Lipschitz and bi-Lipschitz Functions

Peter W. Jones

Let $Q_0 = [0, 1]^n$ be the unit cube in \mathbb{R}^n and let $f: Q_0 \to \mathbb{R}^m$, $m \ge n$, have Lipschitz norm bounded by one,

(1)
$$||f||_{\text{Lip}} = \sup_{\substack{x,y \in Q_0 \\ x \neq y}} \frac{|f(x) - f(y)|}{|x - y|} \le 1.$$

Then classical results (see e.g. Federer [2] or Stein [5]) assert that

$$Df = \left(\frac{\partial f_i}{\partial x_j}\right)_{i,j}$$

is defined almost everywhere on Q_0 , and f may be recovered from Df via integration along line segments parallel to the axes. We also recall two classical qualitative results. Let $\mathfrak{IC}(\bullet)$ denote n dimensional Hausdorff measure and let h denote n dimensional Hausdorff content,

$$h(E) = \inf \sum_{j=1}^{\infty} c_n r_j^n$$

where the infimum is taken over all coverings of E by balls $B(x_j, r_j)$ with no restrictions on the radii r_j . Then $h(E) \leq \Re(E)$ and if $E \subset \mathbb{R}^n$, $h(E) = \Re(E)$. Sard's theorem asserts that $\Re(\{f(x): \operatorname{Rank}(Df(x)) < n\}) = 0$. A slightly stronger result is that one can decompose

$$Q_0 = G \cup \bigcup_{j=1}^{\infty} K_j$$

where $\mathfrak{F}(f(G)) = 0$ and f is bi-Lipschitz on each K_j , i.e. there are constants c_i such that

$$|f(x) - f(y)| \ge c_j |x - y|, \quad x, y \in K_j.$$

A qualitative version of the last result was first given by Guy David in [1].

Theorem (Guy David [1]). Suppose $f: Q_0 \to \mathbb{R}^n$ satisfies $||f||_{\text{Lip}} = 1$ and $\mathfrak{F}(f(Q_0)) \ge \epsilon > 0$. Then there is $\delta = \delta(\epsilon) > 0$ and $K \subset Q_0$ such that $\mathfrak{F}(K)$, $\mathfrak{F}(f(K)) \ge \delta$ and

$$|f(x) - f(y)| \ge \delta |x - y|, \quad x, y \in K.$$

David's result was used to prove boundedness properties for singular integrals on certain surfaces $S \subset \mathbb{R}^m$. If $S = f(\mathbb{R}^n)$ where f is Lipschitz and satisfies some other criterion, the above theorem can be used to show that for all $x_0 \in S$ and all r > 0, $S \cap \{x \in \mathbb{R}^m : |x - x_0| \le r\}$ contains a subset $K = K(x_0, r)$ such that $\mathfrak{F}(K) \ge cr^n$ and such that singular integrals are known to be bounded operators on $L^2(K)$. Real variales methods are then used to show that singular integrals are bounded on $L^2(S)$. In this note we present a generalization and strengthening of David's theorem. Our proof is also shorter than David's.

Theorem. Suppose $f: Q_0 \to \mathbb{R}^m$ satisfies $||f||_{\text{Lip}} = 1$. Then for each $\delta > 0$ there is $M(\delta) < \infty$ and there are closed sets $K_1, \ldots, K_M \subset Q_0$, $M \leq M(\delta)$, such that

$$h\left(f\left(Q_0\setminus\bigcup_{j=1}^MK_j\right)\right)<\delta$$

and such that

$$|f(x)-f(y)| \geqslant \frac{\delta}{2}|x-y|, \quad x,y \in K_j, \quad 1 \leqslant j \leqslant M.$$

By using truncation methods, the theorem can be seen to have L^p analogues.

Corollary. Suppose $f = (f_1, \ldots, f_m)$: $Q_0 \to \mathbb{R}^m$ is such that each f_j is in the Sobolev space $W^{1,n+\epsilon}$ (one derivative in $L^{n+\epsilon}$) with $\|f_j\|_{W^{1,n+\epsilon}} \leqslant 1$, $1 \leqslant j \leqslant m$. Then the conclusions of the theorem hold with $M = M(\epsilon, \delta)$.

