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Introduction

The aim of this paper is to extend the results of Calderdn [1] and Kenig-Pipher
[12] on solutions to the oblique derivative problem to the case where the data
is assumed to be BMO or Holder continuous. Suppose D is a bounded
Lipschitz domain in R”, N(Q) is the unit normal at a point Q on the boundary
of D and V(Q) is a continuous bounded vector field defined on the boundary
of D such that for some constant ¢, {V,N) = ¢ > 0. At each point Q € dD,
the cone I'(Q) € D is defined by

I'(Q) = {PeD:|P- Q| < (1 + a)dist(P,dD)} for some a>0.

For v € C¥(D), one can define the nontangential maximal function of v and
the square function of v by

Nv(Q) = ng?@ |v(X)|

S20(Q) = j o d(X)>~"|Vu(X)|* dX

where d(X) = dist (X, dD) is comparable to |X — Q| for X e I'(Q). Consider
the boundary value problem

Au=0 in D
1.1
(.1 {V-Vu=g on 4D
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with g € LP(dD). Because V is continuous and never tangent to the boundary
of D, V-Vu may be regarded (locally) as a perturbation of du/dy and the
following results are known.

Theorem A (Calderdn [1]). There exists a solution u(x) to (1.1) with
INVW[ ., < lglr for 2—e<p<2+e

where e depends on the domain and g is assumed to satisfy finitely many linear
conditions.

Theorem B (Kenig-Pipher [12]). If g€ L?(dD) for 2 < p < o and satisfies
finitely many linear conditions, then the solution u(x) to (1.1) satisfies

IN®I s lel -

This last theorem indicates that the oblique derivative problem (1.1)
behaves more like the Dirichlet problem than the Neumann problem on a
Lipschitz domain. (Indeed, only where the domain is C! will (1.1) contain the
Neumann problem as a special case.) In light of the results of Fefferman-Stein
[6] for harmonic functions in R” and the work of Fabes-Neri [7] on the
Dirichlet problem with BMO data on Lipschitz domains, it is natural to ask
for BMO solutions to the oblique derivative problem for data in BMO. This
problem is addressed in section 2. Again in analogy with the Dirichlet problem
it is of interest to consider behavior of solutions to this problem when the data
g is assumed to be Holder continuous and this result is formulated in section
3. In both cases, the method of proof closely follows that of [12], hence some
aspects of the proof presented here are deliberately brief.

I would like to thank Robert Fefferman for queries and conversations
which led to this work and I thank Carlos Kenig for several helpful discussions
while this work was in progress.

2. The Boundary Value Problem (1.1) with g e BMO(3D)

If g € L'(3D) then g belongs to BMO(AD) if there exists a constant C such that

1
a(ld)

2.1 sup I lg — galdo < C,
A A

where A is a surface ball contained in dD, do is surface measure on dD and

1
ga = ) Lgda.
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The norm of g in this space is
lgls = Hapgda’ + inf {C: 2.1) holds for C}.
Equivalent definitions (and norms) are given by the L? conditions for

l1<p<co:
{ 1 1/p
su — gxlPdo < o,
e L lg — &al }

(See John-Nirenberg [10].) Our question is the following: when can (1.1) be
solved with g e BMO (D) to yield a solution # with Vu e BMO, i.e., all
derivatives of u belong to BMO?

Consider first the following simple problem in the upper half plane. Let
V = (0, a(x)) with ¢ < a < 1 and suppose g e BMO (R, dx). Then V- Vu = gon
R with u harmonic in R? is the same as du/dy = a~'g and one expects a to
satisfy a further condition to insure that %, belong to BMO, namely that a™~ 1
be a BMO multiplier. Since a € L this is equivalent to demanding that a itself
be a BMO multiplier (that is, for all g € BMO, ag € BMO). Necessary and suf-
ficient conditions for a function to be a BMO multiplier were found by
Stegenga [14] and we impose this additional condition on the components V;
of V. However, we require slightly more smoothness on ¥ which is a VMO
version of this multiplier condition (see Sarason [13] for the properties of
VMO functions) and from now on each V; will satisfy (2.2). Given € > 0, there
exists 6 > 0 such that if the radius r(A) of A € 4D is less than §, then

1 do
2.2) log (TM) L [Vi = (Val o(A) <e

Further comments about this VMO requirement will be made at the end of
this section but it should be noted that continuity of ¥ does not imply (2.2)
(see S. Janson [8]). When D is a C! domain, the boundary value problem (1.1)
could be taken to be the Neumann problem. In this case however it is possible
to construct a C'domain in R? for which there exists a harmonic u with du/dn
in BMO but V,u (the tangential derivative) not exponentially integrable, and
hence not in BMO. Construction of such a C! domain is essentially given in
Kenig [11].

