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Introduction

The purpose of this work is to study the class of non-negative continuous
weak solutions of the non-linear evolution equation

ou
(1.1) a—t=A<p(u), xeR",0<t<T<K +oo.
Here the non-linearity ¢ is assumed to be continuous, increasing, with
¢(0) = 0. In the case when ¢(u) is super-linear when u tends to + o, the cor-
responding study was carried out in [7] (and in the pure power case in [2], [6]
and [4]). Here, we treat the case when ¢() is sub-linear when u tends to + oo
(but not foo sub-linear, as we shall see below). In doing so, we complement
and extend (and make extended use of) some results of M. A. Herrero and
M. Pierre [12], who have studied the Cauchy problem for the equation

%=Au"’, 0<m<1,in R" X (0, ),
with any initial data f in L}OC(IE"). They prove that, given any such f, there
exists a unique (in an appropriate class) solution # to the Cauchy problem.
Moreover, in the case when m > (n — 2)/n, they establish a regularizing effect
from L, _to Ly, for the solution, exploiting the well-known Aronson-Bénilan
[1] differential inequality. It is known (see [5]) that for 0 < m < (n — 2)/n,
such a regularizing effect cannot hold.

Note that existence of solutions for arbitrary LIIOC(TR”) is in sharp contrast
with the super-linear case ([2], [4], [6], [7]) where, even to get existence for

finite time, growth conditions at infinity on the initial data are necessary.
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The quantitative assumptions on our non-linearity ¢ are

@) rew 1 u>0
(12) p(v) a
) n-2 ue'(u)
(ii) +a< 1—a, u>uy
n p(u) °

Assumption (i) is a global, scale invariant, polynomial growth for ¢, while (ii)
reflects sub-linearity for  large, but also reflects a power behavior larger than
(n — 2)/n for u large.

Under (1.2), we prove (Theorem 3.11) that any non-negative continuous
weak solution of (1.1) in R" X (0, T'), 0 < T < + has an initial trace u, as
t1 0, which is a locally finite Borel measure (in fact, only (1.2)(i) is needed for
this). We also establish the Llloc into L}, regularizing effect (Corollary 3.20).
Here, the full force of (1.2) is needed, since, without the left-hand side of
(1.2)(i)), this fails. At this point, there is a crucial methodological difference
with the work of Herrero and Pierre ([12]), since the Aronson-Bénilan ine-
quality [1] is unavailable to us, given our assumptions on ¢. We then prove
(Theorem 3.22), that given any locally finite, positive Borel measure u there
exists a non-negative continuous weak solution of (1.1) in R” x (0, ), with
initial trace p. Again, the left-hand inequality of (1.2)(ii) is needed here,
because of the work of Brézis and Friedman [5], which shows that for
o) =u™, 0 < m< (n— 2)/n, there is no solution with initial data the delta
mass. Moreover, the right-hand inequality in (1.2)(ii) is also needed, since
there are no growth restrictions on the measure p at . Finally, (Theorem 3.28),
we show that non-negative, continuous weak solutions of (1.2) in R” x (0, T),
0 < T < +, are uniquely determined by their initial trace. To show this,
we adopt techniques in [16], [12], [6], and [7]. This result may be somewhat
surprising, since such solutions verify no growth restrictions at infinity. A
corollary of these results (Theorem 3.33) is that any non-negative continuous
weak solution of (1.1)in R” x (0, T'), 0 < T < + o, with ¢ verifying (1.2) has
a unique extension to a solution in R” X (0, «). This again is in sharp contrast
with the super-linear case, where blow-up in finite time can occur.

Several interesting questions along the lines of this work remain. For instance,
one would like to be able to classify, if one does not assume the left-hand
inequality in (1.2)(ii), the class of «admissible» initial traces. Also, it would
be of interest to develop, assuming (1.2), the theory for the initial-Dirichlet
problem in finite cylinders, along the lines of [8]. Another important question
is whether, under (1.2), non-negative continuous weak solutions of (1.1), and
weak solutions of (1.1) are the same, as in the super-linear case ([9], [10]).
We hope to return to some of these questions at a later time.

