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Introduction

Calderéon-Zygmund operators are generalizations of the singular integral
operators introduced by Calderén and Zygmund in the fifties [CZ]. These
singular integrals are principal value convolutions of the form

Tf@=lm [ K@=»)f()dy=pv.K+f(),

e—~0

where f belongs to some class of test functions. The kernel K is a function
defined in R"\ {0} and has the form:

K(x) = Qx/|x])|x| ~"

where  is usually assumed to satisfy some «smoothness» property (see [S] or
[GC-RF]) on the unit sphere $” ! as well as the important cancellation property

(o, 06 do = 0.

This cancellation property may be rewritten, at least formally, as 71 = 0; i.e.,
the action of T on the function identically equal to 1 (properly defined) is
identically zero.
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The L? boundedness of these operators can be proved by using Fourier
transform arguments and, from this, the L? boundedness for 1 < p < « is
obtained by what are now considered to be standard real variable techniques.
Although Fourier transform arguments are not applicable, the L” boundedness
results are still true for some more general principal value integrals

Tfe)=lim | KCo»)f()dy
enpdlx—yl>e
that are not convolutions.

The general operators in question can be described as follows. Let 7: D — D’
be a continuous linear operator, where D = D(R") is the space of Schwartz
test functions and D’ = D’(R”) is its dual. Let K denote the distributional
kernel of T. That is, K€ D'(R"” X R") and satisfies:

(To,¥) =LK, ¥y & @)

for all ¢ and ¢ in . We assume that the restriction of K to the set {(x,y) €
R" X R™: x # y} is a continuous function. Hence, if ¢ and ¢ are in D and

supp ¢ Nsupp ¥ = J, then
(Te,¥) = [[ K, »)e()¥() dy dx.
Moreover, we suppose that K satisfies the «size and smoothness» conditions:

.1) |[K(x, »)| < Clx-y|™", and
0.2) |K@x,») — K&, »)|+ |K(», %) — K, x)| <Clx —x'||x—y| "¢

whenever 2|x — x'| < |x — y|, for some constant C > 0 and some ¢ in (0, 1].

These operators were introduced by Coifman and Meyer in [CM] where
they showed that if 7 is bounded on L? then it is also bounded on L? for
l<p<oo,

The problem of charaterizing which operators with this type of kernel are
bounded on L? was solved by David and Journé in 1985 with the «71-Theorem».
They found two necessary and sufficient conditions that 7" must satisfy. The
first of these conditions is that both 7’1 and T*1 (where T* denotes the formal
transpose of 7') must be in BMO. In fact, David and Journé proved in [DJ]
that the above condition can be reduced to the case 71 = T*1 = 0; thus, a
cancellation property appears again.

The operators studied by Calderén and Zygmund are invariant under the
action of the group of translation and dilations of R” (the «ax + b group»).
However, this is not always the case for this more general class of operators.
It is then necessary and natural to impose some constraints on the behaviour
of T under the action of this group. The second condition in the David and
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Journé result is the so called Weak Boundedness Property (WBP) and it is
intimately related to these constraints. We will describe it in detail in the next
section.

Several authors have obtained versions of the T1-Theorem in other spaces
of functions or distributions (see for example [L], [MM], [M2]). In general,
the results obtained are based on the same kind of conditions mentioned
before. In addition, a higher degree of smoothness on K and a higher degree
of cancellation on 7T (namely that 7" vanishes on polynomials up to certain
order) is usually imposed. In [FHJW] Calderén-Zygmund operators acting on
the Triebel-Lizorkin spaces F;’,"" were studied for ¢ € [0, 1) and 1 < p, g < .
In this paper we extend the study to the general case € R and 0 < p, g < .
Our main results are Theorems 3.1, 3.7 and 3.13.

One of the reasons for studying Calderén-Zygmund operators in the con-
text of Triebel-Lizorkin spaces in that the results obtained can be translated
to some other classical spaces. For example, we recover the result of David
and Journé for L2, and, using interpolation arguments, a criterion for the
boundedness of Calderén-Zygmund operators on the Besov-Lipschitz spaces
B;"". Also, for @« > 0 and 1 < p < o, the inhomogeneous Triebel-Lizorkin
space F3°? coincides with the Sobolev space Ly and a criterion for this space
can be easily obtained from the homogeneous case (see Corollary 3.33 below).

The main results in this paper were proved independently in [FW] and [T].
They were motivated by problems posed by B. Jawerth and E. Stein. Also,
we would like to thank G. David for some helpful discussions.

We have included some technicals facts that can, essentially, be found
elsewhere in the literature. However, we introduce some different notation
that can be used to simplify the presentation. Hence, we restate some of these
known facts here. The reader is referred to the expository article [FW] and
to [T] for further details.

1. Some Preliminary Definitions

Generalized Calderén-Zygmund operators

Frazier and Jawerth have shown in [FJ1] and [FJ2] that the spaces F;’,"" can
be decomposed in terms of some building blocks called «smooth atoms», and
similarly into some more general building blocks, the «smooth molecules».
Using this, it follows, in the tradition of [CW], [TW] and others, that to prove
that an operator is bounded on these spaces, it is sufficient to prove that it
maps «smooth atoms» into «smooth molecules». This was the strategy used
in [FHJW] and it is also the one that we want to apply here.

We start by recalling the definitions of these atoms and molecules. Fix o € R,
and0< p,qg < . LetJ=n/min {1,p,q} and L = max {[J—n — a], [J — #]}
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where, for xe R, x+ = max {0, x}, [x] denotes the standard «greatest integer
function» at x, and x* = x — [x].

Let Q be a dyadic cube of R” with «lower_ left corner» at the point X and
with side length £(Q). A smooth atom for F* associated to the cube Q, is
a function a, € D satisfying

.1 Suppa, C 30,
(1.2) [¥agmadx=0 if || <L,
(1.3) [DYay(x)| < |QI 727 it |y < als +1,

(where as usual, for a multi-index of non-negative integers ¥ = (Y1, Yas - - - » Yn)s
we let DY = (3"1/dx71)(072/0x32) - - - (3"/dx}m), x¥ = xJx}2- - - X} and |v| =
Yi+ Yo+ oY)

Let M > Jand 1 > 6 > o*. A smooth (6, M)-molecule is a function m, which
satisfies

1.4 im0 < Cl1QI~2(1 + 6Q) ™M x — xp|) ~mBEM=<,

(1.5) jx’mQ(x)dx=0 if |v|<[J—n-al,

(1.6) [D'my(0)] < ClQI ™V~ + 4@) " x — xp) ™M for |v] < e,
and, for |y| = [a],

(1.7)  |D"my(x) = D"my(x")| <

Clo| =2 M+dmx — X' sup (1 + Q) 'z - (x = xp)| M,

lz] = |x=x'|

where Cis an absolute constant. (Our convention is that conditions (1.5), (1.6)
or (1.7) are void if the term bounding |v| is negative.)

The degree of smoothness of the molecules increases with the parameter «;
thus, in order to carry out our project, we will need to consider derivatives
of the image of an atom by the Calderén-Zygmund operators that we want
to study. This, in turn, will cause us to consider operators with sufficiently
smooth kernels.

