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Let Q, = [0, 1]" be the unit cube in R" and let f: Q,— R™, m > n, have
Lipschitz norm bounded by one,

@ flyy = sup LOION

x,y€Q, lx — |
xX#y

Then classical results (see e.g. Federer [2] or Stein [5]) assert that

_ (9
br= <a—>

is defined almost everywhere on Q,, and f may be recovered from Df via
integration along line segments parallel to the axes. We also recall two classical
qualitative results. Let JC(«) denote » dimensional Hausdorff measure and let
h denote n dimensional Hausdorff content,

=]

h(E) = inf 3 c,r}

Jj=1

where the infimum is taken over all coverings of E by balls B(x;, r;) with no
restrictions on the radii 7;. Then A(E) < 3C(E) and if E C R", h(E) = J(E).
Sard’s theorem asserts that JC({ f(x): Rank (Df(x)) <n})=0. A slightly
stronger result is that one can decompose

QO = GU UIKJ
j=
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where JC(f(G)) = 0 and fis bi-Lipschitz on each K}, i.e. there are constants
¢; such that

Ifx) =W 2cilx=y, xyek;.

A qualitative version of the last result was first given by Guy David in [1].

Theorem (Guy David [1]). Suppose f:Q,— R" satisfies |f|;,=1 and
JC(f(Qyp)) = €> 0. Then there is 6 = 6(¢) >0 and K C Q, such that 3C(K),
IC(f(K)) = 6 and

lfx) —f»| =8lx—y|, x,yek.

David’s result was used to prove boundedness properties for singular integrals
on certain surfaces § C R™. If § = f(IR") where f'is Lipschitz and satisfies some
other criterion, the above theorem can be used to show that for all x, € 8§ and
all r>0, SN {xeR™: |x — x;| < r} contains a subset K = K(x,, r) such that
JC(K) = cr™ and such that singular integrals are known to be bounded operators
on L*(K). Real variales methods are then used to show that singular integrals
are bounded on L2(8). In this note we present a generalization and strengthening
of David’s theorem. Our proof is also shorter than David’s.

Theorem. Suppose f: Qo — R™ satisfies | f|,, =1. Then for each 6>0
there is M(8) < o« and there are closed sets K, ...,K,, C Q,, M < M(5),

such that
M
(o )<

8 .
lf(X)—f(y)|>3|x—y|, x,yeK;, 1<j<M.

and such that

By using truncation methods, the theorem can be seen to have L? analogues.

Corollary. Suppose f= (f1,...,fm): Qo= R™ is such that each f; is in the
Sobolev space W'"* ¢ (one derivative in L"* ) with | fi| yr.n+. < 1,1 <j < m.
Then the conclusions of the theorem hold with M = M(e, 6).

ProOF. Fix N < o and build Fsuch that |F|; < Nand JC({x: F(x) # f(x)})
< cN~®*9_ Then use the theorem plus the fact that for any G C Q,, IC(f(G))
S CJC(G)(E/")/(I + e/n). D
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The proof of the theorem is given in section 2. The main tool is a
Littlewood-Paley inequality. The theorem can be used to obtain a different
approach to Guy David’s results on singular integrals; this will appear else-
where.

It is with great sorrow that I dedicate this paper to the memory of my good
friend José-Luis Rubio de Francia.

2. Proof of the Theorem

Let F(x) be a real valued function on R” and let F(x, y) denote its Poisson (har-
monic) extension to R%*! = {(x,y): xeR",y > 0}. Also let

VF(xsy) = (Fxl(x’y)’ . st”(x!y)sFy(x’y))

denote the gradient of F. Then if Q C R” is any cube with sidelength £(Q), and
if R(Q) = Q x (0,£(Q)], VF satisfies the well-known BMO type estimate

@.1) IVF|%ydxdy < CI(Q)| F | 2uiny -
R(Q) (R

See Fefferman-Stein [3] or Garnett’s book [4] page 240 for the proof.

We denote by D the collection of all dyadic cubes in R”, i.e. the collection
of all cubes Q of form IT7_, [;27, (a; + 1)2~¥] where a; and & lie in Z. For
such a cube Q we denote by £(Q) = 2~ the sidelength of Q. From now on,
all cubes will be dyadic. We also let

7Q) = 0% Bf@, e(Q)]

denote the top half of R(Q). If Q, Q' e D, we say that Q and Q' are semi-
adjacent if £(Q) = £(Q"), ON Q' = I, and there is Q" € D with Q") = £(Q),
such that QNQ" # &, Q"N Q" # J. Then .

(2.2) For each Q € D there are exactly 5" — 3" semi-adjacent cubes Q'.

Let f'satisfy the hypotheses of the theorem; by Whitney’s extension theorem
(see [2] or [S]) we may assume fis defined on all of R” and | f | Lip < 1 there.

Writef= (fl’ e ,fm) and Df: <£ij1_

af;
f 4L
° x;

> - Let F; ; be the harmonic extension
k

to R%*! and let

V07| = (S 1VF,l”) .
Jsk
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Our next lemma says that if Q and Q' are semi-adjacent, A(f(Q)) is large but
f(Q) and f(Q’) are not well separated, then |VDf| must be large somewhere

in T(Q).

Lemma 2.1. Suppose Q and Q' are semi-adjacent and h( f(Q)) = 63C(Q). If
there are x € Q, x' € Q' such that

1769~ 16)| < = 1,

then

U Q) |VDf|?y dxdy = c(8)3(Q),

where c(6) > 0 is a constant depending only on 6.