All the solutions u# considered in this work are non-negative. We will
sometimes omit specific mention of this fact.
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2. Preliminary Results

In this section we collect some preliminary results that will be used throughout
the paper. Most of the proofs are omitted, since they are essentially contained
in [7]. We will work with continuous, strictly increasing ¢ on 0 < u < +oo,
that are positive on 0 < u < + o, with ¢(0) = 0. In this section we only impose
the growth condition

W 1 cu<w

2.1 0<ag <
@D <4 p(u) a

and the normalization
(2.2) o(1) = 1.

When ¢ verifies (2.1) and (2.2), we say that p €@, .
We say that u is a continuous non-negative weak solution of

2.3) %’;— =Ap(u) in QCR"H!

if u is continuous in Q, # > 0, and (2.3) holds in © in the distribution sense.
Set B= {xeR™ |x — x| <r}, 7, < 1,, and let Q = B X (71, 75). Denote by
9,0 the parabolic boundary of Q, i.e., 3,0 = O\ (B X {,}).
Let pe@,,0<a <1, and let ge C(3,Q) be a given non-negative function.
Consider the boundary value problem

av_A( .
.4) o Ae@ in Q0

v=g in 0,0

A function v(x, t) is said to be a weak solution of (2.4) in Q, if v e C([7;, 72];
LY(B)NL>(Q), v >0, and v satisfies the integral identity

2.5) j‘ J‘ |:¢(v) An + Uin—} dxdt
o} ot

T2 a
= j j so(g)—a%dadt + j v(x, T)n(x, 7)) dx — J g(x, T)n(x, 1) dx
7, JOB B B
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for all smooth functions 5 on Q, which vanish on 8B X [7,, 7,]. Here 3/3N de-
notes the exterior normal derivative on 0B, and ¢ denotes the surface measure
on dB.

Lemma 2.6. Let u be a continuous non-negative weak solution of (2.3) in
Q C R" x R. Suppose that Q C Q, and let g = ul, 0 Then, u is a weak solu-
tion of (2.4) in Q. ?

The proof given in [2], Theorem 3.1 applies without changes.
We next need some maximum principles and approximation results.

Lemma 2.7. Let g,,8,€C(0,0), and let v\, v, be weak solutions of (2.4)
with boundary values g, and g, respectively. If 0 < g, < g,, then v, < v, in Q.

The proof given in [7], Lemma 2.3 applies verbatim.

Corollary 2.8. Let ge C(3,Q), g 2 0, and assume that v is a weak solution
of (2.4), and that v is continuous in Q. Choose G, € C*(R" x R) such that
g = Gk|apQ are strictly positive, g < 8.1 < 8> & & uniformly. Let
0r € C*(0, ), ¢ € Q,, ¢ — ¢ uniformly on compact subsets of [0, «). Let
Ui Solve v, /0t = Ay (vy) in Q, v = g on 3,Q. Then, each v € Cc*(0), and
v, — v uniformly on compact subsets of Q.

The proof is the same as the one of Corollary 2.1 of [7]. The next preliminary
result that we need is an extension of M. Pierre’s uniqueness theorem [16], to
our class of non-linearities @,. Again, the proof is given in [7], Lemma 2.12.

Lemma 2.9. Suppose that ¢ € ®,, and that u and v are continuous, non-
negative weak solutions of (2.3) in R" x (0, ©), n > 3. Suppose that

sup j [u(x, ) + v(x, )] dx < o,
Rn

t>0

and that u,ve L™(R" X [r;, 7,]) for each 0 < 7, < 7, < +00. Suppose also
that

lim J [ux, t) — v(x, () dx =0
[Rn

tlo

for each ne Cy(R™). Then, u=v in R" x (0, T).

We now need some a priori estimates. Let 1/2 < r< p<2,8 =B, X (-r%,0],
R = B, x (—p?,0], where B, = {xe R™ |x| <r}.



NON-NEGATIVE SoLuTIONS TO FAsT DIFFuUsioNs 15

Lemma 2.10. Let u be a smooth, non-negative solution of the equation
ou/dt = Ap(u) in R, where ¢ € @,N C7[0, ). Then,

1 0
(211) ||u||L,°(S)SC{l +WJRJuPdth} ’

where C, p, 6, N are positive constants which depend only on n and a.