The main result for g € BMO (dD) will be formulated in terms of the Feffer-
man-Stein «sharp» function ([6]). For f(Q) defined on 0D, set

1

1/q
- — q

T#9f)Q) = sup {
A30

for 1 < g < . Then a function f belongs to BMO (3D) if, for some g, T*:9(f)
belongs to L=, and if f belongs to L? for p> q, |T*'Uf)|p s | fl0-
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Theorem 2.3. Suppose V =(Vy,...,V,) is continuous, (V,N)=c and V
has property (2.2), and suppose g € BMO (D) and satisfies finitely many
linear conditions. Let u be the harmonic solution to V - Vu = g on dD given
by Theorem A. Then, given e > 0, there exists C, such that for a.e. Q € 0D,

2.9 T*2(Vu)(Q) < C - e(M,[T**(Vu)X(Q))"* + C.,

where M, is the Hardy-Littlewood maximal function on dD with respect to do.

The expression T#:%(Vu) denotes >, ; T#:%(D;u) and this sort of abbrevi-
ation will appear in other contexts later on. The constant C. in (2.4) depends
on everything: the Lipschitz character of D, the modulus of continuity of V,
the constant in (2.2), the diameter of D, the transversality constant ¢ and the
apertures of cones of square functions appearing in the proof of the theorem.
The desired property of |Vu| follows immediately.

Corollary 2.4. All derivatives of u belong to BMO (aD).

ProOF. By Stromberg ([16], Lemma 3.7), |T**(Vu)| ,» < C| T* *(Vu)| 1»
with a constant independent of p for p > 4. By Theorem B, |T*'*(Vu)|,, is
finite for large p and hence if € is sufficiently small, | T#>%(Vu)|, < C.. Let-
ting p tend to o gives T#*'*(Vu)eL*. O

The proof of Theorem 2.3 consists of a series of lemmas. The first of these
quantifies the intuition that ¥ - Vu is locally a perturbation of du/dy. We fix
a regular family of cones (see Dahlberg [3]) I'(Q) C T'(Q) =T and Sv will
denote the square function taken with respect to T'(Q). The cone I',(Q) (or
T',(Q)) is the truncated cone I'(Q)N {X e D: | X — Q| < h} and S,v (or §,v)
denotes the square function with integration taken over I',(Q) (or I, (Q)). Let
Hu(X) denote the Hessian of u# and set

S V) = | i OO M HuX)|? dX.

Lemma 2.5. (Stein [15], p.213). Suppose S,(Vu)(Q,) < 0 and choose coordina-
tes so that B is a neighborhood of Q, = (0, ...,0) withDNB = {y:y > ®(X)}
Jfor ® Lipschitz. Then there exists a constant C such that

= (0
Sr(Vu)(Qo) < CSy, <"%>(Qo) + Ch*|Vu(0, h)|?
for h > h.

The following two lemmas will be needed to obtain T# estimates from
square function estimates, and vice versa.
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Lemma 2.6. If A = A(Qy, Iy) is a surface ball contained in oD, let
T(8) = (X €D: |X ~ Q| < ro)

be the Carleson region associated to A. Then, if d(X) = dist (X, D),

L[ g 1 )
5 j 7A@ = s [ dvoiespax

for f harmonic in D and fe L*(3D).

Proor. If Q is a Lipschitz domain, let S, f denote the square function of f
with respect to the domain Q. Then

S QXN P X > [, dist (6, T(@)?~"|V7 | dX
LT(A) Si’(A)(f)(Q) da(Q)
> [ 1£(Q) — fal? do(©)

=

by Dahlberg’s area integral theorem [3]. [

Lemma 2.7. If fe L*0D) and Af = 0 in D, A = A(Q,, 1), then

{ ! j d(X)IVflde}ST#’Z(f)(Qo)-
a(d) Jrw

Proor. Let

LG = | (f(Q) - f)do™(Q) and £,(X) =f(X) ~ fi(X)

A(Qy 2rg)
so that
Vf=Vfi + V.
Then

1

A 2 < __1_ 2
o) L(A)d(X)Wf:] dX s _y ijI(Q)dU(Q)

1

2
<o j AQ) - ful? do(Q)

< (T*(/)Q)*.