Proor. Since the hypotheses and conclusions are dilation invariant, it is suf-
ficient to treat the case where Q = Q, is the unit cube. Suppose that the lemma
is false, so that there is a sequence of functions f; satisfying the hypotheses
of the lemma but such that

2 -J
‘”T(Qo) |\VDf|*ydxdy <277.
By Arzela-Ascoli we may assume the f; converge uniformly to f on compacta.

Then |f|;, <1, and since A(f(Qo)) = liminfh(f;(Qo)), f satisfies the
hypotheses of the lemma. On the other hand,

e IvDf Py dxdy =0,

so by the uniqueness principle for harmonic functions Df is constant a.e. on
R", and consequently f is linear on R".
However, there is x’ € Q' such that

1709 = el < 3 b = x|

for some x € Q,. This is not possible for a linear map satisfying A(f(Q,)) = 6
and | f],<1. O

Let

G, = {Q €D:QC 0y, Q) < %:«2(9)}
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and let
Gl = U Q
QeG,
so that
0
2.3) h(fG) <

The set G, is a «garbage» set to be thrown out. Let § denote the collection of
all unordered pairs of semi-adjacent cubes Q, Q’ such that both Q, Q' ¢ G,,
and such that Q, Q' satisfy the hypotheses of Lemma 2.1. We enumerate the

collection & by {(Q1, 03), (@3, 03), (03, @3), . .. } where #(Q%) > Q%" 7). Let
¢(6) be the constant of Lemma 2.1, and let

© 2
Gz = {x: Z Z XQJ(X) = Clﬁ_lc(ﬁ)_I} ’
j=1k=1 ~k
where C, is a constant to be fixed later.

Lemma 2.2. J3C(G,) < §/2.

Proor. By Chebychev’s inequality,

© 2
3(Gy) < C 'oc®) 3 33 3QD
j= =

© 2
<ciy “T(Q{)IVDflzydxdy

j=1k=1

=Crs jj |VDf|? Z,EXT(QQ(x’y)y dxdy
Js

< Cy'6C(n) J.J‘ |VDf|*y dxdy
R@Qp

< Gy sC)C.

The penultimate inequality follows from remark (2.2), while the final inequality
results from Lemma 2.1. The proof is concluded by choosing C; > 2C(n)C. O

Setting G = G, UG,, it follows from (2.3) and Lemma 2.2 that A(f(G)) < 6.
We now divide Q,\ G into M disjoint compact a K, so that fis bi-Lipschitz
on each K,,. To do this we define inductively indices «;. To each x will corres-
pond «;(x) and we will define
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K, = {erO\G: lim o;(x) = a} :

J o

Each a;(x) will be a finite string of zeros and ones, a;(x) = {€](x), ..., e;(0)},
where ¢ =0 or 1.

At stage zero we define o(x) = {0} for all x € Q,. At stage one, let Q} and
Q3 be the first pair of cubes in . Define

a;(x) = (0,0} on Q@

a;(x)= (0,1} on Q;

a;()=1(0}) on Q,\(QIUQ).
We suppose by induction that «, g, ..., _; have been defined and that
oy is constant on each Q € D with Q) < H(Q*~ ") = «(Q%~1). Let Q¥ and
Q% be the k™ pair of cubes in &, and suppose oy _;(X) = (e, ..., €) on QF,
ap_1(X) = {€},..., €} on OF.

Case 1. s=t. Define

Olk(X)= {6],...,63,0] on Q’I(
Olk(X)= {611,...,6;,1} on QIZC
o (X) = o -1 (%) on Qp\(QTU Q3.

Case 2. s>t. Define ¢,,,=2—2"*% and

o (X) = o 1(x) on Q()\lec

o) = (€},...,€l€0,,) on Q%.
Case 3. s < t. Reverse the roles of Q% and Q% and apply Case 2.

The procedure guarantees that o;x) distinguishes between points in Q¥ and
Q'z‘ whenever /> k. More precisely, if />2k, Q; C Q’f , O, C Q'Z‘, o(x) =
{er, ..., 6,) On Q, ay(x) = {€},...,€,} on Q,, then u,v >k + 1 and there
is j < k + 1 such that

@4 &% €.

Let C, be the constant in the definition of G,, and for a = {e;, ..., €]}
define p(cr) = s to be the «length» of «. Then by the definition of G, and the
Olj,s,

p(ey () <1+ C;57e(®) ™!
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for all xe Q,\ G,. If xe Q,\ G we see therefore that a(x) = lim o(x) is well
defined and 7

p(a()) <1+ C6 ().

For s<1+ C;6 %)™ ! and o = {e,...,¢} a string of zeros and ones,
define

K,={xeQy\G: alx) = a}.

Then there are at most M(6) sets K,, so we need only check that f is bi-
Lipschitz on each K. To this end, suppose x,y € K,,, but

/() — f)| < % lx = yl.

Then xeQ, ye Q' where Q and Q' are semi-adjacent. Since x,y ¢ G,
h(f(Q), h(f(Q")) = £(Q). Therefore the pair (Q, Q') must show up in F as a
pair (Q%, 0%). By (2.4), o;(x) # oy(¥) whenever ! > k, so a(x) # a(y). This
contradiction completes the proof of the theorem. []
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