The proof of Lemma 2.10 follows from a variant of the Moser ([4]) itera-
tion technique, which is essentially given in [7], Lemma 3.1.

Corollary 2.12. Let u be a continuous non-negative weak solution of (2.3),
with ¢ in @,, in R. Then, (2.11) holds.

Proor. Corollary 2.12 follows from 2.6, 2.8 and 2.10.

3. Nonnegative solutions

In this section we establish the main properties of nonnegative continuous
weak solutions u of (2.3), in the strips S, = R” X (0, T), 0 < T < +, under
the assumptions (2.1) and (2.2) on the non-linearity ¢, together with the addi-
tional assumption

— 2 4
3.1) "2 L. W 0y,
n e(u)

where 0 < a < 1. If we also impose the normalization u, = 1, we say that
p€e®,. It is easy to see that (2.1) and (3.1) imply the existence of numbers
pev,Y, 0<p<1, 0<v< +0,y>(n—2)/n which depend only on a, so
that, if o€ ®,,

@ o(u) < u, uzl
(3.2 (i) e)<u’, O<u<l
(iii) o) 2 u’, uzl

We will also need the following elementary estimate

—

” —[a'~* - b17H], Ca>2

53 j d _ | B
: Au® + Bu*
b AuT+ Bu —/11 @'~ - b=, Cax2,
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where0<B<u<1,4>0,B>0, C=(B/A)Y* P, and as usual = means
that the ratio is bounded above and below. (3.3) remains valid if 8 = u, pro-
vided A = B. Let now pu, v be as in (3.2), and define 8 = min {u, v}. Then,
0<pB<pu<l, and,

(3.4) o(u) < uP, O<u<l.

Following Herrero and Pierre ([12]), for any number 6, 0 <6 < 1, and
Yy eS(R™), ¥ =0, we set

3.5 Co(¥) = “Rn |A¢|1/(1 -0y~ o/(1—9)]1—o.

Clearly Cy(¥) could be infinite, but, if C,(¥) < o, the same is true for
C(,(w,bxo’R), where, for x, e R", R > 0,

(3.6) Vg r ) = w(f»;—""»> / R",

Moreover, once 3, u are fixed as above, we can find 0 < ¥ < 1,
supp ¥ C {|x] <2},

y=1on {|x| <1}, so that Cg(y) < +o, C,(}) < +o. (See the remarks
after (3.6) in [12].) We will fix such a ¢ for the remainder of the paper.

Our first lemma is merely a version of Lemma 3.2 in [12], in our con-
text.

Lemma 3.6. Let u be a continuous non-negative weak solution of (2.3) in
R"” x (0, T), with o€ ®,. Let 3, n be as in (3.3), (3.2) respectively, and let
Y € Co(R™) be such that A = Cg(¥) < +, B=C,(}) < +o. Let

Let
1@y = |, utx, ¥ dx.
Then
3.7) IGUf@®) - GUfG&)| <t —s| for 0<s,t<T.

Proor. By Corollary 2.8, the following formal calculation is justified.

J'@ = [ eux, ) Ay (x) dx,
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and hence,

IS OI< [ _ et 0)|AY|dx + [ e(utx, 0)|Ay] dx
leu’s(x, 1)|AY| dx + jmu“(x, 1)|Ay| dx
< Gy S + C, () @),

by Holder’s inequality. The lemma now follows by integrating the differential
inequality.

N

Corollary 3.7. Let u be as in Lemma 3.6, Y as above. Then, there exists C, > 0,
C, > 0, which depend only on B3, p, ¥ and n such that, if 0<s,t < T, and

(3.8) max { [ u(, 000, g0 dx, [ uCt, )0, r()dx} < Cy,
then

3.9) |[ [ 00 rC |2 = [ [ e, 05, @ x|~
< G|t -s|/R?,

while if the max in (3.8) is bigger than C,,

R

(3.10) || [, 10 0z, G x | = [ [ 6, W, G x|~

< C2|t - S|/R2.