PROOF. Fix $N < \infty$ and build F such that $||F||_{\text{Lip}} \le N$ and $\Re(\{x: F(x) \ne f(x)\})$ $\le cN^{-(n+\epsilon)}$. Then use the theorem plus the fact that for any $G \subset Q_0$, $\Re(f(G))$ $\le C\Re(G)^{(\epsilon/n)/(1+\epsilon/n)}$. \square

The proof of the theorem is given in section 2. The main tool is a Littlewood-Paley inequality. The theorem can be used to obtain a different approach to Guy David's results on singular integrals; this will appear else-

It is with great sorrow that I dedicate this paper to the memory of my good friend José-Luis Rubio de Francia.

2. Proof of the Theorem

Let F(x) be a real valued function on \mathbb{R}^n and let F(x, y) denote its Poisson (harmonic) extension to $\mathbb{R}^{n+1}_+ = \{(x, y): x \in \mathbb{R}^n, y > 0\}$. Also let

$$\nabla F(x, y) = (F_{x_1}(x, y), \dots, F_{x_n}(x, y), F_y(x, y))$$

denote the gradient of F. Then if $Q \subset \mathbb{R}^n$ is any cube with sidelength $\ell(Q)$, and if $R(Q) = Q \times (0, \ell(Q))$, ∇F satisfies the well-known BMO type estimate

$$(2.1) \qquad \qquad \iint_{R(Q)} |\nabla F|^2 y \, dx \, dy \leqslant C \mathfrak{X}(Q) \|F\|_{L^{\infty}(\mathbb{R}^n)}^2.$$

See Fefferman-Stein [3] or Garnett's book [4] page 240 for the proof.

We denote by $\mathfrak D$ the collection of all dyadic cubes in $\mathbb R^n$, *i.e.* the collection of all cubes Q of form $\prod_{j=1}^n [a_j 2^{-k}, (a_j+1)2^{-k}]$ where a_j and k lie in $\mathbb Z$. For such a cube Q we denote by $\ell(Q)=2^{-k}$ the sidelength of Q. From now on, all cubes will be dyadic. We also let

$$T(Q) = Q \times \left[\frac{1}{2}\ell(Q), \ell(Q)\right]$$

denote the top half of R(Q). If $Q, Q' \in \mathfrak{D}$, we say that Q and Q' are semiadjacent if $\ell(Q) = \ell(Q')$, $Q \cap Q' = \emptyset$, and there is $Q'' \in \mathfrak{D}$ with $\ell(Q'') = \ell(Q)$, such that $Q \cap Q'' \neq \emptyset$, $Q' \cap Q'' \neq \emptyset$. Then

(2.2) For each $Q \in \mathfrak{D}$ there are exactly $5^n - 3^n$ semi-adjacent cubes Q'.

Let f satisfy the hypotheses of the theorem; by Whitney's extension theorem (see [2] or [5]) we may assume f is defined on all of \mathbb{R}^n and $||f||_{Lip} \leq 1$ there. Write $f = (f_1, \ldots, f_m)$ and $Df = \left(\frac{\partial f_j}{\partial x_k}\right)$. Let $F_{j,k}$ be the harmonic extension of $\frac{\partial f_j}{\partial v_i}$ to \mathbb{R}^{n+1}_+ and let

$$|\nabla Df| = \left(\sum_{j,k} |\nabla F_{j,k}|^2\right)^{1/2}.$$

Our next lemma says that if Q and Q' are semi-adjacent, h(f(Q)) is large but f(Q) and f(Q') are not well separated, then $|\nabla Df|$ must be large somewhere in T(Q).

Lemma 2.1. Suppose Q and Q' are semi-adjacent and $h(f(Q)) \ge \delta \Im C(Q)$. If there are $x \in Q$, $x' \in Q'$ such that

$$|f(x)-f(x')|\leqslant \frac{\delta}{2}|x-x'|,$$

then

$$\iint_{T(Q)} |\nabla Df|^2 y \, dx \, dy \geqslant c(\delta) \mathfrak{R}(Q),$$

where $c(\delta) > 0$ is a constant depending only on δ .

PROOF. Since the hypotheses and conclusions are dilation invariant, it is sufficient to treat the case where $Q=Q_0$ is the unit cube. Suppose that the lemma is false, so that there is a sequence of functions f_j satisfying the hypotheses of the lemma but such that

$$\iint_{T(O_{\epsilon})} |\nabla Df|^2 y \, dx \, dy \leqslant 2^{-j}.$$

By Arzelà-Ascoli we may assume the f_j converge uniformly to f on compacta. Then $\|f\|_{\mathrm{Lip}} \leq 1$, and since $h(f(Q_0)) \geqslant \liminf h(f_j(Q_0))$, f satisfies the hypotheses of the lemma. On the other hand,

$$\iint_{T(Q_0)} |\nabla Df|^2 y \, dx \, dy = 0,$$

so by the uniqueness principle for harmonic functions Df is constant a.e. on \mathbb{R}^n , and consequently f is linear on \mathbb{R}^n .

