See Fig. 1.
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©

(d)

(e
)

D3 by
- U+
st-1. x v Y1
y P2
w* w?
Fig. 1.

In fact, since B! is an open map it is sufficient to calculate
B'(B(0) — 0) X (k, )]

where B, (0) is the open ball of R”, centred at the origin with radius e. This
is obtained directly from the diffeomorphism (%) which transforms
(B(@) — 0) X (k, 1) into

ST KV(;E;IZ 1 ’\/(inz)2+ 1 )!inz<61 =SThw

where W' is an interval in S! contained in the quadrant corresponding
to the point (0, ..., 0, k,[), of extremes (0, /).

a'a: Uy = U and B'8: Uy — U constitute the composition of the sub-
mersions «,3 (Lemmas 8 and 9) with the diffeomorphisms o', 8’
respectively, a’a and 8’83 coincide on U; N U} and define the quotient
application IT: U— U, hence II is a submersion.

It should be noted that U is a compact, connected, non-Hausdorff
manifold because p, and the points of "~ ! x (0, 1) do not have dis-
joint neighbourhoods. The same occurs with p, and §"~! x (0, — 1), p;
and "' x (0,1) and p, and $"~ ! x (0, —1).

Note that pe M, and fi(p) =0 for all i=1,...,n is equivalent to
7 - ¢(p) being equal to some p;, (i=1,2,3,4).

Finally, p e M, and f(p) = 0 is equivalent to 7 - o(p) € S" ™! x (0,1),
for/=1, —1.




GLOBAL MODELS OF RIEMANNIAN METRICS 441

ProorF oF (a), THEOREM 3. From (e) of Remark 7, it is deduced that if
H =, wy is a local diffeomorphism from M, onto S"~1x ST and conse-
quently it is a covering map. From the classification of covering maps and
since M,, is connected and compact, it is deduced that M,, is diffeomorphic to
§"1x St

ProoF ofF (b), THEOREM 3. For this proof it is necessary to assume that
n>2. Let

3« T 37
+ n—1 , - n—1 ,
Ur=S§ X( —> and U =8 X <— >

(see Fig. 1) be open subsets of U and let 7o: M, = U be the local diffeomor-
phism obtained in Remark 5 of Lemma 7.

For the following we shall be using the next lemma, which is easy to prove.

Lemma 10. Let 7: M,, > M, be a local diffeomorphism between two com-
pact connected manifolds. Let U be an open set of M, satisfying the following
conditions

(@ r'(U)# O.
(b) For all values of x € U and y € M, there are disjoint open neighbour-
hoods of x and y, U*, U”.

Then if C is a connected component of = '(U), the mapping Tc:C—>Uisa
covering map with a finite number of folds.

Corollary 3. If C* (C~ respectively) is a connected component of (w¢) ™ '(U*)
((r@) " Y(U™) respectively), then - Plo+t ct-u* (r- Qc-:C U
respectively) is a diffeomorphism.

This follows directly from n > 2 and the fact that the open set Ut (U~
respectively) of the manifold U fulfills the conditions of Lemma 10. [J

Lemma 11. Let p € M, such that « - ¢(p) = p; or p,. There exists a unique
connected component C* of (r¢)~ W(U") such that

(1) pUC? is open.
(2) T ¢ ,uc+:PUCT 2 pUU (p,UU" respectively) is a diffeomor-
Dphism.

(If 7 - (p) = py or p,, an analogous statement is obtained by substituting C*
by C” and U* by U™ )
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Proor. Let us assume that w¢(P) = p; and that W” is an open connected
neighbourhood of p such that TP ot WP — VP1 is a local diffeomorphism,

where
vei=p U(sn-ix (L, T
Py < ><<2 5 €

and e > 0 (see Fig. 1). Since 7+ o(W? — p) C U* and W? — p is connected,
there is a unique connected component C* of (w-¢)” X(U*) such that
WP - pC C™*. Hence, pUC™ is open.

Part 2 of Lemma 11 results from Corollary 3. [J

Let us suppose that the function fappearing in the global expression for the
metric m, satisfies f(p) # 0 for every p € M,, (this is the case of the metric on
S™ in (b) of Section 3 where f= 1). If f(p) > 0 for every p e M,, as wp(M,)
is compact, it follows from Lemma 11 that there will be points p,q e M,
such that

(1) pUC* Ug is open in M,,.
EE <,c>|puc+uq:pUC+ Ug—p,UU* Up, is a diffeomorphism.