Proor. Note that C,,(Jxo, r) = R™*C,4({). The corollary now follows from
(3.17) and (3.3).

We are now ready to establish the existence of a trace as 40
Theorem 3.11. Let u be a continuous non-negative weak solution of (2.3)

in R" x (0, T), with o€ ®,. Then there exists a unique locally finite Borel
measure p on R", such that

limI u(x, HY(x) dx = j Y(x) dp (%),

tl0 JR7 Rn

for all Yy € C5(R").

Proor. Let s= T/2, and consider 0 <t < T/2. The continuity of u in
R" x (0, T), -together with Corollary 3.7, shows that {u(x, )} has locally

uniformly bounded mass. Hence, given {z;} - 0, we can find a subsequence
[t,j} — 0, and a locally finite Borel measure p such that
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limj u(x, £, JW(x)dx = J Y(x) dp (x)
jow JRn J R~
for all y € Cg(R™).

Suppose that {sj} — 0, and let us consider the corresponding {sgj} and ji.
We want to show that x = ji. However, once again, Corollary 3.7, applied to
t= t,j, § = S, shows that, for all x,, R,

J. 1AZ,\:O,R dl" = J lZxo,R dll

The non-trivality of ¥ now implies that du = dji, and the theorem follows.

We now turn our attention to local L bounds for continuous weak solu-
tions. This is the heart of the matter, and where we are forced to depart from
the techniques in [12], due to the general class of non-linearities considered,
since the Aronson-Bénilan inequality ([1]) is not available. Also, this is the only
point where the lower bound in (3.1) enters (and of course, it necessarily en-
ters here (see [5] and [12])).

Lemma 3.12. Let u be a continuous, non-negative weak solution of (2.3) in
Q* = {(x,1): |x] <2, -4<t<0}, with pe®,. Let

QO=1{(x:|x <1, -1<t<0]},

and define H ,(s) to be 1 for 0 < s < 1, and s[¢(s)/s1"’* for s = 1. Then, there
is a constant C = C(0, n) > 0 such that

|H 0] 1o igy < CUUI 1 gey + 1.

Proor. First note that the lower bound in (3.1) implies that A, is increasing
for s > 1. Next, let p be as in Lemma 2.10 (and we can also assume that
p 2 1). For such a fixed p, we define now H), ,(s) to be 1 for 0 <s <1, and
sPle(s)/s]"’* for s > 1. Again, H, , is increasing for s > 1. Let F, (s) be the

inverse function to H, ,, defined again for s > 1. We first claim that

(3.13) u(0, 0) < CFM[ Hg*u”(x, f)dxdt + 1}

In order to establish (3.13) we first note that if # is a continuous weak solution of
ou/dt = Ap(u)in 2, and o > 0, 8 > 0, v > 0 are given, and we define v(x, 7) =
u(ax, Bt)/7, then v is a continuous weak solution of du/d¢ = Ay(v) in the appro-
priate Q, where ¥(s) = Bo(vs)a~ 2y~ 1. Suppose now that 8/a*> > 1,and p € B,.
Let G,(v) = v/¢(Y), which by the right-hand side inequality in (3.1), is increa-
sing for v > 1. Let I' (s) be its inverse function defined for s > 1, and choose
v =T ,(B/a?. Then, Y(1) = Be(v)e®y ™! = 1, and it is easy to see that Y € B,.
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Assume now that (3.13) fails. We can then find ¢, € B,, u; continuous
weak solutions such that

1.0, 0) > ka,wk{HQ*ui(x, t)dxdt + 1}.

First note that Fp,wk(l) = 1, and that Fp,¢k(5) is increasing for s > 1, so that
u; (0, 0) > k. Because of (2.11), this forces that

Ikzﬁg*uf;(x,t)dxdt* +00 as k— .

For oy small (to be chosen momentarily), let

Uy (ox, t) 1
s, 1) = = ’Yk Yk =F“’k<ai>'
k

The v, are continuous weak solutions of dv/dt = Ay, (v), ¥, € B, in Q*, by
our previous discussion.