The usual «|x — y| =" size condition» of the kernels of Calderén-Zygmund
operators, in general, is not satisfied by the kernels of the derivatives of these
operators. In fact, the behaviour of those near the «diagonal» is worse, and,
consequently, we are forced to consider a more general class of operators that
we will now define. Let 7: D — D’ be a continuous linear operator and let K
be its distributional kernel. For m,/e N, and e e (0, 1), we say that T is a
(generalized) Calderén-Zygmund operator of «size m» and «smoothness / + e»
if the restriction of K to @ = {(x,y)eR" X R": x # y} is a function with
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continuous partial derivatives in the variables x up to order / which satisfy,
for some constant C > 0:

(1.8) IDIK(x, »)| < Clx —y|7"~"~ M for |v| <!
(1.9 |DIK(x,y) — DIK(x', »)| < Clx — y| 7"~ "= ¢|x — x'|¢

for |v| = land 2|x — x’| < |x — y|(where the subindex 1 stands for derivatives
in the first variable, x). In such a case we will write Te CZO (m, [ + €) or
TeCZO(/ + ¢) if m = 0. If § and v are two multi-indices, we denote by T} .,
the continuous linear operator from D to N’ whose distributional kernel is:

1.10) Ks ., = (y — DK,

where the derivatives are taken in the distributional sense. It is easy to check that
if TeCZO (m,l+¢), |v| <! and |B| < m, then Ty, e CZO(m — |B| + ||,
[ — |v| + €) and that the restriction of Kj ., to @ is the function:

) K;i,'y(x’y) = (y - X)BD;’K(X,))).

We will write T} if |y| = 0 and DT if |8] = 0.

In contrast with (0.2), our definition of Calderén-Zygmund operators does
not impose any smoothness in the y — variables. Recall that the formal
transpose of T, T*: D — D', is defined by

(1.11) (T*Y,0) =(To,¥), for ¢,¥ed,

and, hence, the kernel of T* is given by K*(x, y) = K(y, x). We will require later
that the kernel of 7" be smooth in both x and y; thus, both 7 and 7T* will be
generalized Calderén-Zygmund operators for appropriate numbers m and /.

The action of generalized Calderon-Zygmund operators on functions of
polynomial growth

Another characteristic of the atoms and molecules for the spaces 7 is that
they have a certain number of vanishing moments (properties (1.2) and (1.5)).
Since we want that the Calderén-Zygmund operators preserve these vanishing
moments, some cancellation property should be imposed on them. As we
mention before, this is usually achieved by requiring that 7" (and 7'*) vanishes
on polynomials. However, since T is originally defined only on D, its action
on polynomials has to be first defined. More generally, assume that 7T e
CZO (m, ). We want to extend T to the space:

O™ = {fe C™(R™): f(x) = O(|x|™) as x = «}.

Let [goj}f:l be a sequence of functions in D satisfying the following prop-
erties:
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(1.12) supp; S Bj, ;= {xeR™ |x| <j+ 1},
(1.13) ¢j(x) =1 for every xe€B;, and
(1.14) lojle < C for some C>0, forevery j.

Let fe O™. By analogy with the definition of the action of convolution
singular integrals on L™ (see [GC-RF, p. 202]), we define Tf by the equality

(1.15) Tf = lim {T(‘ij) - L " .K(O,y)f(y)dyz-
< yI<J

ads

This is justified by the following

Lemma 1.16. Suppose T e CZO (m,¢), f€ O™ and {¢;}; is as before. The
limit in (1.15) exists in the weak*- topology of O’ and defines Tf as a distribu-
tion. In particular, if g € Dy where Dy = {peD:[pdx =0}, then

joo

Proor. Let

Fi=Tef = [ . KON dy.
We want to show that

lim (Fj, g) exists for any gedD.

Jjow

Fix g € D and let j, be large enough so that suppg < Bjo,z. For j > j,, we
can write

Fy=F + T(g = e;)f = [, _ . _ KO.0f()dy.

o= I¥l<i

Then, since (¢; — ‘Df'o) f and g have disjoint supports, we have

(Fj,8) = (Fj, &) + [[ K D)le; = 0,) f10)8(x) dy dx
=[] . _ KO, f(ewdydx
Jo<I¥l<j
(1.17) = (Fpe) + | Lo<|y|sjo+1’“"’y’“ ~ ¢, f1()g(x) dy dx
- [ K(0,)f(»)g(x) dy dx
Jo<Iyl=jo+1
], 1 <, KO0 D) = KO DI (g0 dy dx

[J, 2 <01 KOO D@1 f )20 dy i,

where all integrals are absolutely convergent.
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Now, the first three terms in (1.17) do not depend on j, and, using (1.8),
they are easily seen to be bounded by P(g) where P is some continuous
seminorm in $(R") which may depend on the support of g.

By (1.9) and the dominated convergence theorem, the fourth term tends to

I+ 1 [KGD) = KOS Dgdydx s j= e,

and it is bounded by C|g|,, where C is a constant depending on f, the support
of g and the constant in (1.8) and (1.9).
Finally, the fifth term is bounded by

ly[™
¢ e |80)| dydx
suppg Jj—jg/2< Iyl <i+1+iy2 |

J+1+j,/2
J—Jo/2
Observe that if fe D, the above definition of 7f and the original action of

T on f differ by a constant. Hence, 7f should be viewed as a distribution on D, .
It is easy to see that definition of 7f does not depend on the choice of the

sequence (<pj};.°= , and that, for m = 0, it is equivalent to the one given in [DJ].
If Te CZO (m, €) and g € D,, we can use Lemma 1.16 to extend the action

of T*g to O™ by
(T*g,f)=1Um<(T*g, ¢,f) = im (Ty;f, g) = (T, 8),
ads

Jo o

< Clg|ilog -0 as j—o. O

which is consistent with (1.11).
Note also that for w e supp g and

yeG = {zeR": dist (z, supp g) > 2diam (supp g)},
| [ Ko g x| = | [1Kex, ) ~ Kow, g dx
(1.18) < Clx=wlly —w ™" " gladx
suppg
< Cldiam (supp g)I" " ‘[ g[ |y — W] 7" ™75,

where we used that g has integral zero. But, if suppf< G, the function
§i6)) IK (x, ¥)g(x) dx is an integrable function of y, since f € O™, and, therefore,

(T*g,f) = lim j K(x,»)e,f()g(x) dy dx

J7®

= lim j @i f () K(x, y)g(x) dx dy

J > suppg

= [ [ K, 9)gx) dxay.
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Hence, we see that «far away» from the support of g, the distribution 7T*g
agrees with the continuous function fK(x, »)g(x) dx.

We have used the «size» of T to define its action on ©™. A similar argument
can be given which uses the «smoothness» of 7. More precisely, let

D, = [¢ eD: jxw(x) dx=0 v|v|< 1}

and let D; be the dual space of D, with respect to the topology inherited from
®. Then we have

Lemma 1.19. Let Te CZO (I + ¢€), f€ O and let {0 };.":1 be as before. Then
the limit

DIK(0,
Tf = lim {T%-f— 2 j .¥f(y)dyx7}
lv=1J1i<lyl<j v:

jmeo
exists in the weak*-topology of ®;_,. In particular, if g€ D,, then

Jj—o o

The proof of the lemma is similar to that of Lemma 1.16 and we leave it
for the reader. Again, to avoid ambiguities, 7f should be regarded as an el-
ement of D;.