Since p; UU™ Up, is diffeomorphic to the sphere S” (see Fig. 1) and M,, is
compact and connected, we conclude that M, and S” are diffeomorphic.
Likewise, if f(p) < 0 for every p € M,,. This proves Theorem 3(b) in the case
where f(p) # 0 for every pe M,,.

The metrics constructed on S” in (c) of Section 3 have the property
(pesS™|f(p)=0) = .

From the global expression for the metric in Theorem 3, we conclude that
df(p) # 0 in the case f(p) = 0, hence £~ 1(0) is the union of a finite number
of (n — 1)-dimension compact manifolds. Moeover,

1y — (=1 @i=1y T -1y 3T
STO0)=(7-9) <S XZUS X 2)

(see Fig. 1).
We will denote by M™?, a connected component of (w¢)~ I(S"’1 X {% })
and by M7} a connected component of (Tg) ~'($"~* x {3*}).

Lemma 12.

T
. /2 n-1
7r¢|M;'{/_21'Mn—1_)S ><—2
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and

_ 3rw
7l'qD|M37r/2: MZ"_/% - S Dy — 2
n—1 2
are diffeomorphisms.
Moreover, for each M™? (M2™? respectively) there are unique connected

n—1

components C* and C~ of (w-¢)"(U") and (x - ¢)”'(U"), such that
T Pic-Umzz,uc+ €T UMZ,UCT = U™ U <S""1 X _72T> uuU*

3
<C+ UM¥™2yCc- - U*U <S”"1 X - g) uu- respectively)

is a diffeomorphism.

Proor. The first statement of this lemma results from w¢ being a local dif-
feomorphism and from »n > 2.

The second statement follows from Lemma 11 and the compactness of
M7? (M3™? respectively). O

n—1

Remark 8. If pe C* (C~ respectively) we have the relations

Zl fip)#0 and f(p)#0,

(see Fig. 1). Hence the closure C* (C~ respectively), according to Lemmas
11 and 12, is one and only one of the following sets:
pUC*Ugq; puUCtUM™?;,  M7?2,UCTUM™
(rUC~Us; rUC™ UM™2 5 M™> UC™ UM>™? respectively)
where mo(p) = p1, To(q) = Py (re(r) = ps, Te(s) = p; respectively).

The final part of the proof of b) in Theorem 3 now follows from previous
lemmas.

Let us assume that 7¢(p) = p; and let C* be the unique connected component
of (w¢)~'(U") such that pUC™ is open and g, ,,c.:pUC* = p,UU" is
a diffeomorphism (Lemma 9). In the closure of C* there can be either points
or spheres (Remark 8). If there are only pointsin C*, then C* = pUC™ Ug.
This case has already been considered and hence M, is diffeomorphic to S”.

Let us assume that C* = pUC* UM>™2 where

n-1

3
(e upyat PUCT UM~ p UUT U <S"—1 X Tr>
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is a diffeomorphism and let C~ be the unique component of (wp)~ }(U™)
(Lemma 10) such that

(@ CTUM™2UC" is open
b) «- ¢|C+UM3’L/%UC-:C+ UMi"ﬁUC‘ -U* LJ(S"‘1 + —321) Uu~ is
a diffeomorphism.

If
C™ =M>2UC" Ug,

all previous diffeomorphisms produce a single diffeomorphism
Te:pUCT UM 2UC~ Ug—p,UU* u(s"“1 X —3{5> UU™ Up,

(see Fig. 1) where the second member is a manifold diffeomorphic to the
sphere S”. As M,, is connected it is diffeomorphic to S”.
If
C-=Mluc-um;?

n—-1°

Lemma 12 proves that here is a component C*?! of (w¢)~}(U*) such that
C~UMZT? UC*!is open and

T\ Upzz,uc+ 1t €T UMTAUCT > U™ U <S"‘1 X %) uu+!?

is a diffeomorphism (U*! = U™* but it is now diffeomorphic to C*?).
Let us assume that C*' = M™2 UC*'Ugq where Tp(q) = p,. We have
the diffeomorphisms

pUC*UM™iucC" ZpIUU*U<S"‘1x—321>UU‘ = U,.

(ol UM:,’/_21UC“UqT—f U- u<s"-1 x%)UU“Up2= U,.

By pasting the manifolds U; and U, through the identification of U~ C U;
with U™ C U,, the sphere S” is obtained and consequently 7 is a diffeomor-
phism

T pUCTUMY2UC  UMY* C*'Ug—S"

Because the number of C* and C~ components is finite, the above process
would use up these components and by Lemmas 9 and 10 would end in a single
point. As M, is connected, it would be diffeomorphic to S”.

The proof of the theorem is complete. []
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