0

1
v, Hdxdt = ————— oy "I,.
Lx|<2/akj—4 D F,pk(l/ai)p Fe T

Choose oy so that

1

oy =1,
T, (1/ap? * F
or equivalently
_ T, /e
“ 1/o}

This is possible because F‘;k(s)/s”/ 2 is increasing for s > 1, by the left-hand
side inequality in (3.1), and I, — +o0. Moreover, a; — 0 as k — . But then,

v, (0,0) = u(0,0)

1
g, (1/ai)

k
> 1,/ ot )

VvV

k
>
T, (1) TrecT

{mk(l/ai)”z 1

= kF,
T, (1/ad)

P\ oy

ok

=k,
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by the definition of F, o However, this contradicts (2.11), by our choice of
oy, and thus (3.13) is established.

We next note that by using translation and dilations (x, ) = (ax, a?t),
(3.13) has, as a consequence,

; 1
am>whmﬂﬂﬁ&m<aa4yn&£“$mwmowm+Q

for 0 < r < 2. Finally, using (3.14), translations, the dilations (x, ) = (X, a*t),
and a simple covering argument, one can show

1
(3.15) ] Loogsy < CFpm[ -1+ (-1 jj; uP(x, 1) dxdi - lz ’
where S = B, X (-r?,0], R= B, x (—0%,0], 1/2<r<p<2.

To conclude the proof of Lemma 3.12, we use an argument which
originates in the work of Hardy and Littlewood (see [11]), and which was first
used in the context of the porous medium equation in [6].

We will first show that

3.16) Jt] oy < ClU] L1gs) + 13

where o = o(a,n). Once (3.16) is established, the lemma will follow by
repeating the argument that we used to establish (3.15), with p = 1, and using
(3.16) instead of (2.11).

In order to establish (3.16) we need to point out to two properties of F,, ,
First, F, ,(As) < CA°F), ,(s), for A > 1, s > 1. This is an easy consequence
of (3.1). Another easy consequence of (3.1) is that F,, ,(s”~") < Cs' ~, where
e = e(a, n).

Now, for 1/2<r<1, let

S, = By, X ("’4"29 01,
m(r) = “u“ L=(S,)?
I= t
HQ*u(x, )dxdt,
J=max {I,1}.
We want to show that
3.17) m(1/2) < C{I+ 1}°.

If there exists r, 1/2 < r < 1 such that m(r) < 1, we are done, and hence, we
can assume that m(r) > 1 for all r, 1/2<r< 1. Pick now 1/2<r<p<1.
Then, (3.15) implies that
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m(r) < CF, , {—(r—_;)w—f “; uP(x, t)dxdt + 1]

4J
<R

J ? -
<cl g Bt

J (3
<Cl——"osy -,
< {(r_p)”zz m(p)

Choose now v, 0 <y <1 so that § = (1 — €¢)/v <1, and let p = r”. Taking
logarithms, we see that

logm(r) < ClogJ + Clog- + (1 — ¢)logm(r™).

r=r"

Integrating with respect to the measure dr/r, between 1/2 and 1, we obtain

1 1
d
J logm(r)£<C10gJ+ C+0j logm(r)—r
172 r 1727 r

1

log m(r) d_r
/2 r

sClogJ+C+9j

1

(3.17) immediately follows from this, and our lemma is established.

Remark 3.18. In the case when o(u) = u™, 0 < m < 1, the technique of
proof of Lemma 3.12 allows one to show

(3.19) 1] =gy < Cof ([f %) 7=z + 1]

for each g such that g — (1 — m)n/2 > 0. Note that g = 1 is allowed precisely
when m > (n — 2)/n, giving another explanation to the result in [5].
Moreover, at least in the range m > (n — 2)/n, an inequality of the form

4] gy < c[ﬂg*uq +1)°

can only hold if ¢ — (1 — m)n/2 >0, as can be seen by considering the
Barenblatt solutions ([3], [1], [12], [5])

U,(x, 1) =t~ Pla + 2my = Yx|2t =2/} 5,

1 2 2
where a > 0, s = - sy y=—o——n, B l=m-1+ .
1—m 1—-m n
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Corollary 3.20. Let u be a continuous weak solution of (2.3) in B, X (0, T),
continuous in B4R x [0, T1, with ¢ € ®,. Suppose that T/R* > 1.Then,

3.21)
sup H,(u(x,T))<C {%2" J
x| <R T

|x] <4

u(x, 0)dx + I',(T/R?) - (T/RZ)"’ZI .
R

Proor. Apply Lemma 3.12 to

v(x, 1) = o, B1) ;

where o =R, 3 =T, and v =T (8/ a?), and then apply Corollary 3.7 to the
same v.