If G(X) denotes the Green’s function for D with pole at P, € D then since

£iX) = [ 1@ - fu] do¥(©@)
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is a positive harmonic function which vanishes on A, the comparison theorem
yields, for X € T(4),

IVA@X)] = [ f3(X)]/d(X) s GX)/d(X) - f3(X,)/ G(X,)

where X, € T(A) satisfies dist (X}, dD) > ch. By Holder continuity of the
Green’s function, there is some a > 0 such that G(X)/G(X,,) < (d(X)/h)" (see
[9]) and so

i | aeoreneoraxs (o [ dert aax )t
< CUTE
Estimates for | f5(X,)| as in [5] or [7] show that
F3C0)| < CT*2(T1(Qy). 0

Fix a Q, € dD. Then (¥V(Q,), N(Q,)> = c and since V(Q) is continuous there
is a neighborhood A of Q, such that { V(Q), N(Q,))> = ¢/2 for all Q € A. Given
€ > 0, choose a coordinate chart for dD near Q, with neighborhood A(Q,, 6)
such that ¥(Q,) points in the direction of the y-axis and |V(X) — V(Q)|> < e
for all X e UQE Ay ® T';(Q), where V;(X) is the harmonic extension of V;(Q)

to D. By Lemma 2.6, choose 4 > 0 so that

2 . 2
TR0 < S |, SHTO@ do@

and we can assume 4 < 6. By Lemma 2.5 and the continuity of ¥V, for all
Q € Ah H

Sz2(Vu)(Q) < J d(X)Z“" dX + h?|Vu(X))|?
T

2.8)

<C. j dX dX+ h2|Vu(X,)|2.
T,(Q

Lemma 2.9. If X, € T(A(Qy, h)) with dist (X}, dD) > ch, then

|Vu(X,)| < Clog (1/M)T**(Vu)(Qo) + C.

PrROOF. Let 6 > hbe fixed with DN {P: |P — Qp| < 26} = {(x,»):y > ®(x)},
a coordinate chart. Then

|Vu(x, ®(x) + h)| s |Vu(x, d(x) + 8)| + j: |Hu(x, ®(x) + r)| dr.
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By Calderén’s theorem,
|Vu(x, $(x) + 8)] < C; [N(Vu)do < C; |l - < Cs | 8] +-
Let X, =(x,®(x)+r) and B,= {PeD:|P— X,| <r/2}. The mean value

theprem gives

] é 1 172
j |Hu(X,)| dr < j <—j |Hu(Z)\2dz> dr
h R\T" JB,

r

172
< log (i> sup U d(X)|Hu(X)|? dX}
h T(A(Q, 1)

1

A > T*:X(Vu)(Qy).

< clog<
by Lemma 2.7. [

Set v(x) = V(X) - Vu(X). Inequality (2.8) together with Lemma 2.9 shows
that, for Qe A,

SHV(Q) S ch’log? <%>(T#’2(Vu)(Qo))2 + 50XQ)

2

Vi (x5 dX + C;.

2~-n
* jf‘;;(Q) a0 1Zk ‘ 0X} X) aX; )

Since 4 < §, the first term above will be smaller that [7*:2(Vu)(Q,)]*/2 for
appropriate choice of ¢ and this proves

Lemma 2.10.
1 _
[T#:2(Vu)(Q)* s C; + 7w Lh S%(w)(Q) do(Q)

L1
o(An)

j dX)|VV|*|Vul* dX.
T(Ap)

Lemma 2.11. If V satisfies (2.2), then given € > 0, there exists C = C(e)
such that

172
{—1— j d(X)|VV(X)|2|Vu(X)|2dX} < C + C'eT* 2(Vu)(Qy)-
o(Ap) Jray

Proof. Let F(X) = Vu(X) — Vu(X,) where X, € T(4,) with dist (X}, D) = h.
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As in the argument for Lemma 2.7, split F into two components F; and F,
where
- X — F_
FO= |, o 1 F@d™Q) and F,=F-F,

and M is a constant depending on the Lipschitz character of D. Because
d(X)|VV(X)|*dX is a Carleson measure and 4 is small,

do
a(Ap)