If T: D — D’ is linear and continuous, then it is easy to check that

(1.20) (D"T)e = D"(Te)

in the sense of distributions. Namely, let 7e CZO (/ + ¢) and fe 0. If ge D,
then DYg e D,_; for |v| =/ and hence we may consider

(D(Tf), &) = (- )" Tf, D"g)

= (=" lim {(Tw,-f,D@ - Hl " _DYK(O,y)f(y)dy);—:DYg(X)dx}
<lyl<j .

Jjoeo

= lim [(Dyijf,g> - ﬂl ol ,DYK(O,y)f(y)dyg(X)dx}’
<l|yl<j

Jjoeo

as an easy integration by parts shows. However, since Te CZO (I + ¢), D"Te
CZO(/, ¢) and, from the last expression and Lemma 1.19, we have

(DU(Tf), &) =<D"T)f, 8

which is consistent with (1.20). As in the remarks following Lemma 1.16, we
may define the action of T*g on O’ for ge D, and verify that
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Also, as in (1.18), this time using that g e D,, we have for wesupp g and y
«far away» from supp g

= ,HK(x,y) - 2 —— (x — W)”}g(x)dx

vl=1

(1.21) HK(x, »)e) dx

!
< j Clx = wi'* |y = w| ="~ '~| g dx
suppg

< Cldiam (supp 2)1" "' * | gl |y — w| 7" 77,

and, therefore, as before, away from the support of g, the distribution 7*g
agrees with the continuous fuction fK(x, »)g(x)dx.

We want to point out that if g e O,;, more general sequences than {goj};?:l
can be used to compute { 7f, g). In fact, let Wj};:l C D satisfy the condition
(extending (1.13))

(1.13)" for each compact set B C R" there exists N > 0 such that ¢;(x) = 1 for
all xe B and j > N,

as well as
1.14y ¥jle <C forall j.
Then it is easy to show, using (1.16) (see [T]) that, as in (1.16),

Jjowo
Moreover, the following result due to Y. Meyer holds ([M2], c¢f. also [FW]).

Lemma 1.22. Let Te CZO (! + €) and let f€ O'. For o € D let ¢'(x) = o(x/1),
t>0. Then for all ge D,

lim (Te'f, g) = p(0){Tf, g).

t—

The Weak Boundedness Property

In [DJ] the following concept of Weak Bondedness Property was introduced.
For ne®, zeR" and ¢ > 0, let

nz”(X)=n<x;z>'

A linear and continuous operator 7: D — O’ is said to satisfy the Weak
Boundedness Property if for every bounded subset ® of D there exists a positive
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constant C = C(®) such that for all ¢,y € ®, all zeR" and ¢ > 0,
(1.23) (T, y=h| < Cr™.

If K is the kernel of T, then (1.23) may be rewritten as
(1.24) KK, ¥%' @ p*'| < Cr™.

Moreover, since the linear span of D(R") ® D(R") is dense in D (R” x R"),
it follows that the above is equivalent to the condition

KK, f=hH < crt,

for every function f in a bounded subset & of D(R" x R"), all of whose
elements
have support in, say, a cube centered on the diagonal (where, f%(x, y) is of
course f((x — 2)/t, (¥ — 2)/1)).

If we denote by T%' the operator from D to D’ whose kernel, K%', is
defined by

1
<Kz’t1f> = t—,,<stz’t>’

then the Weak Boudedness Property says that for all fe ®
KK=%, Y] < C.

That is, the family of operators {7} zeRn, >0 18 IN some sense uniformly
bounded. These are the constraints imposed on the behavior of 7 under the
action of the «ax + b group» that we mentioned in the introduction.

In order to include in our discussion operators of «size m» we now extend
the definition of the Weak Bondedness Property in the following way.

A linear and continuous operator 7: D — D’ is said to satisfy a Weak
Boundedness Property of order m if for every bounded subset B of D(R” x R")
whose elements have supports in a fixed cube centered on the diagonal, there
exists a positive constant C = C(®) such that for all fe B, allze R", and ¢ > 0,

(1.25) (KK, f=5| < cemmm,

In such a case we will write Te WBP (m) or, simply, 7€ WBP if m = 0.
We conclude this section with some remarks that are not hard to check. The
reader is referred to [T] for the details.

(a) Using translation, the set ® may be replaced by more general ones
whose elements have all their derivatives uniformly bounded and are
supported in cubes centered on the diagonal with fixed side length (but
not with fixed center).
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(b) If, in addition, the kernel of T satifies the size condition
|KCo )| < Clx—y[7"™™ for (x,)€Q,

then the cubes mentioned in (¢) do not need to be centered on the
diagonal.

(c) If Te WBP (m), then Tz, € WBP (m — |8| + |y|) for all |3| < m and
for all |y| > 0 (compare with Lemma 2.9 in [FW]).

2. L*-Estimates and Pointwise Definitions

In this section we collect some technical lemmas that will be used later. Some
of the results that we are going to present are already known for the case
m = 0and /=0, 1. However, even in these cases, the proofs that we give here
are somewhat different from the ones found in the references that we shall
give.

The following two lemmas are generalizations of what is sometimes known
as «Meyer’s lemmay. For m = 0, Y. Meyer obtained these results in [M1]; see
also [MM].

Lemma 2.1. Let Te WBP (m), and assume that its kernel satisfies
K| < Clx = y|7"7"

Sor (x,y) in Q. If fe D(R" x R"™) and DD} f(x,x) = 0 for all |8| + |¥| < m,
then

K1) = [[, Ko fex, ) dxdy,

where the integral on the right is absolutely convergent.

Proor. Let ¢ € D(R") be such that supp¢ S B,(0) and ¢ =1 on B;(0).
Then, for e > 0 we may write

o oo (el

Since K is locally integrable on , the first term on the right hand side of

2.2) is
UK(x,y)<1 - ¢<x;y>>f(x,y) dxdy,
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and, by the Lebesgue dominated convergence theorem, tends to

| Kx, 221 0x, y) dxy

as e > 0. Hence, we must show that the second term tends to zero.
Choose a function ¢ € H(R") with supp ¢ S B,(0) and so that

3 W — k) = 1.

kezZn

Then, for 1 >2e>0

f(x,y)sa<x~‘—y> = y)so<-’~‘—'—y> > ¢<1 - k>-
€ € Jkezn \ €

Let r > 0 be such that |x| < r for (x, y) e suppf. Then

£, y)qa(-f‘:—y) = /G, y)«p(—x—;- ¥—> ) ¢<ﬁ - k>,

|k| <R €

where

If we let

Fk,e(x!y) = 6'1'"’f(ex+ k,ey + k)¢(x—y)¢<x+ % — k>,

then the family {Fy .:keZ" and 1 > e> 0} is one of the sets described in
remark (a) at the end of Section 1, and since 7 € WBP (m), there exists a cons-

tant C such that
I(K,Fi’,teﬂ gcetTrm

for all keZ", 1 >2e¢>0, zeR" and ¢t > 0. We have used the hypothesis
D®D7J f(x, x) = 0 to obtain the appropriate cancellation of the powers of €. In

particular,
|(K,F,’§;§)| < Ce" ™,
and, hence,
X — X — X
'<K,f(x,y)¢<———y>> <3 <K,f(x,y)¢< 7 >¢<— —k
€ |k| <R € €

<™ 3 KK FED|
|kl <R

S Ce! TR ™50 as e—0. O
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The next result gives a crucial L*-estimate, showing that T behaves well on
smooth bump functions.

