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Compact Hypersurfaces
with Constant Higher
Order Mean Curvatures

Antonio Ros

A fundamental question about hypersurfaces in the Euclidean space is to
decide if the sphere is the only compact hypersurface (embedded or immersed)
with constant higher order mean curvature H,, for some r=1,...,n.

If the hypersurface M” is star-shaped, Hsiung [3] solved afirmatively the
problem for any r. In particular if the Gauss-Kronecker curvature H, is con-
stant, then M" is a sphere, because in this case the Hadamard theorem asserts
that M” is convex. The convex case was studied previously by Liebmann [5]
and Siiss [9]. If the mean curvature A, is constant and M" is embedded,
Aleksandrov [1] proved that M" is a sphere. In the immersed case Hsiang,
Teng and Yu [4] and Wente [10] constructed non-spherical examples in higher
dimension and in R? respectively. If the scalar curvature H, is constant and
the hypersurface is embedded we proved in [8] that it must be a sphere. In this
paper we extend this result to higher order mean curvatures. In particular we
prove that

«The sphere is the only embedded compact hypersurface in the Euclidean
space with H, constant for somer=1,...,n.»

In this paper we use as in [8] a method of Reilly [7]. Recently with S. Mon-
tiel [6] we obtained a different proof of the above theorem. Another proof
has been published by N. Korevaar [11].

447



448 AnTONIO ROS
1. Preliminaries

Let y: M" = R"*! be an orientable hypersurface immersed in the Euclidean
space. Let N be an unit normal vector field on M, o the second fundamental
form of M with respect to Nand k;, i = 1, . . ., n the principal curvatures of M.,
Foranyr = 1, ..., n we define the mean curvature of order r, H,, by the identity

) (A+th)---(+th)=1+ (’1’>Hlt + <;>H2t2 bt <Z>H,,t”
for any real number ¢. For instance, H, is simply the mean curvature H; = H =
(k, + - -- + k,)/n. H, is, up a constant, the scalar curvature and H, = k%, . . .
k, is the Gauss-Kronecker curvature. From the Gauss equation we have that
if r is even, then H, is an intrinsic invariant of M. Note that for the unit sphere,
and with respect to the unit inner normal, we have H, = 1 for any r. By conve-
nience we put H,, = 1. These curvatures satisfy a basic relation in global hyper-
surface theory, which is stated in the following lemma.

Lemma (Minkowski Formulae [3]). Lef y: M" — R"*! be a compact orientable

hypersurface immersed in the Euclidean space. Then for anyr=1,...,n we
have
) jMH,_IdA + jMH,w,N)dA =0.

Let Q"*! be a compact Riemannian manifold with smooth boundary
M" = 3Q. Let dV and dA be the canonical measures on 2 and M respectively
and V and A the volumen of Q and the area of M. Given fin C*(Q) we denote
zZ= f| o and u = df/dN, where N is the inner unit normal on M. Reilly’s for-
mula [7] states that

3)
| 1@ = 19> - Ric (W1, 91 aV = [, [=2(A2)u + nHu® + o(Vz, V2)] dA,

Vf, Af and V2f being the gradient, the Laplacian and the Hessian of fin @,
Ric the Ricci cuvature of 2, Vz and Az the gradient and the Laplacian of z
in M, and o and H the second fundamental form and the mean curvature of
M with respect to N.

If M is a compact hypersurface embedded in R”*?, then M is the boundary
of a compact domain Q@ C R**!. So if x denotes the position vector in R"*?,
then E|x|2 = 2(n + 1), and from the divergence theorem we have

@) (n+ 1)V+jM<¢,N>dA=0,

Y being the immersion of M in R"*1,
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2. An inequality

For the next result we will follow closely the ideas of Reilly [7].

Theorem 1. Let Q"*! be a compact Riemannian manifold with smooth

boundary M and non-negative Ricci curvature. Let H be the mean curvature
of M. If H is positive everywhere, then

) JM %dA =n+ V.

The equality holds if and only if Q is isometric to an Euclidean ball.
Proor. Let fin C®(Q) be the solution of the Dirichlet problem

Af=1inQ,
z=0 on M.

From the divergence theorem we have
(6) V= afdv=- jMudA.