Note that in the case when (i) = u™, " < m< 1, Theorems 3.20 is
exactly Theorem 2.2 in [12].

We now turn our attention to the existence of solutions in R” X (0, ).

Theorem 3.22. Let p be a locally finite Borel measure on R". Then, for
any ¢ € ®,, there exists a continuous weak solution u to (2.3) in R" x (0, =),
such that

(3.23) lim j u(x, t)nx) dx = I 7(x) dp (x),
tlo JR" R"
Sfor all ne Cz(R™).

Proor. Our starting point is the following classical result (see [15]): for any
fe Cy(R™, there exists u € C([0, ©); L}(R™) N L*(R" X [0, ©)), which is a
weak solution of (2.3) in R” X (0, «), and such tht u(x, 0) = f(x). Moreover,
the results in [17] show that, if ¢ verifies (2.1), then u is continuous in
R” X (0, o).

Our next claim is that if R > 1, | B, fdx < M, then the corresponding u are
equicontinuous in compact subsets of B, X (0, ). To establish this, note that
Corollary 3.20 establishes the local uniform boundedness in B, x [R?, +0),
and hence [17] gives the equicontinuity there. If # < R?, choose r?> = ¢ < R?,
and apply the same argument to B, X [r?, + ) and its translates, to obtain
the desired equicontinuity.

Finally, note that if n € C5(R"), suppn C By, IB4R fdx <M, and u is as
above, then

(3.24) |t - sl ax| < €y,
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In fact,
[0, ) = 71 = [ [, An (e, ) dx ds,
and so, by (3.2)(i), the left-hand side of (3.24) is bounded by
L’) jﬂan |An (0)| dx ds + L‘) jﬂen |An 09)|ut(x, s)dxds, 0<p<l.

An application of Hélder’s inequality and Corollary 3.7 establishes (3.24).
Fix now the measure g, and pick f; € C5(R") such that

,}im Wfk(x)n(x) dx = jn(x) dp(x).
We can choose f; so that, in addition

jBRfk(x) dx < MR ’

where M, is independent of k. Let u, be the corresponding solutions, con-
structed at the beginning of the proof. By equicontinuity (after possibly pass-
ing to a subsequence, which we still denote {u;}), there exists a continuous
weak solution u of (2.3), such that the u, converge to #, uniformly on compact
subsets of R” X (0, ). (3.24) now establishes (3.23).

Remark 3.25. The results in [5] show that, unless the left-hand inequality
of (3.1) is verified (in the pure power case ¢(u#) = u™), Theorem 3.22 fails
when p is the delta mass at the origin. As our proof shows, this is because of
the lack of an L® — L! «regularity» effect, as Lemma 3.12. This clarifies
Remark 3.18.

Finally, we turn to the uniqueness of the solution constructed in Theorem
3.22. The general strategy is the one developed in [6]. As in [6] and [7], we
start out with a version of the maximum principle. Its proof follows closely
that of Theorem 2.3 in [12].

Lemma 3.26. Let u,v be continuous weak solutions of (2.3) in
§;=R"x(0,T7),

with ¢ € ®,. Assume that

3.27) lim [v(x, 1) —u(x, )] dx=0
tlo Jix| <R

Sor all R >0, where A™ = max {A,0}. Then, v< u in S,.
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Proor. Let w = v — u, and let g denote the characteristic function of the set
where u < v. If u, v and ¢ are smooth, Kato’s inequality ([13]) shows that

Alp(v) — o]+ 2 gAle(v) — e(W)],
where

at
By (3.1), (3.2) and (3.4) we see that
[p(v) — p@)]* < C{([v — ul ") + (v — u] *)P}.