Lemma 2.3. Let Te CZO (m, e) N WBP (m) and assume that Tzl = 0 for all
|8] < m. Then T maps D(R") into L*. Moreover, there exists a constant C,
depending only on T, such that for any we R", t > 0 and ¢ € D with supp ¢
< B,(w) we have

2.4) ITele<C > t""|D7].

lvl=1+m

Proor. We will proceed by induction on m. Assume first m = 0. Let ¢ € D,
supp ¢ € B,(w).

(a) For x ¢ B,,(w),
Te() = [, . K 2)e(»)dy,

and, hence,

2.5) Te@| < [, , Clx=¥""l¢lody < Cle]a.

(b) Let xe D, x(x) =1 on B,(0) and x(x) = 0 for x ¢ B¢(0), and write
e() = [e(¥) — )IX" () + ()X '(¥) = f1(x, ) + fo(x, )).
Then, for ¢ € D satisfying supp y S B;,(w), we have

K{Te, ¥)| = KK, ¥ ® @)
< KK Y00 £106 9 | + [KK, (0 £, ¥)) |
=TI+ 1I

By Lemma 2.1,

(2.6) I= U K(x, )¥(x) f1(x, y) dx dy

<j j Clx—y|=" 3 ID%lulx — yldy [¥(9)] dx
B3, (W) JBg, (W) |

V=1

gCtHZ1 Dol ¥]:-
V=

In order to estimate /7, it is sufficient to estimate

KK, ¢ ® x| = KTx™", ¥
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Assume, first, that [ y(x)dx = 0. Then, since 7(1) = 0, we have
0=A(TLy) =<TX"" ) +LT*Y, (1 = X"
and, hence
Q@.7) KTX™, 9| = KT*g, (1 = x|
= | [[ &G ) = X" dey |

|A=x"90) [, KG62) = KOm @ dx| dy

<
= JB,m Bg, (W)

<C tlw = y| 7" Y| dy dx

.[33, w) J“le w)

< Cte Tnoe
<CrWh |, oI

< ClY]a-

Now consider a general ¢ €D, suppy S B;,(w) and jz/z(x) dx = b. Fix
7 €D, suppy S B;(0), n > 0and [ n(x)dx = 1. Then ¢ — bt~ """ has support
in B;,(w) and has integral zero. Hence, using (2.7) and that 7€ WBP (0)
(28) |<wa,t, ¢>| < |<wa,t, 1,/ _ bt—nnw,t>| + |b|t_n|(TXw’t, nw,t>|
SClY = bt~ [y + [¥lt"KTX™ 9™ 5|
< Cly|, + Clyl 7"
<

Clvl,.
From (2.6) and (2.8) we see that
Q9 [{Te, ¥3| < Ct’ |§]1 IDYelel¥l: + Clelel ¥l
o=

<C 3 tMDY%||¥l:-
lvl=1
Thus, (2.5) and (2.9) show that Ty extends as an element of (L'(R™)* = L™
with a norm bounded by the right hand side of (2.4). This ends the proof for
m=0.

Assume that the result is true whenever Te CZO (m — 1,e) NWBP (m — 1)
and Tl = 0 for all || < m — 1, and suppose T € CZO (m, ) N WBP (m) and
T31 =0 for all |8] < m. Fix ¢ € D, satisfying supp ¢ S B,(w).

(a) For x ¢ B,,(w)

(2.10) Te@| < [,  Clx=2""""|¢|adr < Cr™ "o,

which is an estimate of the right order.
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(b)' Let x be as in (b) and write

D"p(x)
2 !

[¥lsm

() = [w(y) - - X)V]xw’ ‘)

D’Y
Z(x) - x)’} X" ()

+ [so(x)x‘”’ ‘»W+ X

1<l|y|=m
=f1(X,y) +f2(x’y) +f3(x’y)'
Then for Y € D, supp ¥ S B;, (W),

3
[KTe, ¥)| < Zl KK, ¥ £i6, )| = T + II + II1.

As in (b), by Lemma 2.1

2.11) I= l“ K(x, y)¥(x) f1(x, ) dx dy

sf j Cle—y| "™ 5 1D%lulx = ¥™* 1 dy |9()] d
B3, (W) JBg, (W) lvl=m+1

<Ct 3] 1 DYl ¥]1-

[yl =m+
The same argument, this time using that 7e WBP (), yields
2.12) I<Ct™ "ol ¥l

Finally, to estimate III we can apply the induction hypothesis to the
operators T, for 1 < |v| < m to obtain

1
(2.13) KK L0601 < 2 |<D’¢T~,XW”,¢>|W

Is|ylsm

<C 2 D%l 2 ¢=m Bl DA L |yl

1=<|y|=m 0<[Bl=sm-|y|+1

<C 3 [D%le 2 7" MDY,
1<s|yl=m 0<|Bl=m-|vy|+1

<C X " MDY| Y],
1<s|yl=m

Hence, (2.10), (2.11), (2.12) and (2.13) give (2.4). O

Corollary 2.14. Let Te CZO (I + ¢) N WBP and suppose that T(y") = 0 for
all |v| <Il. Then T maps ® into L. Moreover, there exists a constant C
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depending only on T such that, if ¢ € D and supp ¢ < B,(w), then
@.15  [D'Tel.<C X t""M|D%]|, forevery |v|<L

vl <yl +1

Proor. Since Te CZO (I + ¢€) N WBP we have
D"TeCZO (|v],! - |v| + € NWBP (|7|) € CZO (|7], e N"WBP (|7]),

since |v| < /. Hence in order to apply Lemma 2.3 we only need to check that
Tg,,1 = 0 for every |B] < |v].
Choose y € D, and let {gaj};.":l be a sequence as in Lemma 1.16. Then,

(2.16) (Tp,1,¥> = im (T 05, ¥)
j—?&

= lim ((y — x)’DIK, ¥ ® ¢;>

Jjoreo

= (=D"'1im <K, DYI(y — )P x0)]e;(3)>

J®

=(-D"lim 3] CK, (¥ — 0P DY(X)e;(1))

Jjoo O=spv=<vy
0=sB+v—v
where the inequalities under the above sum refer to each component of
the multi-indexes. We claim that each term in the sum is zero. In fact,
(K,(y - x)5+"'7D”¢(x)q>j(y)) can be written as a sum of terms of the form
Cﬂ(K,y“x‘“”‘“"“D”w(x)qoj(y» with B+ v —~v—pu>0. Since YyeD,, it
follows that D"y € :DM and, hence, the function x?*?~7~#D"} has at least
vanishing moments of all orders not exceeding |u|. Then by Lemma 1.19,
we have
lim (K, y*xP** 77D (X)¢;(»)) = lim (Tp;p*, xP+* 774Dy

Jjoo Jj— o
- (Ty”,x6+”_7_"D”¢> =0,

since |u| < B + |#| - [vI < [v]. O

Let Te CZO (m,e) NWBP (m) and assume Tzl = 0 for |3| < m. We have
proved that for every ¢ € D, Te is an L”-function. We will now show, that
To(x) can be well defined at every point. In fact, we will show that Ty agrees
almost everywhere with a continuous function.