1
o(4p) Jray

AV IR O X< [Vl [, N

do(Q)
o(Ap)

< C'ej Vu(Q) — Vu(Xy)|?
AMh

which is bounded by
C'e[T* X(Vu)(Qo)I?
as
|Vu(Xy) — (Vu)a| < CT***(Vu)(Qo)

(see [5]). To handle the term involving |F,(X)|, one uses the usual estimates
obtained by comparison with the Green’s function and the fact that |VV(X)| <
e/d(X) since ¥V € VMO. Hence

172
{ ! d(X)lVV(X)Ilez(X)IZdX} < CeT* 2(Vu)(Qy)
0(Ap) Jrap

and it remains to bound
1
|Vu(Xp)|* - ——— j d(X)|VV(X)|*dX.
a(Ap) Jray

By Lemma 2.9 and the multiplier condition (2.2) for ¥ (which has an equivalent
L? expression),

2 1 J‘ 2
|Vu(X,)| ) mh)d(X )|VV(X)|"dX

< C; + log? <i> ——l—j d(X)|VV |2 dXIT* 2(Vu)(Qy)I*
h ] o(Ap) Jray

< C; + Ce[T* 2(Vu)(Qy)1>. O

By Lemma 2.11 we may choose e sufficiently small depending only on V,
D so that



OBLIQUE DERIVATIVE PROBLEMS FOR THE LAPLACIAN IN LIPScHITZ DOMAINS 463

172
(2.12) T* X (Vu)(Q,) s Cle) + { 2By j S3) dU(Q)} :

From now on, we write
F(X) = L,G(X’ Y)Av(Y)dY

for the Green’s potential of v. Then if g(X) is the harmonic extension of g
to D, we have v(x) = —F(x) + g(x). Because d(x)|Vg(x)|*dx is a Carleson
measure ([7]), the only term to be controlled involves S?(F). The following
good-\ inequality is a modification (and simplification) of Lemma 7 of [12]
and details of the proof are provided only where they essentially differ from
those of [12].

Lemma 2.13. Let

Ny (F)Q) = sup_ IF @X)|

Xel', (@

be the truncated nontangential maximal function of F. For v sufficiently
small, there exists constants C and 1 depending on D such that (if d|VF|
abbreviates d(x)|VF(x))),

0{Q € Ay: Sy(F) > 2\, N,y (F) < Y\, N, (d|VF|) < W, 8, (Vu) - Ny(F) < (W}
< CY'0{Q €Ay Sy(F) > \).

The inequality of Lemma 2.13 remains true for v(x) = V(X) - Vu(X) replacing
F(X) and consequently should be regarded as a good-\ inequality for the
product of harmonic extensions of a BMO function and an L? function.

Corollary 2.13.

(T*2(Vu)(Qp)* < C + CJ N;(F) + N3(d|VF|) (Ah) :

Proor. Integrating the good-\ inequality and using (2.12) gives

(T*>(Vu)(Qy))* < Cs + | g%

Cc| N2F)+N?
* L,, R+ N @

+j 1N, () 01
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The last term above is bounded by

foj Si(Vu)——— j Ni(F)——

( (Ah)

which in turn, by Lemma 2.7, is less than

1
5 T2 W@ + C j NiP)

for suitable choice of ¢,.

SKETCH OF PROOF OF LEMMA 2.13. Observe that Lemma 7 of [12] was stated
in terms of v, not F. However AF = Av and the only important property of
v(x) used here is the fact that |Av| < |VV| |Hu|.

Let B; be a Whitney cube of {S,(F) > \} and let

F; = B;N {8,(F) > 2\, N, (F) < Y\, N, (d|VF|) < "\, S, (V)N (F) < ("M}

Let Q2 be the sawtooth region over F; (see [4]) and fix an X € Q away from 4D
for the pole of Gq(X, Y), the Green’s function for Q. If dw,, is harmonic
measure for Q evaluated at X then the estimate o(F)) < Cy"a(B;) follows
from the estimate wg(F) < 72 (see [3]). At this point the proof in [12] carries
over once one shows that