Hence, (still under the assumption that u, v, ¢ are smooth), we have, for
Y eCg(R™, ¥y =0.

d
ET] j YW ™" (x, £) dx < j Y(X) Ale(v) — o)) ™ dx
< j |AY(X)|[e(v) — ()] " dx
< CJ‘ |AYCO|([v — u] T ) + CJ‘ |AYX)|([v — u]*)*?

< ccuw)(j Yow* (x, 1) dx>“
B
+ CCﬁ(¢)<‘f 1[/(X)W+ (x, 1) dx> .

Integrating this (one-sided) differential inequality in a manner similar to the
proof of Lemma 3.6, using Corollary 2.8 to justify the formal argument
above, and using (3.27), we see that, if C,(¥) < o, Cg(y) < «, there are con-
stants C;, C, such that, if

1
Rn

f [vex, 1) — ulx, )] * dx < Cy,
[x—¢ <R

then
1 1-f
<—n§ [vix, £) — ulx, H1* dx> < C,tR™ 2,
R" Jix-ti<r
while if the above quantity exceeds C;, then,
1 1-&
= J [v(x, 1) — u(x, 1)]* dX> < GitR7?,
R" Jix-¢<r

for any R >0, £ R".
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Let now A(x, t) = j(', [e(v) — ()" dx. It is easy to see that, for each ¢ > 0,
h is a subharmonic function of x. Hence, for ¢ € R",

h(E, 1) < h(x, t)dx

w,R" LR ®

1 ! +
< o R L LR@) lo(v) = e(W)]

c (! + +38
<z (v —u]™) + ([v—ul™")"}
JO JBR(®

C [t r B
< =5 R"“—”q [v—u]*) +R"(1‘B)<j [v—u]+>
R" Jo Br® Bp®

C (f
R" Jo

Y

< Rn(l —u){su/(l -u)R —2p/(1—-p) + su/(l - B)R -2u/(1 - B)}

c (f - By — _ ) — -
+ G ‘f R ﬁ){sﬁ/(l BR-26/0-B) | f/A-mp-26/1 u)}
0

For fixed ¢, this tends to 0 as R — oo, and hence A(x, t) = 0, which establishes
the lemma.

Our general uniqueness result now follows from the approximation pro-
cedure in [6], using Lemma 2.9 and Lemma 3.26.

Theorem 3.28. Let u, v be continuous weak solutions of (2.3) in S, with
pe®,. Assume that

lim j u(x, H)n(x) dx = lim J v(x, tn(x) dx
tlo tio

Sor all ne CG(R"). Then u=v in S,.

Proor. Let u be the locally finite Borel measure on R”, attached to u by
Theorem 3.11. Pick he C5(R™), 0 < A< 1, and let w(x,t, ) be a solution
in R" x (0, «), with initial trace Ax. By Theorem 3.22, at least one such w
exists. Moreover, Corollary 3.20 shows that any such w belongs to L™(R" x
[71, 72]), for each 0 < 7, < 7, < + 0. We now want to show that, for any
such w,

(3.29) sup J w(x, t,h)dx < +co.
rRIl

t>0
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In fact, Corollary 3.7 easily implies that for each # > 0, R > 0,

(3.30) J‘ w(x, t, h)%
R/2<|x| <R |x]

) dl‘(x)z 4 CVA-BR2-/A-B] L op/(-pR2- /(-]
|x|"~ ’

S J‘
R/2<|x|<2R

and hence

(3.31) j w(x, t,h)—-(g,x_—2< +oc0.
Il >1 |x|

Pick now ¥(x) € C*(R"), ¥(x) >0, ¥(0) =1, ¢ bounded, Ay <0, Y(x) <
C/|x|" for |x| > 1, |V¥(x)| < C/|x|" ! for |x| > 1, and let Y, (x) = ¥(x/R).
Let 6,,(x) be a C5(R") function, 0 <0, <1, 6,,=1 for |x| <N, suppf, C
{|x| <2N}, |V6y| < C/N, |Aby| < C/N?. Then, for 0 <s<t< +o, (with
w(x, t) = w(x, t, h)),

— 00

j w(x, YR (x) dx — j w(x, S)Yp () dx = lim | [w(x, ) — w(x, $)10, ()Y (x) dx

= lim j Ln (WX, )AL () (0] dx

N-w

< Tm j j POV M)A, () ()

N-w Js
+ 2V0,,(X)VY ()] dx dr.