Let £ > 0, we R" and suppose & € D satisfies £ = 1 on B,,(w) and &(x) =0
for x ¢ B,,(w). Let n = 1 — £. Asin the proof of Lemma 2.3, we have that for
all Y € D, with supp ¢ < B,(w),
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thus,
(TE ¥ = = [[[K(, ») = KOw, Dm0 dy dx
= [[ KOw, ) = K, 2)1n(r) dy ¥) dx.
Since both T% and
[ IKOw,5) = Kx, 9)In(») dy

are bounded functions on B,(w) and they agree, as distributions, on D, (B;(w)),
we must have that for a.e. x in B,(w),

(2.17) TEX) = Cy,o + [ [K(,7) = K6, D)In(») d,

where C,, , is some constant which may depend on w and ¢ but not on x € B,(w).

Since the right hand side of (2.17) is a continuous function, we can take it
as the pointwise definition of 7¢ on B,(w). Note also that if m > 1 then the
«faster decay of K(x,y) at infinity» allows us to compute T£(x) as

(2.18) Tix)=C,, ,— IK(x, y)m(y)dy.
In any case, if x, x’ € B,(w), then
(2.19) Ti(x) — Téx) = j [K(x',») — K(x, »)]n(y) dy.

We now want to define Tp(x) for any ¢ € D. Assume again 7 e CZO (m, ¢)
NWBP (m) and Tzl = 0 for |8| < m. Let o€ D and let Y € D(B,(w)). For £
and 7 as before,

(To, ¥) = (K, ¥y ® o)

<K ¢(x)[¢(y)— > D <x>( i ]z(y)>

[yl sm

(64 )

<K Yx) 2 DY) E(y)> + (K, ¥(X)e(V)n(¥)>

lyl=m

=J K(x,y)[sa(y)— > an(x)( 2l }ayw(x)dydx

[vl=m

+ 2 < >+j K@x, )e(y)n(»)¥(x) dy dx

lvl=m

(the first integral representation follows from Lemma 2.1 and the second one
is true because supp n¢ Nsupp ¥ = 7). Hence, for a.e. x € B,(w),
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“

(2.20) To(x) = jK(x.y)[so(y) > Do) ——— — 1) }E(y) dy

l[¥lsm

7 }(X)

+ jK(x, Ve(ym(y)dy.

Again, since the right hand side of (2.20) is continuous we can take it as the
pointwise definition of Te on B,(w). The continuity also guarantees that this
definition is independent of B,(w) and £.

It will be convenient for later applications to have a formula for the dif-
ference between the values of Ty (as well as D"Typ) at two different points.
This is obtained in the next lemma. Once again, for / = 0 the result is due to
Y. Meyer and for / =1 to M. Meyer. The proof follows from a careful use
of the previous pointwise definitions and it is left to the reader. The details
can be found in [T]. See also [FW] for an alternative formula.

3 (o

lvl<m

Lemma 2.21. Assume Te CZO (Il + e NWBP and T(x") = 0 for all |v| <1
Let x # x' be two points of R", t = |x — x'|, £€ D, £ =1 on B,,(x'), &x) =
for x ¢ By, (x") and let n = 1 — £. Then for all o€ D and for all |v| <!

D"Te(x) — D"To(x")

DB
=jD?K<x,y){¢(y)— 5 Dle® x)ﬁ]smdy

lBl=lvl B!

B r
—jDYK(x',y)[so(y)— y, Do)

—_ yn\B8 d
o2 B (y X)}E(y)y

DPo(x’
+ J[DYK(x, y) - DYK(x’,y)][so(y) - 2 ﬂ(y - X’)"Jn(y) dy

Bi=lvl B!

DB+ V(P(X’)
v!

+ [D%(x) - 2 (x - x')”} T, ,&(x),

g B! vl < il - 18]

where all integrals are absolutely convergent.

3. Boundedness criteria

The following three theorems extend the results of [FHIW].
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Theorem 3.1. Let o <0and0< p,q < . Assume that T: D — D’ satisfies

(3.2) Te WBP,
(3.3) TeCZO(8) where 1>68>0,

(3.4) T*eCZO(J—n—al+p) where 1>p>(J— a)*,
(3.5) T1=0, and

(3.6) T*x") =0 for |v|<[J-n-al,

then T extends to a bounded operator on F;"q.

Theorem 3.7. Let o > 0andmin {p, q} > 1. Assume that T: D — D’ satisfies

(3.8) TeWBP,

(3.9 TeCZO([a] +6) where 1>6> a*,
(3.10) T*e CZO (p) where 1>p>0,
3.11) T(y")=0 forall |v|<lcl, and
3.12) T*1=0 if a=0

then T extends to a bounded operator on F3'9.

Theorem 3.13. Let o > 0 and min {p, g} < 1. Assume that T: D — D' satisfies

(3.14) Te WBP,

(3.15) TeCZO([a] +6) where 1>6>a* if J—n—a<0 and
1>6>max {a*,J*} if J—-n—a=0,

(3.16) T*e CZO([J — nl + p) where 1>p>J*,

(B.17) T(»")=0 for all |7| < [al,

(3.18) T*xM =0 foral |yv|<J-n-a] if J-n—az=0,

(3.19) |DEDIK(x,y) — DEDIK(x,2)| < C|y — z|°|x — y| ~ @+ Bl hl+n
SJor2|y —z| < |x—y|if|v| <min {[J] — n,[a]} and |8 + 7| = [J] — n,
and

(3.20) |DSDIK(x, y) — DEDIK(z, )| < Clx — z[°|x — y| =+ 1F1+ 1M+
Jor 2lx — 2| < lx = y| if |7| = [ed and |6 = (V] = n — [o]) ,

then T extends to a bounded operator on Ff,"".
As we mentioned in Section 1 we will prove these theorems by showing that

smooth atoms are mapped by T into smooth molecules. Actually, we will show
that if @ € D is a smooth atom associated with Q,, the unit cube with lower
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left corner at the origin, then 7 is a smooth molecule associated with Q,.
Moreover, we will see that 7a satisfies conditions (1.4) to (1.7) with a constant
C depending only on the dimension n, the constants appearing in Lemma 2.3
and Corollary 2.14, and the constants associated to T"and T* by the hypotheses
of the theorems and the definitions of generalized Calderén-Zygmund operators
and WBP. It is not hard to check that all these constants, as well as the
hypotheses of the theorems, remain unchanged if we replace T by any of
the operators T%‘. Now using a simple translation and dilation argument,
together with the particular form of conditions (1.4) to (1.7), one can easily
conclude that 7" maps a smooth atom associated with an arbitrary cube Q to
a smooth molecule associated with Q and with the same constant C obtained

for Q,.

PROOF OF THEOREM 3.1. Lete=p—(J—a)* and M=J + e. Let ae D be
a smooth atom for F>? associated with Q,. We will show that Tz is a smooth
M-molecule. Observe that since o < 0 we only need to check that conditions
(1.4) and (1.5) hold (this is also the reason why we use the term «smooth
M-molecule» and not «smooth (8, M)-molecule»).

Assume first |x| > 4Vn. Then, since a(x) has L-vanishing moments (where
L=[/—-n-q¢]) and |a|, <1, we have

| Ta(x)| = l I K(x, y)a(y) dy}
30,

B
_ j [K(x, »- 2 D?K(x,O)y—,}a(y)dy’
30, 6l sL B!
yﬁ
sj K&y - 3 D‘zK(x,O)—-‘dy
30, Bl=L B!
B

> IDEK(x, 2(3)) — DEK(x, 0)] 2| dy

6l =L B!