However, there is $x' \in Q'$ such that

$$|f(x) - f(x')| \leqslant \frac{\delta}{2} |x - x'|$$

for some $x \in Q_0$. This is not possible for a linear map satisfying $h(f(Q_0)) \ge \delta$ and $||f||_{Lip} \le 1$. \square

Let

$$G_1 = \left\{ Q \in \mathfrak{D} : Q \subset Q_0, h(f(Q)) \leqslant \frac{\delta}{2} \mathfrak{R}(Q) \right\}$$

and let

$$G_1=\bigcup_{Q\in G_1}Q$$

so that

$$(2.3) h(f(G_1)) \leqslant \frac{\delta}{2}.$$

The set G_1 is a «garbage» set to be thrown out. Let $\mathfrak F$ denote the collection of all unordered pairs of semi-adjacent cubes Q, Q' such that both Q, $Q' \notin G_1$, and such that Q, Q' satisfy the hypotheses of Lemma 2.1. We enumerate the collection \mathcal{F} by $\{(Q_1^1, Q_2^1), (Q_1^2, Q_2^2), (Q_1^3, Q_2^3), \dots\}$ where $\ell(Q_1^j) \ge \ell(Q_1^{j+1})$. Let $c(\delta)$ be the constant of Lemma 2.1, and let

$$G_2 = \left\{ x: \sum_{j=1}^{\infty} \sum_{k=1}^{2} \chi_{Q_k^{j}}(x) \geq C_1 \delta^{-1} c(\delta)^{-1} \right\},\,$$

where C_1 is a constant to be fixed later.

Lemma 2.2. $\Im C(G_2) \leq \delta/2$.

PROOF. By Chebychev's inequality,

$$\Im (G_2) \leqslant C_1^{-1} \delta c(\delta) \sum_{j=1}^{\infty} \sum_{k=1}^{2} \Im (Q_k^j)$$

$$\leqslant C_1^{-1} \delta \sum_{j=1}^{\infty} \sum_{k=1}^{2} \iint_{T(Q_k^j)} |\nabla Df|^2 y \, dx \, dy$$

$$= C_1^{-1} \delta \iint_{T(Q_0^j)} |\nabla Df|^2 \sum_{j,k} \chi_{T(Q_0^j)}(x,y) y \, dx \, dy$$

$$\leqslant C_1^{-1} \delta C(n) \iint_{R(Q_0)} |\nabla Df|^2 y \, dx \, dy$$

$$\leqslant C_1^{-1} \delta C(n) C.$$

The penultimate inequality follows from remark (2.2), while the final inequality results from Lemma 2.1. The proof is concluded by choosing $C_1 \ge 2C(n)C$.

Setting $G = G_1 \cup G_2$, it follows from (2.3) and Lemma 2.2 that $h(f(G)) \leq \delta$. We now divide $Q_0 \setminus G$ into M disjoint compact a K_{α} so that f is bi-Lipschitz on each K_{α} . To do this we define inductively indices α_{j} . To each x will correspond $\alpha_i(x)$ and we will define

$$K_{\alpha} = \left\{ x \in Q_0 \setminus G: \lim_{j \to \infty} \alpha_j(x) = \alpha \right\} \cdot$$

Each $\alpha_j(x)$ will be a finite string of zeros and ones, $\alpha_j(x) = \{\epsilon_1^j(x), \ldots, \epsilon_k^j(x)\}$, where $\epsilon_l^j = 0$ or 1.

At stage zero we define $\alpha_0(x) = \{0\}$ for all $x \in Q_0$. At stage one, let Q_1^1 and Q_2^1 be the first pair of cubes in \mathfrak{F} . Define

$$\alpha_1(x) = \{0, 0\} \quad \text{on} \quad Q_1^1$$

$$\alpha_1(x) = \{0, 1\} \quad \text{on} \quad Q_2^1$$

$$\alpha_1(x) = \{0\} \quad \text{on} \quad Q_0 \setminus (Q_1^1 \cup Q_2^1).$$

We suppose by induction that $\alpha_0, \alpha_1, \ldots, \alpha_{k-1}$ have been defined and that α_{k-1} is constant on each $Q \in \mathfrak{D}$ with $\ell(Q) \leq \ell(Q_1^{k-1}) = \ell(Q_2^{k-1})$. Let Q_1^k and Q_2^k be the k^{th} pair of cubes in \mathfrak{F} , and suppose $\alpha_{k-1}(x) = \{\epsilon_1, \ldots, \epsilon_s\}$ on Q_1^k , $\alpha_{k-1}(x) = \{\epsilon_1', \ldots, \epsilon_t'\}$ on Q_2^k .