[ Ga Gt MIF)| [VV(Y)| [Hu(Y)| dY < (N

The integral will be estimated first over the region B,(X), a ball of radius
roughly d(X) = dist (X, dD) centered at the pole X of Gg. For Y € By(X),

|Hu(Y)| < ——— S,(Vu)(Q)

d(X )
for any Q € F; and |F(Y)| < N, (F)XQ), hence

Go X, NIFW)| [VV(N)| [Hu(Y)| dY
= Ny(FYQS, V@IV | [, o GoX, V)A(X) ™2 dX
< CON™ '

J By(X)

For Y € QBy(X),
Gy (X, Y) s G, (Py, Y)/w™(Ay)

where G, (P,, ) is the Green’s function for D with pole at P, € D. Hence
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j G, (X, Y)|F||VV| |Hu| dY
\B,(X)

1

s w(Ap) J‘Ah”F J‘I‘h(Q) d(Y)"""|F| |Hu| [VV| dY dw(Q)

1
S—— j‘ Ny (F)S;, (Vu)Sy (V) dw (Q)
w(Ap) Ja, NF;

) 172
) J‘Ah Sa(V)dw (Q)]

s (W’ [

) 1 j’ ) }1/2
< C(OM {w(Ah) ra, o Po Y)|\VV(Y)2dY

< C(MN.

This last inequality follows from the fact that a function in BMO (do) is

also in
dw 2 172
) jg o) d“’) <°°}

and that G(P,, Y)|VV(Y)|*dY is a Carleson measure with respect to dw. (See
Jerison-Kenig [9].) O

BMO (dw) = {g € L*(dw): sup <

The following lemma provides a pointwise estimate for N, (F)(Q) which
proves Theorem 2.3.
Lemma 2.14. Given ¢ > 0 and X e T'5(Q), 6 = 8(e),
|F(X)| + dist (X)|VF(X)| < CeT**(Vu)(Q) + C| gl + CeS,(Vu)(Q).

From the lemma one obtains

j N3E) + Nyt [TF]) 525 ]} + CaM,(T* T (@)

A)

+ Ce

S2(Vu)do,
o@n) Ja, #(Vu)

which by (2.13) yields (2.4), for sufficiently small e.

PROOF OF (2.14). Let us consider only the term |F(X)|; the estimate for
d(X)|VF(X)| is exactly the same. If By(X) is the ball centered at X with radius
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comparable to d(X), and G(X, ») is the Green’s function for the domain D,

|F(X)| < IDG(X, Y)|[V(Y)| |Hu(Y)| dY = jB ot jD\B 0

As in Lemma 2.13, using |Hu(Y)| < d(X) 'S, (V,4(Q)),

J G(X, Y)|VV(Y)| |Hu(Y)| dY
By(X)

1/2

. 12
< Sh(Vu)(Q){J‘ GX, Y)|VV(Y)|*dY {——1—— GX,Y) dY} )
ByX) dX) Jayx)

0

For YeB,(X), G(X,Y)= |X — Y|* ", so that G(X, Y) is comparable to
GB-O(X, Y), the Green’s function for B, = By(X,2d(X)). Hence the third
term in the product above is finite and

UBO(X) G(X, Y)|VV(Y)|2dY} 12 Uaﬁo |V(P) — V(X)|? dwEO(P)}VZ

which is less than e since V is continuous and % < 6(e).
To bound that part of the Green’s potential over D \ By(X) we introduce
the regions Q;. For j=0,...,N, set

Q,={YeD:|Y-Q|<27'd(X)}, and R;=9;,,\Q,

where 2Vd(X) = 6. Thus the regions Q; form a nested sequence of domains
which fills out Q5 = TA(Q, 6§)). We assume that é has been chosen so that

1
w(4) Jr)

G,(N|VN(Y)|*dY <e
whenever radil_ls (A) < 6. Choose a sequence of points {X;} such that X; e,
and d(X)) = 2’d(X). Then if Y € R;, the comparison theorem yields (see [2])
GX, Y)/Gy,  (X;41, V) S G, X)/Gy | (X1, X).
By Holder continuity of G, there is some o > 0 such that
GX, X)) < 277G(X;, 1, X))

and altogether, for YeQ;,
. 274
<27 i1 Y)S———-Gp(Py, Y
GX,Y)<2 GO,H(XJ“ ) oAy D) p(Po, ¥)

where A;,; = 0DNQ;, ;. It follows that
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j G(X, Y)|VV(Y)| |[Hu(Y)| dY
2, \B,(X)

N
—je 1
sj;OZ —w(Aj+1) T, G, (P, Y)|VW(Y)| |[HW(Y)|dY

J+ 1)

e 1 5 172
<2 G(Py, Y)|VV |2 dY

j=0 w(4j41) Jra;,

1 172
{_._ G(P,, Y)|Hu|2dY}

w(441) Jra,, p
172
I [Vu — CAlzdw}
A

< 27T HVu)Q) < CeT**(Vu)(Q).
J .