S \[
30,

where the point z(y) € Q,. But, then, 2|z(y)| <4Vn < |x| and since T*e
CZO (L + p), we obtain from the last inequality that

|z

X7 LT Iy[Fdy < Clx|="~E77 = Clx| =M+,

(3.21) |Ta()| < J C
SQO
because n+L+p=n+[J-n—al+(U-a)*+e=J—a+e=M-—aq,
where the constant C depends only on 7 and the dimension #. Clearly (3.21)
gives (1.4) for Q, and |x| > 4Vn.
Now let |x| < 4Vn. We can use (3.2), (3.3) and (3.5) to apply Lemma 2.3
and obtain
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(3.22) |Ta(x)| < C(lalw + 2Vn | Vals) <

where the constant C, by (1.3), is independent of a(x). Hence, (3.22) gives
(1.4) for |x| < 4vVn.
Since (1.4) holds, x"Ta is integrable for |v| < L; hence, by (3.4) and (3.6),

0= (T*x",a) = (Ta,x") = j Ta(x)x” dx,
which is condition (1.5). [

PROOF OF THEOREM 3.7. Lete=min {6 — a*,p}andlet M=J+e=n+e.
We will show that if a is a smooth atom associated with Q,, then Ta is smooth
(6, M')-molecule also associated with Q,.

We use the same arguments of the previous proof, and, when |x| > 4vVn we
use (3.10), in order to obtain

| Taw)] = | [, K(x,») ~ K(x, 0)la) dy
0
P —n-p
< CLQO | y[°[x] dy
< Clx|™"7*
<Clx|™™
<CU + [x)~™
which is (1.4).
As in the previous proof, if |x| < 4Vn (3.8), (3.9), (3.11) and Lemma 2.3
yield
|Ta(x)| < C < CA + |x|)~™.

Condition (1.5) needs to be checked only if o = 0. But in that case 7*1 =0
and so

0=(T*l,a)=(Ta,1) = jTa(x)dx.

We turn now to condition (1.6). If || = 0, (1.6) is just (1.4). Thus, we may
assume o > |y| > 0. Again there are two different cases. If |x| > 4Vn we have
the immediate estimate

ID*Ta)| < |, IDIKC )] lalody

<Clx|_" 7]
<C| |—n &
<CA+ |xh)~™,
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while if |x| < 4Vn, we may use (3.8), (3.9) and (3.11) to apply, this time,
Corollary 2.14 and obtain

|ID'Ta()| < C Y, @Vn)#I-M|DB| < C<CU + |x])~¥,

Bl =v]+1

where the constant C is, again by (1.3), independent of a(x).
We now show that 7 satisfies condition (1.7). Let || = [«] and let x and
x' be two different points of R”. If |[x — x’| > 1 then, by (1.6), for |v| = [a],
|D"Ta(x) — D"Ta(x')| < |D"Ta(x)| + | D" Ta(x")|
SCA+ )™+ 1+ [xD~™)
SCle =X/ + [x) ™™+ (1 + |x'~M),

which certainly gives (1.7) for this case.
Assume now |x — x’| < 1. We consider the following different positibilies:

(@ If |x|, |x'| > 6Vn, then for ye3Q,, |x —y| >4Vn >2|x — x|, and,
also, |x — y| = |x| — |¥| = |x|/2; thus,

|D"Ta(x) ~ D'Tatx’)| = | [, , DKo pa)dy = [ DK, y)ay) dy
< [, ID"K(,») - DK(', )| |al o dy

N

Clx — x'|®|x — y| "~ =2g
Jag, Gl = xlx = ] y

N

C]x_x:'alxl—n—[a]—b
< Clx = x'|°Q + [x|)~™.

(b) If |x| = 6Vn and |x’| < 6 Vn we still have that x’ is «far» from Q,, that
is |x'| = |x| = |x — x’| > 6Vn — 1 > 5Vn and the situation can be handled as
in (). The same is true, of course, if |x’| > 6Vn and |x| < 6 Vn.

(c) The last case to be considered is when |x|, |x’| < 6 Va. In this case we
use the representation formula of Lemma 2.21. In fact, fix £ € D satisfying
supp £ € B,(0) and £ =1 on B,(0), and let

') = s(y = >

where ¢ = |x — x'|. Then since 7€ CZO ([a] + §) NWBP and T"(x") = 0, for
|7] < [, we have for |v| = [a]

|DYTa(x) — D"Ta(x")|

<

B
jDzK(x, y){a(y) -y P

o B! (y—x)"]é""‘(y)dyl
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Dfa(x’ »
+ IDE’K(x’,y){a(y) - 2 ~—,)(y - X')B]E ') dy'
i<t B!
+ j‘ [DIK(x,y) — DIK(x', »)]
DPa(x’ .
[a(y) -y ZED x')‘*}u - )] dy’
B=le] B!
1 DP*a(x’ .
+ —,)D’Sa(x) - 2 —#(x—x’)” | T, £ @)
I8’ te] B! M<ial-18 7!
=1+ 1T+ 1T+ 1V.
We have
[ e DPa(x
I<cC =y~ ey - X #(y—x)ﬁ |£]dy
JIx' =yl <4lx-x'| 18] =[] B!
<C ix_y‘—n—-[a] E "Dﬁauwly_xl[ahldy
JIx' =y <4|x-x’| 18] =[od +1
SC |x__y|—n+1dy
JIx' -yl <alx-x'|
<Clx—x'
< Clx - x'|%,

since |x — x'| < 1, where the constant C depends on £ but not on a(x) since
|DPa|, < 1forall |8] < [a] + 1. The term I7 can be estimated in the same way.
By (3.9),

mgcj lx = x'|?x — y| 70

[ =y|>2|x-x'|

DPa(x’
ay) - o)

(y-x"*|dy
Bi=td B!

ccl-xP{[ oy S Dy -y
lx'—yl<2 18] = [a] + 1

e[ Ay S Dy - 5 a]
lx'-yl=2 18] =[]

scix_xllﬁij' le_yl-n+l—6dy+J‘
|x'-yl<2

[x'=yl=z2

IX’—yl‘"“’dy}

<Clx - x')°.
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Finally applying Lemma 2.3 to the operators 7 . we obtain

B+v ’
w< 3 i'ﬂpﬁa(x)_ > Di'”(x)(x_x,)p‘
6/ =la1 B! b<ic-l6l P!
C Z (Zt)|#| — [l + 8] ”D“Ex”t"eo}
lul=slal-18]+1 )
<C 3% |Dalebe- x|

1Bl <led |v| =lc]l—[B1+1

¢l = [ed + 1Bl — k] HDuEuw
lul =[ed - 18] +1

<C 3 |x—x|ld-t+1 -+ 18]

18l < [e]
<Clx—x'|
< Clx - x'|°.

We have shown that |DYTa(x) — D"Ta(x")| < |x — x'|°, which implies (1.7)
for |x — x’| <1 and |x|, |x'| < 6Vn. This concludes the proof of Theorem
3.7. O

PRrOOF OF THEOREM 3.13. Lete = min {6 — a*,p — J*}ifJ— n— a <0and
e =min {6 — max {a*,J*},p—J*}if J—-n—a>0,let M=J+ ¢ and let
a(x) be a smooth atom for F;"" associated to Q, . For these choices of M, the
same arguments used in the proof of Theorem 3.1 imply that 7@ satisfies condi-
tions (1.4) and (1.5) for a smooth (6, M)-molecule associated with Q,, and so
they will not be repeated here. In order to prove that 7a also satisfies conditions
(1.6) and (1.7) we will use the mixed derivatives hypotheses (3.19) and (3.20).