Case 1. s = t. Define

$$\begin{split} &\alpha_k(x) = \{\epsilon_1, \dots, \epsilon_s, 0\} & \text{on } Q_1^k \\ &\alpha_k(x) = \{\epsilon_1', \dots, \epsilon_l', 1\} & \text{on } Q_2^k \\ &\alpha_k(x) = \alpha_{k-1}(x) & \text{on } Q_0 \setminus (Q_1^k \cup Q_2^k). \end{split}$$

Case 2. s > t. Define $\epsilon'_{t+1} = 2 - 2^{1+\epsilon_t}$ and

$$\alpha_k(x) = \alpha_{k-1}(x)$$
 on $Q_0 \setminus Q_2^k$
 $\alpha_k(x) = \{\epsilon'_1, \dots, \epsilon'_t, \epsilon'_{t+1}\}$ on Q_2^k .

Case 3. s < t. Reverse the roles of Q_1^k and Q_2^k and apply Case 2.

The procedure guarantees that $\alpha_{l}(x)$ distinguishes between points in Q_{1}^{k} and Q_{2}^{k} whenever $l \geq k$. More precisely, if $l \geq k$, $Q_{1} \subset Q_{1}^{k}$, $Q_{2} \subset Q_{2}^{k}$, $\alpha_{l}(x) = \{\epsilon_{1}, \ldots, \epsilon_{u}\}$ on Q_{1} , $\alpha_{l}(x) = \{\epsilon_{1}', \ldots, \epsilon_{v}'\}$ on Q_{2} , then $u, v \geq k + 1$ and there is $j \leq k + 1$ such that

$$(2.4) \epsilon_j \neq \epsilon_j'.$$

Let C_1 be the constant in the definition of G_2 , and for $\alpha = \{\epsilon_1, \ldots, \epsilon_s\}$ define $\rho(\alpha) = s$ to be the «length» of α . Then by the definition of G_2 and the α_j 's,

$$\rho(\alpha_j(x)) \leqslant 1 + C_1 \delta^{-1} c(\delta)^{-1}$$

for all $x \in Q_0 \setminus G_2$. If $x \in Q_0 \setminus G$ we see therefore that $\alpha(x) = \lim_{i \to \infty} \alpha_i(x)$ is well defined and

$$\rho(\alpha(x)) \leqslant 1 + C_1 \delta^{-1} c(\delta)^{-1}.$$

For $s \le 1 + C_1 \delta^{-1} c(\delta)^{-1}$ and $\alpha = \{\epsilon_1, \dots, \epsilon_s\}$ a string of zeros and ones, define

$$K_{\alpha} = \{x \in Q_0 \setminus G: \alpha(x) = \alpha\}.$$

Then there are at most $M(\delta)$ sets K_{α} , so we need only check that f is bi-Lipschitz on each K_{α} . To this end, suppose $x, y \in K_{\alpha}$, but

$$|f(x) - f(y)| < \frac{\delta}{2}|x - y|.$$

Then $x \in Q$, $y \in Q'$ where Q and Q' are semi-adjacent. Since $x,y \notin G_1$, $h(f(Q)), h(f(Q')) \ge \ell(Q)$. Therefore the pair (Q, Q') must show up in $\mathfrak F$ as a pair (Q_1^k, Q_2^k) . By (2.4), $\alpha_l(x) \neq \alpha_l(y)$ whenever $l \geq k$, so $\alpha(x) \neq \alpha(y)$. This contradiction completes the proof of the theorem. \Box

References

- [1] David, G. Morceaux de graphes Lipschitziens et integrales singulières sur une surface. Rev. Mat. Iberoamericana, 4(1988), pp. 73-114.
- [2] Federer, H. Geometric measure theory, Springer-Verlag, 1969.
- [3] Fefferman, C. and Stein, E.M. H^p spaces of several variables, Acta Math. 129(1972), 137-193.
- [4] Garnett, J.B. Bounded analytic functions, Academic Press, 1981.
- [5] Stein, E.M. Singular integrals and differentiability properties of functions, Princeton University Press, 1970.

Peter W. Jones Department of Mathematics Yale University New Haven, CT. 06520, U.S.A.