< 212 " esup {

Jj A3g

1
w(A)

The last inequality follows from the fact that dw/do satisfies a reverse
Holder inequality of exponent two (Dahlber, [2]).

Let D; = {YeD:dist(Y,dD) < 6}. We have estimated that part of the
Green’s potential over the region D; N Q;. The remainder, D; \ Q;, consists of
a union of regions @, which are, roughly speaking, translates of Q% by a
factor of 2%5. The estimates on each of these are similar to the above, and
similar to those of [12], Lemma 10, so the details are omitted.

Consider now the region D\ D;. Away from the pole X of G(X, Y) and at
a distance at least 6 from dD, one simply uses the pointwise estimates
|G(X, Y)| < Cs, [VV(Y)| < C; and |Hu(Y)| < Cs|Vu(Y)| to obtain

1/2
j G(X, Y)|VV| |Hu| dY < C(8) sup |Vu(Y)|<cU Nz(Vu)do}
D\D; YeD\D, aD

<Clgl« O

3. The boundary value problem (1.1) with Holder continuous data

The Green’s function G(P,, +) for D is Holder continuous of some order v,
where v, depends on the Lipschitz character of D. Thus, it can be shown that
if g(Q) on oD is Holder continuous of order v < 7,, then the solution of the
Dirichlet problem with boundary values g(Q) satisfies |Vg(x)| < d(x)" ™.
Solutions to the boundary value problem (1.1) will also have this property
when the vector field ¥V is smooth enough. The proof requires the information
established in §2, namely that the solution is known to be of bounded mean
oscillation.
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Theorem 3.1. If the components V;(Q) of I7(Q) and the boundary data g(Q)
are all Hélder continuous of order v < 7q, Y, as above, then if u(x) is the sol-
ution to (1.1) given by Calderdn’s Theorem, there exists a constant C depen-
ding on D, |g|., and | V|, such that |Hu(X)| < Cd(X)"~".

Fix such a v < v, . It will first be shown that Vu is H6lder continuous of some
order o < 7; this information will then be used to modify some estimates and
obtain the desired result. The results of section 2 guarantee that Vu € BMO (do).
Hence T*:*(Vu)(Q) is bounded by |g|.. Fix Q,€dD and set

3 1 ) 1/2.
H) = {—0 GO Jres d(XO)| Hu(X)| dX}

A perturbation argument like that of section 2 will be used to prove

Theorem 3.2. Given a < and € > 0, there exists a constant C, such that
3.3) H(r) < eHQ2r) + C.re.

Because H(s) is finite for all s > 0, inequality (3.3) gives Holder continuity
of Vu by repeated iteration of itself and by choosing e < 2~ Y~ . The notation
and terminology of section 2 will be used in the subsequent lemmas. Fix a
small e >0, a Q,€0D and assume r < e. Recall that v(x) = V(X) - Vu(X),
where V(X)) is the harmonic extension of V(Q), and that A, denotes the ball
of radius r centered at Q,.

Lemma 3.4. If X, e T(A,) with dist (X,, dD) > cr, then

1 _ 1/2
j 83,.(Q) da(Q)}

H(r) < C{rivu(Xr)i + {U(Ar) A,

172
+{ L j d(X)}VV(X)}ZIVu(X)Ide} J
o(4,) Jra)

Proor. The proof is identical to the argument leading up to Lemma 2.10,
given that 7% *(Vu)(Qp) < |gle. [
Lemma 3.5. For any a<v,

1
a(4,)

J dX)|VV(X)|}|Vu(X)|* dX < Cr*e.
T@,)

Proor. The proof of Lemma 2.11 and the fact that Vu € BMO (do) yields the
estimate, for X e T(4,),
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r