If we now use the pointwise estimates for ¥, Vi, Af,, V6, the support
properties of the last two functions, (3.2), (3.30), and the boundedness of w
in R" x [s, f], we see that the above lim , _, . is non-positive. Hence

[ W, D9 (0 dx < [ W, s)g () dix.
Moreover, (3.30), and our pointwise bounds on ¢ show that
lirr; w(x, S)Y, () dx = J h(xX)Y 5 (x) dp ().
s
The last expression is bounded, independently of R, and so
j W(x, () dx < C

and Fatou’s lemma implies (3.29), letting R — «. Hence, Lemma 2.9 now
shows there is only one such w(x, ¢, #). We next claim that w(x, ¢, h) < u(x, t).
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Let U,(x, t) be a solution with initial data A(x)u(x, €). Theorem 3.11 and the
above argument show that there exists exactly one such U,, and that

t>0 0<e<T/2

(3.32) sup j Ux,t)dx< C sup jh(x)u(x, e)dx < C,.
rE'l

where the last inequality is a consequence of Corollary 3.7. Moreover, for any
smooth 7, we have that

lim | p(X)A(x)u(x, €)dx = J 7(X)A(x) dp (x).

e—0

Note now that lim, ., , U, (x, t) = w(x, t). In fact, (3.32), Corollary 3.20 and the
results in [17] show that {U.(x, ¢)} is equicontinuous on compact subsets of
R” x (0, ). Let {Usj(x, t)} be a subsequence, which converges uniformly on

compact subsets of R” x (0, ©) to w(x, t). Clearly, w(x,?) is a continuous
weak solution of (2.3) in R” X (0, ). We claim that for any » € Cg(R"),

liPm j W(x, t)n(x)dx = j h(xX)n(x) du (x).
o

In fact, the argument leading to (3.24), together with the second inequality in
(3.32) show that

| [ 101U, 1 + € — hogutx, Ol d | < 1C,

which proves our claim. But the uniqueness of w(x, ¢, #) then shows that
w(x, £) = w(x, t, h), and our claim follows. The construction of U,(x, ) in [15]
gives that U.,(x, ) € C([0, ); L'(R™), so that

lim |U(x, ) — h(x)u(x, €)| dx = 0.
tio JR”?
By the continuity of u(x, ?),

lim | |u(x,t+ € — u(x, e)|dx =0,

tlo JK

for each K C C R”". Hence, by Lemma 3.26, U.(x, t) < u(x, t + ¢), and thus,
w(x, t, h) < u(x, t). Pick now 0 < A; < b, < 1, hje Co(R"), lim; . h;(x) = 1.
By the construction of w(x, ¢, ) given in Theorem 3.11,

W, t,h) < Wex, 8, by ).

Moreover, by the first part of the proof, w(x, ¢, hj) Su(x, t). Let wo(x, £) be
a limit of some subsequence of w(x, ¢, hj), which exists and is a continuous
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weak solution, by equicontinuity. w.(x, f) has a trace, as {0 by Theorem
3.22. The trace is between A ;dp and dp for each j, and hence it equals dy. Since
Wo S U,

lim j lu(x, 1) — wo(x, 1) =0
tlo0 JIx| <R

for all R > 0. By Lemma 3.26, u(x, t) = w(x, t). Similarly, v(x, t) = wo(x, 1),
and hence u(x, t) = v(x, 1).

Theorem 3.33. Let u be a continuous weak solution of (2.3) in S;, with
¢ €®,. Then there exists a unique 4 in S, = R" x (0, ), which is a con-
tinuous weak solution of (2.3) in S, with u = in S;.

ProoF. Let p be the trace of u given by Theorem 3.11, and let & be the cor-
responding solution in S, constructed in Theorem 3.22. By Theorem 3.28,
u=4din §,.
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