Let |x| > 4Vn. Assume, first, that 0 < |y| < min {[J] — n, [«]}. Then by
(3.19)

r 8
(3.23) |D"Ta(x)| < DiK(x,y) — > DSDIK(x, O)y—, la|.dy

J3g, 18] < 71—~ |l B!
n yﬁ

< |DEDIK(x, 2(¥)) — D3DIK(x, 0)| | 7| dy
J30, 16/ = 1= n— |4l B!

< [ C|z(y)|p|x| —n—(J1-n~-|y])- v -p|y|lll —-n-|y| dy
J3g,

< C|x| -Jl-»

CIXI—J—(p—J*)

<Clx|~7=¢ = Clx| M.
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While if [J/]-n+1< |’Y| < [a],
(3-24) D"Ta)| < [, IDIKC )| lalody
0

Clx=y|-n- Mg
LQO e =¥l y

Clxl-"-lvl
C|x|—n—([.]]—n+1)

Clx| =¥

N

N NN

The inequalities (3.23) and (3.24) imply (1.6) for |x| > 4Vn. On the other
hand, if |x| < 4Vn, we use (3.14), (3.15) and (3.17) in order to apply, as in
the previous theorems, Corollary 2.14 to obtain

|D"Ta(x)| < C

which again gives (1.6) for |x| < 4Vn.

We now want to check condition (1.7) for |v| = [a]. Going back to the
proof of Theorem 3.7, we see that the only case that needs a different argu-
ment is when |x — x| <1 and |x|, |x’| > 6Vn. We consider three different
possibilities:

(@ If J—n—a<0, then

|D"Ta(x) — D"Ta(x")| < ID”K(X y) - DIK(", y)| |a].dy

Jso
SCIX Xl e
< Clx — x|
since
n+fa]+é=n+a—-a*+é2n+at+e=2J+e=M.
b) If J-n—a>=0and [J] — n - [a] =0, then again
|DTa(x) - D"Ta(x')| < |, o, IPIK(x.y) = DIK(x', )| |alady
< Clx — x'|®|x| ~n-led=8
< Clx — x'|°|x| =™
because, in this case, ¢ = min {6 — max {a*,J*},p — J*} and, thus,

n+fa]+6=[J]+6=J-J*+62J+ (6 —max{a*,J*})>2J+e=M.

() If J-n—a>0and k=[J] — n— [a] >0, then, using the vanishing
moments of a(x), the integral form of the remainder and (3.20), we get
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|DTa(x) — D" Ta(x")|

<

ﬁ
f [DYK(x, ¥)— 2 DSDYK(x,0)—— ]a(y) dy
30, I8 <k B!

B
—j {D"K(x »)— >, DSDIK(x, 0)—,}a(y)dy‘
30, l61 <k B
< J 1 (1 _ s)k—l
39, Jo (kK —1)!

1
CJ j|x—x’|'5|x—sy|""|""""’|y|"dsdy
30, Jo

6
S IDEDIK(x, sy) — DEDIK(x', sy)] 2
161 = k B!

dsdy

N

< Clx_x/|6|x|—n—|7|—k-—6
< Clx = x'P|x| =™

since
n+|y|+k+é=n+a]+[J]-n—-[a]+6=[J]1+6=J+6—J*=2M.

In all of the above three cases we obtain (1.7) because |x — x’'| <1 and
|x|, |x’| > 6Vn. This ends the proof of Theorem 3.13. [J

We want to make some remarks regarding the above theorems, duality and
interpolation for the case 1 < p, g < . In this case, (Ff,"")* = F,; *4" for
any € R, where p’=p/(p—1) and q’' = q/(g — 1). Thus, for o > 0 and
1< p,q < oo, Theorem 3.7 can be obtained from Theorem 3.1 under the
add1t10nal assumption 7*1 = 0 (which we know is actually unnecessary).
In fact, in such a case, T* is, by Theorem 3.1, bounded on F ~ %% and, hence,
T is bounded on F"‘ *9. This, together with an 1nterpolat10n argument, gives
an alternative proof of the L? boundedness result of David and Journé [DJ]
for the case T1 = T*1 = 0. As was already observed in [FHIJW], the result of
David and Journé can also be obtained from Theorem 3.7 since L? = FY 2.
Thus, Theorem 3.7 can also be used to prove directly the boundedness of
Calder6n-Zygmund operators on L? = F%2, for 1 < p < w, and H! = F2,
avoiding the usual duahty and mterpolatlon argument (see, for example, [CM])

For a >0, F = LZ, where LZ is the homogeneous (L) Sobolev or Beppo
Levi space of orther «. In [MM] a criterion for the boundedness of generalized
Calderén-Zygmund operators on L;‘ for 0 < o < 2 is obtained, without the
assumption (3.10) of our Theorem 3.7 i.e. without smoothness in the variable
»). The reason for our assumption is that we are proving a little more about
T, namely that it maps smooth atoms into smooth molecules. We also recover
and extend (again under the additional smoothness in y), the result of P. Le-
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marié [L], for Besov-Lipschitz spaces. In fact, for « > 0 and min {p, g} > 1,
we can use the real interpolation result:

pqd — (BP0 B%1:P1
BP (Bpo ’Bpl )O,q’

where a = (1 — 0)ag + 0, and 1/p = (1 — 6)(1/p,) + 6(1/p,) With 0 < 6 < 1,
and the fact that B;’,"" = F;'”, to get from Theorem 3.7 a criterion for these
spaces.

Theorem 3.13 can be used, in particular, to obtain a boundedness criterion
for real Hardy spaces, since F%'% = H” for p < 1. The statement of this theorem
is clearly more technical than the previous two due to the presence of the mixed
derivative conditions. However, if T is a convolution singular integral operator,
and, thus K(x, y) = K(x — »), then the hypotheses of Theorem 3.13 are much
easier to state. In fact, Tis (essentially) its own transpose, and fora =0, g = 2
and 0 < p < 1 the hypotheses of the theorem are reduced to:

T WBP,
|DYK(x)| < C|x| "~ for |v|<[n(1/p - 1),
|DK(x) — D'K(x")| < C|x — x'||x] ="~ =< for |v|=[n(1/p - D],

2|x —x'| < |x| and 1 > € > (n/p)*, and
T(y")=0 for |v|<[n(1/p—- 1)

Moreover, the last of these conditions is really superfluous since it is guaranteed
by the translation invariance of 7, as the reader may check (cf. [T]). Thus
we recover the classical result about the boundedness of singular integrals on
HP-spaces (see [FS, p. 191]).