(3.6) [Vu(X)| < Clog ( 1 )
Since |VV(X)| < d(X)"~! we have

—LJ‘ d(X)|VV(X)|2|Vu(X)|2dX< Clog? <i>r27,
o(4) Jra) ;

which proves the lemma for any o <vy. [

It should be observed that this is the only point in the proof where the
expected order of Holder continuity is not achieved. The reason is that the
bound (3.6) for |Vu(X)| is not sharp. However, once some order of continuity
of Vu is established, the bound (3.6) can be replaced by

3.6) IVux)| < €
and the inequality of Lemma 3.5 can be replaced by

1
o(a,)

3.5y f dX)|VV(X)|*|Vu(X)|*dX < Cr™.
T@A,)

which yields the right order of Hoélder continuity.
Moreover, (3.6) and Lemmas 3.4 and 3.5 now show that

1
a(4))

172
3.7 H(r) < Cr* + { j 53:()(Q) dv(Q)}
AI'

Write
v(x) = g(x) — F(x)
where
Fx) = [ GX, Y)Av(Y)dY
and since
g0 = [, 8@ do* (Q)

satisfies |Vg(x)| < d(X)?~! it suffices to consider the term involving S%,(F).
The good-\ inequality (2.13) yields

(3.9)
Hr)<Cr*+ {

C 172

172 i
€ 2, )
2) L,Nr(F ) do (Q)} +e {———a ) L, S5, (Vu)(Q) do’(Q)}

a(

and the last term in the summand above is bounded by e/(2r). The next lemma
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will be used to handle the second term above; it is stated in a more general
form.

Lemma 3.9. Let v, be the order of Hélder continuity of the Green’s function
G(P,, *) of D. Suppose V and U are harmonic in D with |VV(X)| < d(X)" ™!
Jor ¥ < vy and U|,p in BMO (do). Set v(x) = V(X)U(X), and

F(X) = L) G(X, Y)Av(Y)dY.
Then if d X) < r, |[F(X)| <Cr.

Proor. Fix X with d(X) < r and observe that |Vu(Y)| < [VV(Y)| |[VU(Y)|.
Let By(X) = [ YeD:|Y — X| < ;d(X)} be the ball centered at X containing
the pole of G(X, Y). Then

rY 1
LO(X) GX, Y)|VV||VU|dY < 400 LO(X)G(X, Y)[——d(X) U] BMOi| ax

< Cr.

Choose N such that 2Vr = 1, and for each j = 1, . .., N introduce the regions
{; as in the proof of Lemma 2.14, and let A; denote D N Q;. As before, one
applies the estimates for G(X, Y) in the annular regions Q;\ ©;,, to obtain

j G(X, Y)|VV||VU|dY
Q6

< Z 2"!"‘/0 1

A1 w(A;) ijG(PO’ NIVVM)| | YUY)| dY

N . 1 ) 172 1 5 172
—JYo
<32 {w(Aj) LJG(PO, Y)|vV| dY} {w(Aj) LjG(PO, Y)|VU| dY}

<22”{ ! SZVd}m
—JY0 .
\j=l w(Aj) J;j zlr( ) w

where the last inequality follows from the fact that U e BMO (dw). When
|[VV(Y)| <d(Y)""!, a pointwise estimate on the truncated square function of
V follows; namely S,;,(V)(Q) s (2°r)". For v < v,, the above inequality can
be summed, obtaining «

[, e, n|vv||vau|dy = cr.
Jj

Let D; = {X e D:d(X) < 8} and then D; = U, 0§° where O is a region like
Q, at a distance roughly 2¥6 from Q,. One achieves similar estimates for the
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Green’s potential when the region of integration is @’ and these in turn may
be summed on & (see for example [12]). The term involving integration over
the remaining region D; is easily handled by simple pointwise estimates:

I G(X, Y)|VV||VU|dY < Cyd(X)" sup |Vu(Z)|
D, ZeD,

< Cr'|N(Vu)| ;.
< Cr.y"gano- U

Lemma 3.9 is applied to estimate N,(F)(Q) at any Q € A, and together with
(3.8) shows that H(r) < Cr* + eH(2r), i.e., that H(r) < Cr® for all r. This
estimate implies an immediate improvement of itself (see the argument follow-
ing Lemma 3.5) and so H(r) < Cr” for any v <7,. From the fact that
H(r) < Cr" it follows, by the mean value property, that |Hu(X)| < d(X)" !,
which implies that u is of class C*”.
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