Combining Schwarz inequality (Af)* < (n + 1)|V2f|* with (3) we obtain

4 >j Hu?dA.
M

™ n+1°~

Finally, from (6), Schwarz inequality and (7) it follows that

2 2
V2=<j udA> =<J (uHVZ)H‘VZdA>
M M

j qudAj H™'dA
M M

1A

vV 1
—dA
I1+1J‘MH ’

and we have proved inequality (5).
If equality holds, then V3f is proportional to the metric everywhere. As
Af = 1, we conclude that

1A

cpp 1
@®) Vf—n+1<,>.
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Deriving covariantly we obtain V3f = 0 and from the Ricci-identity,
) R(X,Y)Vf=0,

for any X, Y tangent vector to Q, where R is the curvature of Q. From the
maximum principle f attains its minimum at some point X, in the interior of
Q. From (8) it follows that

_ 1 d

V=> - —>
J n+1r6

where r is the distance to the point x,, which combined with (9), Cartan’s
Theorem and the fact that f vanishes at the boundary of Q implies that Q is
an Euclidean ball whose center is x,, and f is given by

SO = [2(n + D17 !(|x = x> — a?)

in Q, a being the radius of the ball.

3. Hypersurfaces with H, Constant

In this section we prove the main result of this paper. Given k = 1,...,n we
consider the function o;: R” — R defined by

o (x5 . . ., X,) = elementary symmetric polynomial of degree k in
the variables x;,...,X,.

Thus Hy = oy (ky, ..., k,). We denote by C, the connected component of
the set {xeR"/a,(x) > 0} which contains the vector (1,...,1). From Gér-
ding [2] we have that if kK < r, then C; D C,. Moreover if x € C, we have for
k < r that g, ()%~ % < g, _,(%). For k = 2 equality holds if and only if x is
proportional to (1, ..., 1). Clearly if x; > O for any i, then (x,, ..., x,) € C;.

Theorem 2. Let M™ be a compact hypersurface embedded in the Euclidean
space R"*1. If H, is constant for some r=1,...,n, then M" is a sphere.

ProOOF. As M has an elliptic point, H, must be a positive constant. As the
principal curvatures are continuous functions we have that (k;,...,k,)€C, -
at any point. Hence (ky,...,k,) € C, for k smaller than r. In particular
H, > 0 for k < r. Moreover

(10) HE-VE<H | k=1,...,r,
As consequence

(11) HY"<H in M.
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Now we use Minkowski formulae and (3):
0= jMH,_ldA + fMH,w,N)dA
=hH;MA+EL%%NNM
=hﬁ;¢A—m+nmw
Combining this equality with (10) we have
m+JﬂLV=L/L4dA>AHY”W

and so

A
12 Hl/r________
12 rE (n+ 1)V

On the other hand from (5) and (11) we obtain

dA
+1)W=| =—=<AH" V"
(n+1) _J‘MH_ F
which is
A
13 Ur ,
(3 T T m+ D)V

and the equality holds if and only if M is a sphere. The theorem follows from
(12) and (13).

4. An Extension of the Aleksandrov Theorem

First we observe that a compact hypersurface embedded in the Euclidean
space is a critical point of the isoperimetric functional if and only if it has con-
stant mean curvature.

Theorem 3. Let M"*! be a Riemannian manifold with non-negative Ricci
curvature, and let Q be a compact domain in M with smooth boundary. If Q
is a critical point of the isoperimetric functional

n+1
N A(09Q)

@ V)"

3

then Q is isometric to an Euclidean ball.
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Proor. Given a smooth function f on dQ, we consider the normal variation
of dQ defined by y,: 2 = M, v,(p) = Exp, (—1f(p)N(p)), where Exp is the
exponential map of M. y, determine a variation of Q, @, for || < e. We put
V(t) = V(Q) and A(t) = A(39,). The first variation formulae of the func-
tionals above are given by

A©@=n| _fHAA,

Vi = |, fdA.
By hypothesis we have

d

dt

A(t)n+l _
t=0 V@®)" ’

or equivalently
[, /ln+ DVH - AldA = 0, for any f.

Then H = A/(n + 1)V and we have equality in (5). Therefore Q is isometric
to an Euclidean ball.

Remark. Let y: M"— R"*!be an immersed compact hypersurface. Suppose
that M is the boundary of a certain manifold "*?!, and that the immersion
Y extends to an immersion of @, ¢¥:Q"*!—> R"*! It is easy to see that
Aleksandrov proof [1] can be adapted to this situation: If M” has constant
mean curvature, it must be a sphere.

U. Pinkall pointed out to me that Reilly’s method can also be used in this
case. In fact, taking on Q the pull-back of the Euclidean metric, inequality (5)
remains true and the same holds for identity (3). On the other hand,
Minkowski formulae hold for any immersed hypersurface. So theorem 2
extends to the above type of immersed hypersurfaces.
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