Conditions (3.11) and (3.17) in the above theorems are to some extent
necessary as the following theorem shows.
Theorem 3.25. Suppose that o« >0, 0 < p,q < o, and

TeCZO ([a] + e NWBP

has the norm boundedness property

(3.26) | Tl .0 < Clelga
Sfor all pe DNF 9. Then,

3.27) T(x")=0 whenever |v|<oa-— %

Let us delay the proof of this theorem for a moment and make some com-
ments and describe some of its consequences.
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The norm boundedness property of the statement of this theorem does not,
a priori, allow us to extend 7'to a continuous operator on F » 7 for the follow-
ing reason. F;’? can be regarded as a space of tempered distributions modulo
polynomials of degree less than or equal to [a — n/p] (see [FJ2]). Hence,
it does not make sense to regard 7 as defined on Ff,"q, unless 7(y") =0
for |v| < [a — n/p]. Nevertheless, it does make sense to consider (3.26) for
peED HF;"’. Except for the gap in the case where o — n/p is integer,
Theorem 3.25 shows that the norm property can not hold unless 7" annihilates
polynomials of appropriate degree, so that 7, in fact, can be extended to a
bounded operator on F;’,"".

Moreover, there is in general, a gap between this theorem and conditions
(3.11) or (3.17). However, if p = « and o > 0 is not an integer, we obtain
from Theorems 3.7 and 3.25 the following

Corollary 3.28. Let >0, o ¢Z and 1 < q < . Assume that T: D > D’
satisfies

T e WBP,
TeCZO ([a] + &) 1>6>a*,
T*e CZO (p) 1>p>0.

Then T extends to a bounded operator on F;‘:,"’ if and only if T(»") = 0 for
all |v] < [a].

If, in addition, g = «© we have F @° = A% the (homogeneous) Lipschitz
space of order «, and, in this particular case, a careful look at the proof of
Theorem 3.7 shows that, if we do not require that 7 is to map smooth atoms
into smooth molecules, we can get rid of the smoothness in the y variable and
still obtain the boundedness on A®. Thus, we recover the result of Y. Meyer
for the boundednes of generalized Calderon-Zygmund opertors on Lipschitz
spaces [M2].

The gap between conditions (3.11) and (3.27) disappears if we consider con-
ditions yielding boundedness for all o« > 0. In fact, fix p and g with 1 < p,
g < . From Theorems 3.7 and 3.25 we immediately obtain

Corollary 3.29. Let T: D — D’ be a linear and continuous operator with
kernel K whose restriction to Q is a C”-function of x. If, in addition, we
have

(3.30) T e WBP,

(3.31) IDIK(x, )| < C,lx—y|~"~ M forall =,
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and
(3.32) |K(x,y) — K(x,2)| < Cly — z[|x —y| "¢

Sor some e >0 whenever 2|y — z| < |x — y|, then T extends to a bounded
operator on F’? for all o > 0 if and only if T(P) = 0 for all polynomials P.

Observe that in this case we also have that T is bounded if and only if T
maps smooth atoms into smooth molecules for all o > 0.

For the inhomogeneous spaces F;*? (defined in [Tr], [FJ2]) we have the
following

Corollary 3.33. Suppose 1 < p, g< oo. Let T: D — D’ be a linear and con-
tinuous operator satisfying (3.31) and (3.32). Suppose, also, that T is bounded
on L? and that T(P) = 0 for all polynomials P. Then T extends to a bounded
operator on F9 for all o > 0.

This result follows from Theorem 3.7 (boundedness in L? implies WBP)
and the standard fact that for « > 0 and 0 < p, ¢ < ©, we have

[ flpaa= [ flpwa+ [f]p for fe8'.

Recall that fora >0 and 1 < p < e, F'? = L, the (L") Sobolev space of
order «. Thus, the above corollary gives, in particular, conditions for 7 to be
simultaneously bounded on all Sobolev spaces for a fixed p.

Proor oF THEOREM 3.25. Let 0 <« and 0 <min {p,q} < ©. We may
assume a > n/p, otherwise (3.27) is void. We will need to use the following
standard facts about Triebel-Lizorkin spaces

Fact 1 (see, for example, [FJ2] or [FW]). Let y € D, for some [ 2 [a — n/p].
Then there exists a constant C, > 0 such that for all fe Fj9,

KLDISCulf g
Fact 2 (see [Tr, p. 239]). Let fe DNF, then | f*] para < Ct@P %] £ pea-
P P

Let |v] =< a — n/p. We have to show that Ty” = 0 in ;. Now, although
Ty is initially only defined on D;, using the Hahn-Banach theorem we can
extend it to a distribution S in D’ (two such extensions will, of course, differ
by a polynomial of degree less than or equal to /). Let 8 be a multi-index such
that |8| > [ — n/p]. Then, d?y e Dyg -1 E D for all Y €D and we have

(DS, ¥y = (-1)IFIKS, DYy = (- 1) Ty", DPY).



70 M. FrAzZIER, R. TorRES AND G. WEISsS

Choose ¢ €D such that ¢(0) # 0 and y"¢(y) €D, , where as before, L =
[J—n—-qa]. ltis easy to check that, up to a multipl‘icative constant, y"p is a
smooth atom for Fj'?, and, therefore, Yo € DNF;?. Since

TeCZO([a] + €) € CZO (Ja — n/p] + ¢),

we have, from Lemma 1.22 and the two facts stated at the beginning of this
proof, that

|0(0)<D?S, ¥>| = (0 T(y™), DPy)|
= lim K T(y"¢"), DY)

= lim "M [ T1(»"¢)'], DPy)|

t— o

< lim Cut" I TIO0) 1l .0

<Gy, rlim M50 .o

< Cy, rlim M 7P =2 70| 1o,
t— p

=0

since |v| < « — n/p. Thus, since ¢(0) # 0, we see that D?S =0 in D’ for all
|8] > [o — n/p]. But this implies that S coincides with a polynomial of degree at
most [ — n/p] on D, and, a fortiori, Ty" coincides on D, with a polynomial
of degree at most [a — n/p].

Put P = T(y"). We claim that the weak boundedness property implies that
the degree of P(x) is at most /. Since a polynomial of degree at most / acts
as the zero linear fuctional on ®,, this will imply that 7(»") = 0 in D;.

Suppose that

Px)= > ¢x’'= >, ¢x"+ 2, ¢x’'=Q0x + R(X),

|v]| =d |v| <d [v] =d

where d >/and ), |c,| #0.
lv|=d
Let y €D, be such that [Y(x)R(x)dx #0, and let r>0 be such that

supp ¥ < B,(0). Let x € D satisfy x =1 on B,,(0) and |X|, = 1. Forall#>1,

(P, Y'Y =T, ¥"
= (TXY), ¥y + (TI(1 — xHY'], ¥
= (TXY"), ¥ + (T*y, (1 — X))
=I+1I
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By the WBP,

VES t|7’|T(xy7)', ¥H| < C\b,xt"“,

and, from (1.21) we have that

[I| = KT*J', (1 = x|

= | [[ Ko w0~ Xonydedy |

l'Yl t
< jly|>2r12|y| IK(X'J’)‘P (X)dx'dy
< C(rt)"+1+f"¢,"wj‘|y|>2n|y| —n-l-exl gy
<C¢t"+1,

On the other hand,

(P,¥") = [ POV () dx
= 1" [ Ptx)y () dx
= 1" [ QUux)(x) dx + 1" [ REx)(x) dx
= > ¢tV .[x"\p(x) dx + t"*4 j RX)¥(x) dx,

lv| <d

and, since j Y(X)R(x)dx # 0 and d > [, if we let ¢ tend to infinity, we obtain
a contradiction. Therefore, the degree of the polynomial P(x) is at most /. This
completes the proof of the theorem. [
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